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Summary

This vignette provides an overview of the R package gets, which contains facilities for automated
general-to-specific (GETS) modeling of the mean and variance of a regression, and indicator
saturation (IS) methods for the detection and modeling of outliers and structural breaks. The
mean can be specified as an autoregressive model with covariates (an “AR-X” model), and the
variance can be specified as an autoregressive log-variance model with covariates (a “log-ARCH-
X” model). The covariates in the two specifications need not be the same, and the classical
linear regression model is obtained as a special case when there is no dynamics, and when there
are no covariates in the variance equation. The four main functions of the package are arx(),
getsm(), getsv() and isat(). The first function estimates an AR-X model with log-ARCH-X
errors. The second function undertakes GETS modeling of the mean specification of an ‘arx’
object. The third function undertakes GETS modeling of the log-variance specification of an
‘arx’ object. The fourth function undertakes GETS modeling of an indicator-saturated mean
specification allowing for the detection of outliers and structural breaks. The usage of two
convenience functions for export of results to EViews and STATA are illustrated, and LATEX
code of the estimation output can readily be generated.
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1 Introduction

General-to-specific (GETS) modeling combines well-known ingredients: backwards elimination,
single and multiple hypothesis testing, goodness-of-fit measures and diagnostics tests. The way
these are combined by GETS modeling enables rival theories and models to be tested against
each other, ultimately resulting in a parsimonious, statistically valid model that explains the
characteristics of the data being investigated. The methodology thus provides a systematic and
coherent approach to model development and maintenance, cumulative research and scientific
progress. This paper provides an overview of the R (R Core Team, 2018) package gets (Sucarrat
et al., 2018), which contains facilities for automated general-to-specific (GETS) modeling of the
mean and variance of cross-sectional and time-series regressions, and indicator saturation (IS)
methods for the detection and modeling of outliers and structural breaks in the mean.

The origins of GETS modeling can be traced back to Denis Sargan and the London School
of Economics (LSE) during the 1960s, see Hendry (2003) and Mizon (1995). However, it
was not until the 1980s and 1990s that the methodology gained widespread acceptance and
usage in economics, with David F. Hendry in particular being a main proponent, see the
two-volume article collection by Campos et al. (2005) for a comprehensive overview of the
GETS methodology. An important software-contribution to GETS modeling was made in 1999,
when Hoover and Perez (1999) re-visited the data-mining experiment of Lovell (1983). Hoover
and Perez (1999) showed that automated multi-path GETS modeling substantially improved
upon the then (in economics) popular model selection strategies. In the study of Hoover and
Perez (1999), purpose-specific but limited MATLAB (The MathWorks Inc., 2017) code was
used in the simulations.5 Subsequently, further improvements were achieved in the commercial
software packages PcGets (Hendry and Krolzig, 2001) and in its successor Autometrics
(Doornik and Hendry, 2007a). In particular, indicator-saturation methods for the detection of
outliers and structural breaks proposed by Hendry et al. (2007) were added to Autometrics
in 2008, see Doornik (2009). Another milestone was reached in 2011, when the R package
AutoSEARCH (Sucarrat, 2015a) was published on the Comprehensive R Archive Network
(CRAN). The package, whose code was developed based on Sucarrat and Escribano (2012),
offered automated GETS modeling of conditional variance specifications within the log-ARCH-
X class of models. The R package gets, available from CRAN since October 2014, is the
successor of AutoSEARCH. The gets package, at the time of writing, is the only statistical
software that offers GETS modeling of the conditional variance of a regression, in addition to
GETS modeling of the mean of a regression, and indicator saturation (IS) methods for the
detection of breaks of outliers structural breaks in the mean of a regression using impulses
(IIS), step (SIS; see Castle et al. 2015) as well as trend indicators (TIS).

This paper provides an overview of the gets package. The main model class under con-
sideration is the autoregressive (AR) model with exponential autoregressive conditional het-
eroscedastic (ARCH) variance, possibly with additional covariates in the mean or variance
equations, or in both. In short, the AR-X model with a log-ARCH-X error term, where the
“X” refers to the covariates (the covariates need not be the same in the mean and variance
specifications). It should be underlined, however, that gets is not limited to time-series models

5The code is limited in that it allows for a maximum of 10 paths to be searched, and because there is no
user manual nor help-system available. The data and MATLAB code is available from http://www.feweb.vu.

nl/econometriclinks/journal/volume2/HooverKD_PerezSJ/data_and_code/.
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(see Section 2.3): Static models (e.g., cross-sectional or panel) can be estimated by specifying
the regression without dynamics. The next section, Section 2, provides an overview of GETS
modeling and its alternatives, and outlines the principles that guides the development of gets.
Section 3 contains a note on the advantage of providing the data with time-series attributes – if
the data are indeed time-series, since this is useful for the estimation of dynamic models, output
and graphing. Section 4 contains an overview of the AR-X model with log-ARCH-X errors,
explains how it can be simulated, and illustrates how it can be estimated with the arx func-
tion. Section 5 illustrates how GETS modeling can be undertaken with the getsm and getsv

functions. The first undertakes GETS modeling of the mean specification, whereas the second
undertakes GETS modeling of the log-variance specification. Section 6 introduces the isat

function for indicator saturation methods. Section 7 illustrates how two convenience functions,
eviews and stata, facilitate GETS modeling by users of EViews (IHS Markit, 2017) or STATA
(StataCorp, 2017), i.e., the two most popular commercial software packages in econometrics.
The section also briefly alludes to how estimation output can readily be converted into LATEX
code. Finally, Section 8 concludes.

2 An overview, alternatives and development principles

2.1 GETS modeling

It is convenient to provide an overview of GETS modeling in terms of the linear regression
model

yt = β1x1t + · · ·+ βkxkt + ut, t = 1, 2, . . . , n, (1)

where yt is the dependent variable, the β’s are slope coefficients, the x’s are the regressors
and ut is a zero mean error term. GETS modeling assumes there exists at least one “local”
data generating process (LDGP) nested in (1). By philosophical assumption the DGP is not
contained in the simple model above, see Sucarrat (2010) and Hendry and Doornik (2014,
Sections 6.2–6.3). The qualifier “local” thus means it is assumed that there exists a specification
within (1) that is a statistically valid representation of the DGP. Henceforth, for notational
and theoretical convenience, we will assume there exists only a single LDGP, but this is not a
necessary condition.

A variable xjt, j ∈ {1, . . . , k}, is said to be relevant if βj 6= 0 and irrelevant if βj = 0.
Let krel ≥ 0 and kirr ≥ 0 denote the number of relevant and irrelevant variables, respectively,
such that krel + kirr = k. Of course, both krel and kirr are unknown to the investigator. GETS
modeling aims at finding a specification that contains as many relevant variables as possible,
and a proportion of irrelevant variables that corresponds to the significance level α chosen
by the investigator. Put differently, if k̂rel and k̂irr are the retained number of relevant and
irrelevant variables, respectively, then GETS modeling aims at satisfying

E(k̂rel/krel) → 1 and E(k̂irr/kirr) → α as n→ ∞, (2)

when krel, kirr > 0. If either krel = 0 or kirr = 0, then the criteria are modified in the obvious
ways: If krel = 0, then E(k̂rel) = 0, and if kirr = 0, then E(k̂irr) = 0. The proportion of

spuriously retained variables, i.e., k̂irr/kirr, is also referred to as gauge in the GETS literature,
with distributional results on the gauge for a specific case (the variables being impulses as in IIS)
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Experiment krel kirr Algorithm n m(k̂rel/krel) m(k̂irr/kirr) p̂(DGP)
HP1 0 40 gets 139 0.053 0.269

AutoSEARCH 0.049 0.239
HP1999 0.045 0.292
PcGets ≈ 0.04 ≈ 0.45

HP2’ 1 39 gets 139 1.000 0.056 0.254
AutoSEARCH 1.000 0.050 0.252
HP1999 1.000 0.107 0.000
PcGets ≈ 0.97 ≈ 0.05 ≈ 0.32
Autometrics 1.000 0.063 0.119

HP7’ 3 37 gets 138 0.999 0.055 0.232
AutoSEARCH 1.000 0.051 0.232
HP1999 0.967 0.082 0.040
PcGets ≈ 1.00 ≈ 0.04 ≈ 0.37
Autometrics 0.999 0.066 0.111

Table 1: Variable selection properties of GETS algorithms. The table is essentially Table 2 in
Sucarrat and Escribano (2012, p. 724) augmented by the properties of gets, see Appendix A for
more details on the simulations. The variable selection is undertaken with a nominal regressor
significance level of 5%. m(k̂rel/krel), average proportion of relevant variables k̂rel retained

relative to the actual number of relevant variables krel. m(k̂irr/kirr), average proportion of

irrelevant variables k̂irr retained relative to the actual number of irrelevant variables kirr in the
GUM. p̂(DGP), proportion of times the exact DGP is found. The properties of the HP1999
algorithm are from Hoover and Perez (1999, Table 4 on p. 179). The properties of the PcGets
algorithm are from Hendry and Krolzig (2005, Figure 1 on p. C39), and the properties of the
Autometrics algorithm are from Doornik (2009, Section 6).

provided in Johansen and Nielsen (2016). The relevance proportion, i.e., k̂irr/kirr, is also referred
to as potency in the GETS literature. Table 1 contains a comparison of the variable selection
properties of GETS software packages for some well-known experiments. As the results show,
gets performs as expected in the experiments, since the irrelevance proportion corresponds well
to the nominal regressor significance level α, and since the relevance proportion is 1. Additional
simulations, and comparisons against alternative algorithms, are contained in Section 2.2.

GETS modeling combines well-known ingredients from the model-selection literature: back-
wards elimination, tests on the βj’s (both single and multiple hypothesis tests), diagnostics tests,
and fit-measures (e.g., information criteria). Specifically, GETS modeling may be described as
proceeding in three steps:

1. Formulate a general unrestricted model (GUM) that passes a set of chosen diagnostic
tests.6 Each non-significant regressor in the GUM constitutes the starting point of a

6Currently, the standard diagnostic tests available in gets are tests for serial correlation and ARCH in the
standardized residuals, and a test for non-normality. In addition, the user may add her or his own test or set
of tests via the user.diagnostics argument.
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backwards elimination path, and a regressor is non-significant if the p value of a two-
sided t-test is lower than the chosen significance level α.

2. Undertake backwards elimination along multiple paths by removing, one-by-one, non-
significant regressors as determined by the chosen significance level α. Each removal
is checked for validity against the chosen set of diagnostic tests, and for parsimonious
encompassing (i.e., a multiple hypothesis test) against the GUM.

3. Select, among the terminal models, the specification with the best fit according to a
fit-criterion, e.g., the Schwarz (1978) information criterion.

For k candidate variables, there are 2k possible models. As k becomes large the number
of models becomes computationally infeasible, thus, a structured search is required. GETS
provides such a structured search by starting with a general model (the GUM), and subsequently
removing variables along search paths while checking the diagnostics at each removal.

2.2 A comparison of GETS and gets with alternatives

When comparing the R package gets to alternatives, it is important to differentiate the method-
ological approach of GETS modeling relative to other modeling approaches, from different
software implementations within the GETS methodology. Here, we denote the broader field
of GETS modeling by GETS, and the R package by gets. First we briefly review and com-
pare alternative approaches to GETS modeling, then we discuss alternative implementations
of GETS.

2.2.1 GETS compared to alternative methods – a feature-based comparison

Numerous model and variable selection methods have been proposed, and an even larger number
of implementations are available. Focusing on variable selection, Table 2 contains a feature-
based comparison of gets against some common alternatives in R. The ar function in stats (R
Core Team, 2018) searches for the best AR(P ) model using the AIC. The step function, also
in stats, offers both forward and backward step-wise search. The packages lars (Hastie and
Efron, 2013) and glmnet (Friedman et al., 2010), provide shrinkage-based search methods for
variable selection.

As is clear from the table, GETS may be viewed as being more general than many of its
competitors. This comes at a cost: computational speed. Relying on multiple path searches
implies that the required computational time increases non-linearly with the number of po-
tential candidate regressors selected over. This is a particular concern when using indicator
saturation (Section 6), where the number of candidate variables scales linearly with the number
of observations and subsequently implies a non-linear increase in required computational time.
For example, selection over k (irrelevant) candidate regressors in gets (in a sample of n = 200
observations) on a 1.8GHz processor requires approximately 0.8 seconds (s) for k = 10, 2.9s for
k = 20, 15s for k = 40, and 114s for k = 80. By contrast, the identical experiment with k = 80
requires 0.16s using the Lasso in glmnet, 0.41s in lars, and 0.3s using step (backward).
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ar step (forward) step (backward) lars glmnet gets
AR-terms Yes Yes Yes Yes Yes Yes

Covariates (“X”) Yes Yes Yes Yes Yes

More variables
than observations Yes Yes Yes Yes

Variance-modeling Yes

Regressor tests
during search Yes

Diagnostics tests
during search Yes

Computational
cost (relative) Low Low Low Low Low High

Table 2: A variable-selection focused feature-based comparison of gets against the ar and step

functions in the R package stats (R Core Team, 2018), and against the R packages lars (Hastie
and Efron, 2013) and glmnet (Friedman et al., 2010).

2.2.2 GETS compared to alternative methods – a performance-based comparison

Hendry and Doornik (2014, Section 17) together with Castle et al. (2011) provide a broad
overview of the performance of GETS relative to alternative model selection strategies of
the mean of a regression, including step-wise regression, information criteria and penalized
shrinkage-based selection using the Lasso (see Tibshirani, 1996). Castle et al. (2015) compare
GETS in the context of step-shifts against the Lasso using LARS (Efron et al., 2004), and Pretis
et al. (2016) compare GETS against the Lasso for designed break functions (see Section 6.3
for a more detailed discussion of gets in the context of break detection). In both instances
shrinkage-based selection is implemented using the R packages lars (Hastie and Efron, 2013)
and glmnet (Friedman et al., 2010). The emerging consensus from these simulation compar-
isons is that the false-positive rate, or irrelevance proportion or gauge, is erratic and difficult
to control in step-wise as well as shrinkage-based selection procedures. When selecting on in-
formation criteria only, the implicit significance level of selection results in a high gauge when
the number of candidate variables increases relative to the sample size. In contrast, the gauge
tends to be well-calibrated around the nominal size of selection α in GETS. While the reten-
tion of relevant variables often is high in shrinkage-based approaches (and erratic in step-wise
regression), this result comes at the cost of a high gauge and the performance becomes less
reliable in the presence of correlation between the candidate variables.

To provide additional comparisons of performance to alternative methods for detecting rel-
evant and discarding irrelevant variables, here we compare gets to: shrinkage-based selection,
1-cut selection (where all variables with p values ≤ α in the GUM are retained in a single de-
cision), and conducting selection inference starting at the DGP itself. The results are provided
in Figure 1 (and Tables 5, 6, and 7 in Appendix B). The simulations cover three correla-
tion structures of regressors: First, in-expectation uncorrelated regressors, second, positively
correlated regressors (ρ = 0.5), and third, alternating negatively correlated regressors (where
ρ(xi, xi+1) = 0.5, ρ(xi, xi+2) = −0.5). We consider a total of k = 20 regressors in a sample

7



0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Uncorrelated Regr.

G
a
u
g
e

0 1 2 3 4 5 6 7 8 9 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Pos. Correlated Regr.

G
a
u
g
e

getsm
LassCV
LassFix
1−cut
Nominal 1%

0 1 2 3 4 5 6 7 8 9 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Pos./Neg. Correlated Regr.

G
a
u
g
e

0 1 2 3 4 5 6 7 8 9 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

#Relevant Regressors (out of 20)

P
o
te

n
c
y

getsm
LassCV
LassFix
1−cut
DGP

0 1 2 3 4 5 6 7 8 9 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

#Relevant Regressors (out of 20)

P
o
te

n
c
y

0 1 2 3 4 5 6 7 8 9 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

#Relevant Regressors (out of 20)

P
o
te

n
c
y

0 1 2 3 4 5 6 7 8 9 10

Figure 1: Performance of getsm selection algorithm compared against alternatives: cross-
validated Lasso (LassCV), Lasso with fixed penalty (LassFix), 1-cut selection, and significance
in the DGP itself (DGP). The top row shows the false retention rate (gauge), the bottom
row shows the correct retention of relevant variables (potency). Columns show uncorrelated,
positively correlated, and alternating positively and negatively correlated regressors. Nominal
selection in getsm taken place at 1% significance level.

of n = 500 observations for 1000 replications. The number of relevant regressors is increased
from krel = 0 to krel = 10 with coefficients set to correspond to an expected t-statistic of ≈ 3.
The performance of gets using the getsm function is compared to the cross-validated Lasso in
glmnet and the Lasso with fixed penalty parameter such that the false-detection rate approx-
imately matches getsm under the null (when krel = 0). The significance level of 1-cut selection
is chosen to match α = 1% in getsm selection.

The simulation results presented here match the evidence from previous studies: GETS
selection yields a false-detection rate close to the nominal size of selection regardless of the
correlation structure of regressors considered. While exhibiting high potency, the false detection
rate of Lasso is difficult to control when the correlation structure varies and the number of
relevant variables is unknown. GETS dominates 1-cut selection when regressors are correlated,
and closely matches 1-cut in absence of correlation.

To the best of our knowledge, the only currently publicly available software that provides
automated model selection of the variance is gets. The reason for this is that gets sidesteps
the numerical estimation difficulties usually associated with models of the variance thanks to
its OLS estimation procedure, see the discussion in Sucarrat and Escribano (2012).
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HP1999 PcGets Autometrics gets
More than 10 paths Yes Yes Yes

GETS of mean Yes Yes Yes Yes

GETS of variance Yes

Impulse and step IS Yes Yes

Trend IS Yes

IS variance correction Yes

User-defined diagnostics Yes

GETS of logit models Yes

GETS of systems Yes

Menu-based GUI Yes Yes

Free and open source Yes Yes

Table 3: A feature-based comparison of GETS software packages; the MATLAB code of Hoover
and Perez (1999) (HP1999), PcGets version 0.9, Autometrics version 7 and gets version
0.12.

2.2.3 Alternatives within the field of GETS

There have been different software implementations of GETS modeling – Table 3 summa-
rizes the similarities and differences between these. The main (currently available) alternative
to the package gets for GETS modeling of the mean in regression models is Autometrics
(Doornik, 2009) written in Ox (Doornik, 2006) within the software package PcGive (Doornik
and Hendry, 2007b). Autometrics and gets share common features in GETS modeling of the
mean in regression models, and in the general implementation of impulse- and step-indicator
saturation. There are, however, notable differences between the two implementations: The
main advantages of gets lie in being the only GETS implementation of variance models, the
implementation of new and unique features in indicator saturation methods including trend-
indicator saturation (TIS), consistency and efficiency corrections of the variance estimates, and
testing of the time-varying mean (see Section 6.3 for an in-depth discussion of the differences
in indicator saturation between Autometrics and gets), as well as new features in model
selection (e.g., the availability of a direct function to correct for model-selection bias). In turn,
selection over systems of equations can be conducted automatically in Autometrics while
having to be done by one-equation at a time in gets.

2.3 Development principles of the package gets

The original motivation behind the precursor of gets (i.e., AutoSEARCH) was to make GETS
modeling methods of the variance (and mean) of a regression freely and publicly available, while
being open-source and implementing recent developments in GETS. This principle will continue
to guide the development of gets. Indicator saturation methods were added to gets in version
0.2, and we plan to expand gets further to include model classes for which there currently is no
GETS software, e.g., spatial models, panel-data, etc. Naturally, we encourage others keen to
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develop and publish GETS modeling methods for a wider range of alternatives, either within
the gets package or as a separate package. Another important development principle is that
we would like to enable more user-specified control. User-specified diagnostics, for example,
were added in version 0.10, and we also plan to enable user-specified estimation and inference
procedures (this is already available in arx, but not in getsm, getsv and isat). Finally, we
also aim at making the package computationally faster and more user-friendly.

3 Setting time-series attributes

The gets package is not limited to time series models and does not require that time-series
characteristics are set beforehand (for example if the data at hand are not time series). However,
if time series characteristics are not set, and if the data are in fact time series, then graphs and
other outputs (e.g., fitted values, residuals, etc.) are not optimal. The gets package is optimized
to work with Z’s ordered observations (ZOO) package zoo, see Zeileis and Grothendieck (2005).
In fact, the fitted values, residuals, recursive estimates and so on returned by gets functions, are
all objects of class ‘zoo’. The zoo package provides a very general and versatile infrastructure
for observations that are ordered according to an arbitrary index, e.g., time-series, and zoo
is adapted to interact well with the less versatile time-series class of the base distribution,
‘ts’: To convert ‘ts’ objects to ‘zoo’ objects, simply use as.zooreg (preferred) or as.zoo.
See the help system and webpage of the zoo package for several short intros and vignettes:
https://CRAN.R-project.org/package=zoo.

4 The AR-X model with log-ARCH-X errors

The specifications considered by gets are all contained in the AR-X model with log-ARCH-X
errors. This model is made up of two equations, one for the mean and one for the log-variance:

yt = φ0 +
R∑

r=1

φryt−r +
S∑

s=1

ηsx
m
s,t + ǫt, ǫt = σtzt, zt ∼ iid(0, 1), (3)

ln σ2
t = α0 +

P∑

p=1

αp ln ǫ
2
t−p +

∑

q∈Q

βq ln EqWMAq,t−1

+
A∑

a=1

λa(ln ǫ
2
t−a)I{ǫt−a<0} +

D∑

d=1

δdx
v
d,t. (4)

The conditional mean equation (3) is an autoregressive (AR) specification of order R with S
covariates xm1,t, . . . , x

m
S,t (“X”), AR-X for short. The covariates may contain lags of conditioning

variables. The error term ǫt is a product of the time-varying conditional standard deviation
σt > 0 and the real-valued innovation zt, where zt is iid with zero mean and unit variance
conditional on the past. The conditional log-variance equation (4) is given by a logarithmic au-
toregressive conditional heteroscedasticity (log-ARCH) specification of order P with volatility
proxies defined as EqWMAq,t−1 = (ǫ2t−1 + · · · + ǫ2t−q)/q, A logarithmic asymmetry terms (i.e.,
“leverage”) analogous to those of Glosten et al. (1993) – so Iǫt−a<0 is an indicator function equal
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to 1 if ǫt−a < 0 and 0 otherwise, and D covariates xv1,t, . . . , x
v
D,t, log-ARCH-X for short. The

covariates may contain lags of conditioning variables, and the covariates in the mean need not
be the same as those of the log-variance specification. Hence the superscripts m and v, respec-
tively. The log-proxies ln EqWMAq,t−1, where EqWMA is short for equally weighted moving
average, are intended to proxy lagged log-GARCH terms, e.g., ln σ2

t−1. However, it should be
noted that the log-proxies can also be given additional interpretation of interest. For example,
if yt = ǫt is a daily financial return, and if the returns are recorded over weekdays only, then
EqWMA5,t−1, EqWMA20,t−1 and EqWMA60,t−1 can be interpreted as the “weekly”, “monthly”
and “quarterly” volatilities, respectively. The log-proxies thus provide great flexibility in mod-
eling the persistence of log-volatility. Also, note that EqWMAq,t−1 = ln ǫ2t−1, i.e., the ARCH(1)
term, when q = 1. Of course, additional volatility proxies can be included via the covariates
xd,t.

The model (3)–(4) is estimated in two steps.7 First, the mean specification (3) is estimated
by OLS. The default variance-covariance matrix is the ordinary one, but – optionally – this
can be changed to either that of White (1980) or that of Newey and West (1987). Second, the
nonlinear AR-representation of (4) is estimated, also by OLS. The nonlinear AR-representation
is given by

ln ǫ2t = α∗
0 +

P∑

p=1

αp ln ǫ
2
t−p +

∑

q∈Q

βq ln EqWMAq,t−1 (5)

+
A∑

a=1

λa(ln ǫ
2
t−a)I{ǫt−a<0} +

D∑

d=1

δdx
v
d,t + ut, (6)

where α∗
0 = α0 + E(ln z2t ) and ut = ln z2t − E(ln z2t ) with ut ∼ iid(0, σ2

u). This provides con-
sistent estimates of all the parameters in (4) except α0, under appropriate assumptions. To
identify α0, an estimate of E(ln z2t ) is needed, which depends on the density of zt. Sucarrat
et al. (2016) show that a simple formula made up of the residuals ût provides a consistent
and asymptotically normal estimate under very general and non-restrictive assumptions. The
estimator is essentially the negative of the natural log of the smearing estimate of Duan (1983):

Ê(ln z2t ) = − ln [n−1
∑n

t=1
exp(ût)]. So the expression in square brackets is the smearing es-

timate. The log-variance intercept α0 can thus be estimated by α̂∗
0 − Ê(ln z2t ). Finally, the

ordinary variance-covariance matrix is used for inference in the log-variance specification, since
the error term ut of the nonlinear AR-representation is iid.

4.1 Simulation

Simulation from an AR(P ) process can readily be done with the arima.sim function in the
stats package (part of the base distribution of R). For example, the following code simulates
100 observations from the AR(1) model yt = φ0 + φ1yt−1 + ǫt with φ0 = 0 and φ1 = 0.4:

7A multi-step, iterative procedure might improve the finite sample efficiency, but does not necessarily improve
the asymptotic efficiency. Joint estimation of the two equations in a single step, e.g., by Gaussian maximum like-
lihood, is likely to be asymptotically more efficient when zt is not too fat-tailed, see Francq and Sucarrat (2018).
In finite samples, however, it is likely to be less efficient when many parameters are estimated simultaneously
due to numerical issues.
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set.seed(123)

y <- arima.sim(list(ar = 0.4), 100)

To simulate from a model with log-ARCH errors, we first need to simulate the errors. This can
be achieved with lgarchSim from the lgarch package (Sucarrat, 2015b):

library("lgarch")

Next, the following code simulates an error-term ǫt that follows the log-ARCH(1) specification
ln σ2

t = α0 + α1 ln ǫ
2
t−1 with α0 = 0 and α1 = 0.3:

eps <- lgarchSim(100, arch = 0.3, garch = 0)

By default, the standardized error zt is normal, but this can be changed via the innovation

argument of the lgarchSim function. To combine the log-ARCH error with an AR(1) model
with φ0 = 0 and φ1 = 0.4 the following code can be used:

yy <- arima.sim(list(ar = 0.4), 100, innov = eps)

The command plot(as.zoo(cbind(y, yy, eps))) plots the three series.

4.2 arx(): Estimation

The function arx estimates an AR-X model with log-ARCH-X errors. For example, the follow-
ing code loads the gets package, fits an AR(1) model with intercept to the series y generated
in Section 4.1, and stores the results in an object called mod01:

library("gets")

mod01 <- arx(y, ar = 1)

To print the estimation results, simply type mod01. This returns:

Date: Fri Aug 06 10:57:59 2021

Dependent var.: y

Method: Ordinary Least Squares (OLS)

Variance-Covariance: Ordinary

No. of observations (mean eq.): 99

Sample: 2 to 100

Mean equation:

coef std.error t-stat p-value

mconst 0.034045 0.091664 0.3714 0.7111

ar1 0.397411 0.095212 4.1740 6.533e-05

Diagnostics and fit:

Chi-sq df p-value

Ljung-Box AR(2) 0.25922 2 0.8784
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Ljung-Box ARCH(1) 0.26124 1 0.6093

SE of regression 0.90933

R-squared 0.15226

Log-lik.(n=99) -130.06490

The two diagnostic tests are of the standardized residuals ẑt. The AR and ARCH tests are
Ljung and Box (1978) tests for serial correlation in ẑt and ẑ2t , respectively, and the number
in parentheses indicates at which lag the test is conducted. R-squared is that of the mean
specification, whereas the (Gaussian) log-likelihood is made up of the residuals ǫ̂t. If no log-
variance specification is fitted, then the conditional variance in the log-likelihood is constant
and equal to the sample variance of the residuals. By contrast, if a log-variance specification
is fitted, then the conditional variance in the log-likelihood is equal to the fitted conditional
variance, which is given by σ̂2

t = exp(ln σ̂2
t ).

The main optional arguments of the arx function when estimating the mean are:

• mc: TRUE (default) or FALSE. mc is short for “mean constant”, so mc = TRUE includes an
intercept, whereas FALSE does not.

• ar: integer vector that indicates the AR terms to include, say, ar = 1, ar = 1:4 or ar
= c(2, 4).

• mxreg: vector, matrix or ‘zoo’ object that contains additional regressors to be included
in the mean specification.

• vcov.type: the type of variance-covariance matrix used for inference in the mean spec-
ification. By default, the ordinary ("ordinary") matrix is used. The other options
available are "white", i.e., the heteroscedasticity robust variance-covariance matrix of
White (1980), and "newey-west", i.e., the heteroscedasticity and autocorrelation robust
variance-covariance matrix of Newey and West (1987).

To make full use of these arguments, let us first generate a set of 5 regressors:

mX <- matrix(rnorm(100 * 5), 100, 5)

Next, the following code estimates an AR-X model with an intercept, two AR-lags and five
regressors, and stores the estimation results in an object called mod02:

mod02 <- arx(y, ar = 1:2, mxreg = mX, vcov.type = "white")

Estimation of the log-variance specification is also undertaken with the arx function. For
example, the following code fits the log-ARCH(1) specification ln σ2

t = α0 + α1 ln ǫ
2
t−1 to the

variable eps generated above:

mod03 <- arx(eps, mc = FALSE, arch = 1)

Typing mod03 prints the estimation results. The main optional arguments when estimating the
log-variance are:
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• arch: integer vector that indicates the log-ARCH terms to include, say, arch = 1, arch
= 1:3 or arch = c(3, 5).

• asym: integer vector that indicates the logarithmic asymmetry terms (often referred to as
“leverage”) to include, say, asym = 1, asym = 1:4, or asym = c(2, 4).

• vxreg: vector, matrix or ‘zoo’ object that contains additional regressors to be included
in the log-volatility specification.

The following code provides an example that makes use of all three arguments:

mod04 <- arx(eps, mc = FALSE, arch = 1:3, asym = 2, vxreg = log(mX^2))

Again, typing mod04 prints the results. Finally we give an example where we jointly fit a
mean and log-variance equation to the series yy generated above, using the variance-covariance
matrix of White (1980) for the mean equation:

mod05 <- arx(yy, ar = 1:2, mxreg = mX, arch = 1:3, asym = 2,

vxreg = log(mX^2), vcov.type = "white")

4.3 Extraction functions

There are a number of functions available for extracting information from ‘arx’ objects. The
most important of these (most of them S3 methods) are:

coef, ES, fitted, logLik, plot, predict, print, recursive, residuals,

rsquared, sigma, summary, toLatex, VaR, vcov

Six of these (coef, fitted, predict, recursive, residuals and vcov) have an optional ar-
gument that allows you to choose whether to extract information pertaining to the mean or
log-variance specification. The print function prints the estimation result, logLik extracts the
(Gaussian) log-likelihood associated with the joint model, summary lists the entries of the ‘arx’
object (a list), plot plots the fitted values and residuals of the model, recursive computes
and – optionally – plots the recursive coefficient estimates, rsquared and sigma extract the R-
squared and standard error of regression, respectively, while ES and VaR extract the conditional
expected shortfall and value-at-risk, respectively.

4.4 Example: A model of quarterly inflation with time-varying con-
ditional variance

When Engle (1982) proposed the ARCH-class of models, his empirical application was the
uncertainty of UK-inflation. However, the ARCH(4) specification he used to model the condi-
tional variance was severely restricted in order to ensure the positivity of the variance estimates,
see Engle (1982, p. 1002). Arguably, this is why (non-exponential) ARCH specifications never
became popular in macroeconomics. The log-ARCH class of models, by contrast, does not
suffer from the positivity problem, since the conditional variance is specified in logs. To illus-
trate we fit an AR(4)-X-log-ARCH(4)-X model to a quarterly inflation series, and show that
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the conditional variance specification provides a substantial improvement in terms of fit and
diagnostics.

The following code imports the data8 and assigns it quarterly time-series attributes:

data("infldata", package = "gets")

infldata <- zooreg(infldata[, -1], frequency = 4, start = c(1989, 1))

Note that [, -1] removes the first column, since it is not needed. The dataset thus contains four
variables: infl, q2dum, q3dum and q4dum. The first variable is quarterly Norwegian inflation
(year-on-year) in % from 1989(1) to 2015(4), whereas the latter three are seasonal dummies
associated with the second, third and fourth quarter, respectively. Initially, to illustrate why a
time-varying conditional variance is needed, we estimate only the mean specification:

inflt = φ0 +
4∑

r=1

φrinflt−r + η2q2dumt + η3q3dumt + η4q4dumt + ǫt. (7)

That is, an AR(4)-X, where the dummies constitute the X-part. The code

inflMod01 <- arx(inflData[, "infl"], ar = 1:4, mxreg = inflData[, 2:4],

vcov.type = "white")

estimates the model using heteroscedasticity-robust coefficient standard errors of the White
(1980) type, and typing inflMod01 prints the estimation results:

Date: Fri Aug 06 11:11:17 2021

Dependent var.: y

Method: Ordinary Least Squares (OLS)

Variance-Covariance: White (1980)

No. of observations (mean eq.): 104

Sample: 1990(1) to 2015(4)

Mean equation:

coef std.error t-stat p-value

mconst 0.8386311 0.2961338 2.8319 0.005637

ar1 0.7257550 0.1300407 5.5810 2.211e-07

ar2 0.0195911 0.1171347 0.1673 0.867523

ar3 0.0350092 0.1385735 0.2526 0.801087

ar4 -0.1676751 0.1336972 -1.2541 0.212836

q2dum -0.0148892 0.2333917 -0.0638 0.949266

q3dum -0.0072972 0.2262704 -0.0322 0.974340

q4dum 0.0103990 0.2226772 0.0467 0.962849

Diagnostics and fit:

8The source of the data is Statistics Norway (http://www.ssb.no/). The original untransformed data, a
monthly consumer price index (CPI), was retrieved 14 February 2016 via http://www.ssb.no/tabell/08183/.
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Chi-sq df p-value

Ljung-Box AR(5) 16.3205 5 0.005986

Ljung-Box ARCH(1) 5.9665 1 0.014580

SE of regression 0.72814

R-squared 0.53166

Log-lik.(n=104) -110.57435

The diagnostics suggest the standardized residuals are autocorrelated and heteroscedastic, since
the tests for autocorrelation and heteroscedasticity yield p values of 0.6% and 1.5%, respectively.
Next, we specify the conditional variance as a log-ARCH(4)-X, where the X-part is made up
of the seasonal dummies:

ln σ2
t = α0 +

4∑

p=1

αp ln ǫ
2
t−p + δ2q2dumt + δ3q3dumt + δ4q4dumt. (8)

The code

inflMod02 <- arx(inflData[, "infl"], ar = 1:4, mxreg = inflData[, 2:4],

arch = 1:4, vxreg = inflData[, 2:4], vcov.type = "white")

estimates the full model with White (1980) standard errors in the mean and ordinary standard
errors in the log-variance. Typing inflMod02 returns

Date: Fri Aug 06 11:12:20 2021

Dependent var.: y

Method: Ordinary Least Squares (OLS)

Variance-Covariance: White (1980)

No. of observations (mean eq.): 104

Sample: 1990(1) to 2015(4)

Mean equation:

coef std.error t-stat p-value

mconst 0.8386311 0.2961338 2.8319 0.005637

ar1 0.7257550 0.1300407 5.5810 2.211e-07

ar2 0.0195911 0.1171347 0.1673 0.867523

ar3 0.0350092 0.1385735 0.2526 0.801087

ar4 -0.1676751 0.1336972 -1.2541 0.212836

q2dum -0.0148892 0.2333917 -0.0638 0.949266

q3dum -0.0072972 0.2262704 -0.0322 0.974340

q4dum 0.0103990 0.2226772 0.0467 0.962849

Log-variance equation:

coef std.error t-stat p-value
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vconst 0.95935 0.53464 3.2199 0.072749

arch1 0.16697 0.10352 1.6130 0.110169

arch2 0.12027 0.10335 1.1637 0.247566

arch3 0.14740 0.10332 1.4267 0.157060

arch4 0.05982 0.10515 0.5689 0.570824

q2dum -1.32860 0.61862 -2.1477 0.034366

q3dum -0.92707 0.58400 -1.5874 0.115843

q4dum -1.82736 0.62014 -2.9467 0.004069

Diagnostics and fit:

Chi-sq df p-value

Ljung-Box AR(5) 9.1776 5 0.1022

Ljung-Box ARCH(5) 1.7613 5 0.8811

SE of regression 0.72814

R-squared 0.53166

Log-lik.(n=100) -82.32892

The first noticeable difference between inflMod01 and inflMod02 is that the diagnostics im-
prove substantially. In inflMod02, the AR and ARCH tests of the standardized residuals
suggest the standardized error zt is uncorrelated and homoscedastic at the usual significance
levels (1%, 5% and 10%), and the Jarque and Bera (1980) test suggests zt is normal. The second
noticeable improvement is in terms of fit, as measured by the average (Gaussian) log-likelihood.
In inflMod01 the average log-likelihood is −110.57435/104 = −1.06, whereas in inflMod02 the
average log-likelihood is −82.3289/100 = −0.82. This is a substantial increase. In terms of
the Schwarz (1978) information criterion (SC), which favors parsimony, a comparison of the
average log-likelihoods can be made by the info.criterion function:

info.criterion(as.numeric(logLik(inflMod01)), n = 104, k = 8 + 1)

info.criterion(as.numeric(logLik(inflMod02)), n = 100, k = 8 + 8)

As is clear, the value falls from 2.53 in inflMod01 to 2.38 in inflMod02. (A comparison of the
average log-likelihoods is necessary, since the two models are estimated with a different number
of observations. This is the main difference between the info.criterion function and AIC and
BIC.) Together, the enhanced fit and diagnostics indicate the log-variance specification provides
a notable improvement. Later, in Section 5.4, we will undertake GETS modeling of the mean
and variance specifications of inflMod02.

4.5 Example: A log-ARCH-X model of daily SP500 volatility

The most common volatility specification in finance are first order GARCH-like specifications.
In the log-GARCH class of models, this corresponds to a log-GARCH(1, 1): ln σ2

t = α0 +
α1 ln ǫ

2
t−1 + β1 ln σ

2
t−1. Here, we show that a log-ARCH-X model that makes use of commonly

available information provides a better fit.
We start by loading a dataset of the Standard and Poor’s 500 (SP500) index:
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data("sp500data", package = "gets")

sp500data <- zoo(sp500data[, -1],

order.by = as.Date(sp500data[, "Date"]))

The dataset contains the daily value of the SP500 index, its highs and lows, and daily volume.
We will make use of this information together with day-of-the-week dummies to construct a
rich model of SP500 return volatility. But first we shorten the sample, since not all variables
are available from the start:

sp500data <- window(sp500data, start = as.Date("1983-07-01"))

The resulting sample thus goes from 1 July 1983 to 8 March 2016, a total of 8241 observations
before differencing and lagging. Next, the following lines of code create a variable equal to the
log-return in percent, a lagged range-based volatility proxy, and the lagged log-difference of
volume:

sp500Ret <- diff(log(sp500data[, "Adj.Close"])) * 100

relrange <- (log(sp500data[, "High"]) - log(sp500data[, "Low"]) ) * 100

volproxy <- log(relrange^2)

volproxylag <- lag(volproxy, k = -1)

volume <- log(sp500data[, "Volume"])

volumediff <- diff(volume) * 100

volumedifflag <- lag(volumediff, k = -1)

Finally, we make the day-of-the-week dummies and estimate the full model, a log-ARCH(5)-X
specification:

sp500Index <- index(sp500Ret)

days <- weekdays(sp500Index)

days <- union(days, days)

dTue <- zoo(as.numeric(weekdays(sp500Index) == days[1]),

order.by = sp500Index)

dWed <- zoo(as.numeric(weekdays(sp500Index) == days[2]),

order.by = sp500Index)

dThu <- zoo(as.numeric(weekdays(sp500Index) == days[3]),

order.by = sp500Index)

dFri <- zoo(as.numeric(weekdays(sp500Index) == days[4]),

order.by = sp500Index)

sp500Mod01 <- arx(sp500Ret, mc = FALSE, arch = 1:5, log.ewma = c(5, 20, 60, 120),

asym = 1,

vxreg = cbind(volproxylag, volumedifflag, dTue, dWed, dThu, dFri))

Typing sp500Mod01 returns the following print output:

Date: Fri Aug 06 11:17:38 2021

Dependent var.: y

Method: Ordinary Least Squares (OLS)

Sample: 1983-07-05 to 2016-03-08
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Log-variance equation:

coef std.error t-stat p-value

vconst 0.0107260 0.0784437 0.0187 0.891241

arch1 -0.0482520 0.0161972 -2.9790 0.002900

arch2 0.0071996 0.0122312 0.5886 0.556127

arch3 0.0256668 0.0122521 2.0949 0.036212

arch4 0.0149581 0.0122145 1.2246 0.220758

arch5 0.0371055 0.0122796 3.0217 0.002521

asym1 -0.0336271 0.0175185 -1.9195 0.054954

logEqWMA(5) 0.0262491 0.0519435 0.5053 0.613334

logEqWMA(20) 0.2817220 0.0713466 3.9486 7.926e-05

logEqWMA(60) 0.1970841 0.1052311 1.8729 0.061122

logEqWMA(120) 0.1936954 0.0865864 2.2370 0.025312

volproxylag 0.2078785 0.0400515 5.1903 2.151e-07

volumedifflag -0.0030906 0.0014207 -2.1754 0.029630

dTue 0.0978314 0.0834703 1.1720 0.241212

dWed -0.0804053 0.0853471 -0.9421 0.346171

dThu 0.0838896 0.0843500 0.9945 0.319988

dFri 0.0756869 0.0840118 0.9009 0.367664

Diagnostics and fit:

Chi-sq df p-value

Ljung-Box AR(1) 0.53421 1 0.4648

Ljung-Box ARCH(6) 29.21040 6 5.55e-05

SE of regression 1.13957

R-squared -0.00069

Log-lik.(n=8120) -10985.79738

Later, in Section 5.5, we will simplify this model with the getsv function. For now, we provide
a comparison with a log-GARCH(1, 1) using the R package lgarch, see Sucarrat (2015b). The
following code loads the package, estimates the model and stores the estimation results:

library("lgarch")

sp500Mod02 <- lgarch(sp500Ret)

Extracting the log-likelihood by logLik(sp500Mod02) reveals that it is substantially lower,
namely−11396.11. To compare the models in terms of the Schwarz (1978) information criterion,
it is necessary to undertake the comparison in terms of the average log-likelihoods, since the
estimation samples of the two models have a different number of observations:

info.criterion(as.numeric(logLik(sp500Mod01)), n = 8120, k = 17)

info.criterion(as.numeric(logLik(sp500Mod02)), n = 8240, k = 3)
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The value increases from 2.7247 in sp500Mod01 to 2.7693 in sp500Mod02, which indicates that
the former specification provides a better fit.

5 GETS modeling

5.1 getsm(): Modeling the mean

GETS modeling of the mean specification in a regression (e.g., a simple time series or cross-
sectional model) is undertaken by applying the getsm function on an ‘arx’ object. This conducts
GETS variable selection on the regressors included in the initially specified arx model. For
example, the following code performs GETS model selection on the regressors of the mean
specification of mod05 with default values on all the optional arguments:

getsm05 <- getsm(mod05)

The results are stored in an object named getsm05, and the information produced during the
specification search is:

GUM mean equation:

reg.no. keep coef std.error t-stat p-value

mconst 1 0 -0.0596894 0.0782285 -0.7630 0.4475

ar1 2 0 0.1938157 0.1235456 1.5688 0.1202

ar2 3 0 0.0343803 0.1141559 0.3012 0.7640

mxreg1 4 0 0.1171045 0.0805838 1.4532 0.1496

mxreg2 5 0 0.0116124 0.0865925 0.1341 0.8936

mxreg3 6 0 -0.1087162 0.0815946 -1.3324 0.1861

mxreg4 7 0 -0.2226722 0.1019820 -2.1834 0.0316

mxreg5 8 0 0.0012498 0.0694024 0.0180 0.9857

GUM log-variance equation:

coef std.error t-stat p-value

vconst 0.351872 0.438687 0.6434 0.42249

arch1 0.268975 0.107470 2.5028 0.01424

arch2 0.088540 0.159135 0.5564 0.57941

arch3 0.022932 0.115861 0.1979 0.84357

asym2 -0.112941 0.171767 -0.6575 0.51262

vxreg1 0.102181 0.110374 0.9258 0.35718

vxreg2 -0.068873 0.093762 -0.7345 0.46464

vxreg3 -0.032006 0.102597 -0.3120 0.75584

vxreg4 0.029429 0.106865 0.2754 0.78369

vxreg5 0.187176 0.120259 1.5564 0.12332

Diagnostics:
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Chi-sq df p-value

Ljung-Box AR(3) 0.18672 3 0.97970

Ljung-Box ARCH(4) 0.43983 4 0.97909

7 path(s) to search

Searching: 1 2 3 4 5 6 7

Path 1: 1 8 5 3 4 6 2

Path 2: 2 8 5 3 1 4 6

Path 3: 3 8 5 1 4 6 2

Path 4: 4 3 5 8 1 6 2

Path 5: 5 8 3 1 4 6 2

Path 6: 6 8 5 3 1 4 2

Path 7: 8 5 3 1 4 6 2

Terminal models:

info(sc) logl n k

spec 1 (1-cut): 2.285792 -109.7113 98 1

Retained regressors (final model):

mxreg4

To see the estimation results of the final model, type getsm05. The first part of the printed
results pertains to the GUM, i.e. the starting model. Note in particular that regressors are
numbered (the reg.no column in the GUM mean equation). This is useful when interpreting
paths searched, which indicates in which order the regressors are deleted in each path. Next, the
Terminal models part contains the distinct terminal specifications. By default, the Schwarz
(1978) information criterion (sc) is used to choose among the terminals, but this can be changed
(see below). The last part contains the estimation results of the final, simplified model.

The main optional arguments of the getsm function are (type args(getsm) or ?getsm for
all the arguments):

• t.pval: numeric value between 0 and 1 (The default is 0.05). The significance level used
for the two-sided t-tests of the regressors.

• wald.pval: numeric value between 0 and 1 (the default is t.pval). The significance
level used for the parsimonious encompassing test (PET) against the general unrestricted
model (GUM) at each regressor deletion.

• do.pet: logical, TRUE (the default) or FALSE. If TRUE, then a PET against the GUM is
undertaken at each regressor removal.

• ar.LjungB: a list with two elements named lag and pval, respectively, or NULL. If the list
is not NULL, then a Ljung and Box (1978) test for serial correlation in the standardized
residuals is undertaken at each attempt to remove a regressor. The default, list(lag
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= NULL, pval = 0.025), means the lag is chosen automatically (as max(ar) + 1), and
that a p value of pval = 0.025 is used. If the list is NULL, then the standardized residuals
ẑt are not checked for serial correlation after each removal.

• arch.LjungB: a list with two elements named lag and pval, respectively, or NULL. If the
list is not NULL, then a Ljung and Box (1978) test for serial correlation in the squared
standardized residuals is undertaken at each attempt to remove a regressor. The de-
fault, list(lag = NULL, pval = 0.025), means the lag is chosen automatically (as
max(arch) + 1) and that a p value of pval = 0.025 is used. If the list is NULL, then the
squared standardized residuals ẑ2t are not checked for serial correlation after each removal.

• vcov.type: NULL, "ordinary", "white" or "newey-west". If NULL (default), then the
type of variance-covariance matrix is automatically determined (the option from the ‘arx’
object is used). If "ordinary", then the ordinary variance-covariance matrix is used. If
"white", then the variance-covariance matrix of White (1980) is used. If "newey-west",
then the variance-covariance matrix of Newey and West (1987) is used.

• keep: either NULL or an integer vector. If NULL (default), then no regressors are excluded
from removal. Otherwise, the regressors associated with the numbers in keep are excluded
from the removal space. For example, keep = 1 excludes the intercept from removal. Re-
taining variables using the keep argument implements the “theory-embedding” approach
outlined in Hendry and Johansen (2015) by “forcing” theory variables to be retained while
conducting model discovery beyond the set of forced variables.

• info.method: "sc", "aic" or "hq". If "sc" (default), then the information criterion of
Schwarz (1978) is used as tiebreaker between the terminals. If "aic", then the information
criterion of Akaike (1974) is used, and if "hq", then the information criterion of Hannan
and Quinn (1979) is used.

As an example, the following code uses a lower significance level for the regressor significance
tests and the PETs, and turns of diagnostic testing for ARCH in the standardized residuals:

getsm05a <- getsm(mod05, t.pval = 0.01, arch.LjungB = NULL)

Similarly, the following code restricts the mean intercept from being deleted, even though it is
not significant:

getsm05b <- getsm(mod05, keep = 1)

5.2 getsv(): Modeling the log-variance

GETS modeling of the log-variance specification is undertaken by applying the getsv function
to an ‘arx’ object. For example, the following code performs GETS model selection of the
log-variance specification of mod05 with default values on all the optional arguments:

getsv05 <- getsv(mod05)

Alternatively, the following code undertakes GETS model selection on the log-variance specifi-
cation of the simplified model getsm05:
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mod06 <- arx(residuals(getsm05), mc = FALSE, arch = 1:3, asym = 2,

vxreg = log(mX^2))

getsv06 <- getsv(mod06)

Typing getsv06 prints the results. Note that vconst, the log-variance intercept, is forced to
enter the keep set when getsv is used. That is, α0 is restricted from removal even if it is not
significant. This is due to the estimation procedure, which is via the AR-representation. Finally,
the main optional arguments of getsv are almost the same as those of getsm (see above). The
main difference is that the only variance-covariance matrix available is the ordinary one, since
the error-term of the AR-specification is iid. As an example of how to set some of the options
to non-default values, the following code restricts the three log-ARCH terms (in addition to
the log-variance intercept) from removal, and turns off diagnostic testing for serial correlation
in the standardized residuals:

getsv06b <- getsv(mod06, keep = 1:4, ar.LjungB = NULL)

5.3 Extraction functions

There are a number of extraction functions available for ‘gets’ objects, i.e., objects produced
by either getsm or getsv. The most important functions (most of them S3 methods) are:

coef, ES, fitted, logLik, paths, plot, predict, print, recursive,

residuals, rsquared, sigma, summary, terminals, toLatex, VaR, vcov

All, apart from paths and terminals, behave in a similar way to the corresponding extraction
functions for ‘arx’ objects. In particular, coef, fitted, print and residuals automatically
detect whether getsm or getsv has been used, and behave accordingly. The paths function
extracts the paths searched, and terminals the terminal models.

5.4 Example: A parsimonious model of quarterly inflation

In Section 4.4, we showed that a log-ARCH(4)-X specification of the log-variance improved the
fit and diagnostics of an AR(4)-X model of quarterly inflation. Here, we obtain a simplified
version by using the getsm and getsv functions.

The estimation results of the AR(4)-X-log-ARCH(4)-X specification that we fitted was
stored as an ‘arx’ object named inflMod02. The following code undertakes GETS modeling
of the mean, and stores the results in an object named inflMod03:

inflMod03 <- getsm(inflMod02)

This produces the following during the specification search:

GUM mean equation:

reg.no. keep coef std.error t-stat p-value

mconst 1 0 0.8386311 0.2961338 2.8319 0.005637

ar1 2 0 0.7257550 0.1300407 5.5810 2.211e-07

ar2 3 0 0.0195911 0.1171347 0.1673 0.867523
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ar3 4 0 0.0350092 0.1385735 0.2526 0.801087

ar4 5 0 -0.1676751 0.1336972 -1.2541 0.212836

q2dum 6 0 -0.0148892 0.2333917 -0.0638 0.949266

q3dum 7 0 -0.0072972 0.2262704 -0.0322 0.974340

q4dum 8 0 0.0103990 0.2226772 0.0467 0.962849

GUM log-variance equation:

coef std.error t-stat p-value

vconst 0.95935 0.53464 3.2199 0.072749

arch1 0.16697 0.10352 1.6130 0.110169

arch2 0.12027 0.10335 1.1637 0.247566

arch3 0.14740 0.10332 1.4267 0.157060

arch4 0.05982 0.10515 0.5689 0.570824

q2dum -1.32860 0.61862 -2.1477 0.034366

q3dum -0.92707 0.58400 -1.5874 0.115843

q4dum -1.82736 0.62014 -2.9467 0.004069

Diagnostics:

Chi-sq df p-value

Ljung-Box AR(5) 9.1776 5 0.10219

Ljung-Box ARCH(5) 1.7613 5 0.88109

6 path(s) to search

Searching: 1 2 3 4 5 6

Path 1: 3 7 6 8 4 5 -5

Path 2: 4 7 6 8 3 5 -5

Path 3: 5 7 6 3 8 -8 4 -4

Path 4: 6 7 8 3 4 5 -5

Path 5: 7 6 8 3 4 5 -5

Path 6: 8 7 6 3 4 5 -5

Terminal models:

info(sc) logl n k

spec 1: 1.722352 -82.59571 104 3

spec 2: 1.776284 -83.07798 104 4

Retained regressors (final model):

mconst ar1 ar4

In addition to the intercept, the final model contains the AR(1) and AR(4) terms, but no
quarterly dummies. So the level of quarterly year-on-year inflation does not seem to depend on
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quarter. Note that, in the searched paths, regressor no. 5 (i.e., the AR(4) term) has a minus sign
in front of it in all but one of the searched paths. This means the term has been re-introduced
after deletion, since its deletion leads to a violation of one or several of the diagnostics tests.
This is the reason the AR(4) term is retained even though it is not significant in the final
model. Next, we use the residuals of the simplified model to develop a parsimonious model of
the log-variance, storing the results in inflMod05:

inflMod04 <- arx(residuals(inflMod03), mc = FALSE, arch = 1:4,

vxreg = inflData[, 2:4])

inflMod05 <- getsv(inflMod04, ar.LjungB = list(lag = 5, pval = 0.025))

Note that, to ensure that the diagnostic test for autocorrelation in the standardized residuals
is undertaken at the same lag as earlier, the ar.LjungB argument has been modified. Next,
typing inflMod05 prints the results, and again we only reproduce selected parts in the interest
of brevity:

SPECIFIC log-variance equation:

coef std.error t-stat p-value

vconst 0.71311 0.53965 1.7462 0.186355

arch1 0.17438 0.10057 1.7339 0.086217

arch2 0.16822 0.10034 1.6764 0.096975

q2dum -1.43834 0.62992 -2.2834 0.024662

q3dum -1.09189 0.60035 -1.8187 0.072135

q4dum -1.82836 0.60351 -3.0295 0.003163

Diagnostics and fit:

Chi-sq df p-value

Ljung-Box AR(5) 8.1224 5 0.1496

Ljung-Box ARCH(5) 7.7418 5 0.1711

The results suggest a high impact of the ARCH(1) and ARCH(2) terms – much higher than for
financial returns,9 and that the conditional variance depends on quarter. To obtain an idea of
the economic importance of our results, we re-estimate the full, simplified model, and generate
out-of-sample forecasts of the conditional standard deviation up to four quarters ahead. The
full, simplified model is re-estimated using:

inflMod06 <- inflMod06 <- arx(inflData[, "infl"], ar = c(1, 4),

arch = 1:2, vxreg = inflData[, 2:4], vcov.type = "white")

In order to generate out-of-sample forecasts, we first need to generate the out-of-sample values
of the retained quarterly dummies:

9In finance, if ǫt is a mean-corrected financial return, then the ARCH(1) term is usually about 0.05, and
almost never higher than 0.1.
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newvxreg <- matrix(0, 4, 3)

colnames(newvxreg) <- c("q2dum", "q3dum", "q4dum")

newvxreg[2, "q2dum"] <- 1

newvxreg[3, "q3dum"] <- 1

newvxreg[4, "q4dum"] <- 1

We can now generate the out-of-sample forecasts of the conditional standard deviations:

set.seed(123)

predict(inflMod06, n.ahead = 4, spec = "variance", newvxreg = newvxreg)

The first command, set.seed(123), is for reproducibility purposes, since a bootstrap procedure
is used to generate variance forecasts two or more steps ahead (the number of draws can be
changed via the n.sim argument). The forecasts for 2016(1) to 2016(4) are:

2016(1) 2016(2) 2016(3) 2016(4)

1.0448239 0.3403215 0.4628250 0.2075531

In other words, the conditional variance is forecasted to be about four times higher in 2016(1)
than in 2016(4). This has notable economic consequences. For example, if the forecasted
inflation in 2016(1) is 2%, then an approximate 95% prediction interval computed as 2±2×σ̂n+1

is given by the range 0% to 4%, which is large. By contrast, an approximate 95% prediction
interval for 2016(4) computed as 2 ± 2 × σ̂n+4 is given by the range 1.1% to 2.9%, which is
much tighter.

5.5 Example: A parsimonious model of daily SP500 volatility

In Section 4.5 we estimated a rich model of daily SP500 return volatility named sp500Mod01.
Simplification of this model is straightforward with the getsv function. Since the model does
not fully get rid of the ARCH in the standardized residuals, we will turn off the ARCH diag-
nostics. Also, for parsimony we will choose a small regressor significance level equal to 0.1%:

sp500Mod03 <- getsv(sp500Mod01, t.pval = 0.001, arch.LjungB = NULL)

Typing sp500Mod03 returns (amongst other):

SPECIFIC log-variance equation:

coef std.error t-stat p-value

vconst 0.016309 0.044960 0.1316 0.7167940

arch1 -0.064147 0.013740 -4.6687 3.080e-06

arch5 0.038690 0.011324 3.4168 0.0006368

logEqWMA(20) 0.427071 0.053110 8.0413 1.014e-15

logEqWMA(120) 0.327148 0.052734 6.2038 5.782e-10

volproxylag 0.197866 0.036558 5.4124 6.396e-08

dWed -0.176576 0.064799 -2.7250 0.0064442

Diagnostics and fit:
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Chi-sq df p-value

Ljung-Box AR(1) 0.40681 1 0.5236

Ljung-Box ARCH(6) 32.33070 6 1.41e-05

SE of regression 1.14417

Log-lik.(n=8120) -10993.62221

In other words, no day-of-the-week dummies are retained and only the first ARCH-term is
retained. However, three of the log-proxies are retained, i.e., the weekly, the monthly and
the half-yearly, and both the lagged range-based volatility proxy and the lagged log-volume
difference are retained. The log-likelihood is now −11131.4, and the following code computes
the Schwarz (1978) information criterion value in terms of the average log-likelihood:

info.criterion(as.numeric(logLik(sp500Mod03)), n = 8120, k = 7)

The value is 2.7155, so so the parsimonious model provides a better fit (according to sc)
compared with the GUM (i.e., sp500Mod01).

6 Indicator saturation

Indicator saturation has been a crucial development in GETS modeling to address the distorting
influence of outliers and structural breaks (changes in parameters) in econometric models. Such
parameter changes are generally of unknown magnitudes and may occur at unknown times.
Indicator saturation tackles this challenge by starting from a general model allowing for an
outlier or shift at every point and removing all but significant ones using GETS selection.
This serves both as a method to detect outliers and breaks, as well as a generalized approach
to model mis-specification testing – if the model is well-specified, then no outliers/shifts will
be detected. The function isat conducts multi-path indicator saturation to detect outliers
and location-shifts in regression models using impulse indicator saturation (IIS – see Hendry
et al. 2007, and Johansen and Nielsen 2016 for a comprehensive asymptotic analysis), step-
indicator saturation (SIS – see Castle et al. 2015), trend-indicator saturation (TIS – as applied
in Pretis et al. 2015), and user-designed indicator saturation (UIS, or designed break functions
in Pretis et al. 2016, and Schneider et al. 2017). Formulating the detection of structural breaks
as a problem of model selection, a regression model is saturated with a full set of indicators
which are then selected over using the general-to-specific getsm algorithm at a chosen level
of significance t.pval. This approach to break detection imposes no minimum break length,
and outliers can be identified jointly with structural breaks. The false-detection rate or gauge
in IS is given by αk for k irrelevant indicators selected over, where k = n for IIS and TIS,
and k = n − 1 for SIS if an intercept is forced. Thus, the false-detection rate can easily be
controlled by reducing α at the cost of reduced power of detecting true shifts and outliers. To
ensure a low false-detection rate, the rule of thumb of setting α = min(0.05, [1/k]) can be used,
which yields one incorrectly retained indicator in expectation for large samples, and aims for a
false-detection rate below 5% in small samples. Figure 2 (and Table 8 in Appendix B) show the
false-detection rate in IS using isat in a simple static simulation for increasing sample sizes.
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The respective GUMs for a simple model of the mean of yt using impulse-, step- and trend-
indicator saturation10 are given by

SIS GUM: yt = µ+
n∑

j=2

δj1{t≥j} + ut, (9)

IIS GUM: yt = µ+
n∑

j=1

δj1{t=j} + ut, (10)

TIS GUM: yt = µ+
n∑

j=1

δj1{t>j}(t− j) + ut, (11)

where n denotes the total number of observations in the sample. Indicators are partitioned
into blocks based on the values of the ratio.threshold and max.block.size arguments of
the isat function, where the block size used is the maximum of given by either criterion.
Indicators retained in each block are re-combined and selected over to yield terminal models.
Additional regressors that are not selected over can be included through the mxreg argument,
where autoregressive terms in particular, can be included using the ar argument. Naturally
different indicators can be combined, by specifying both iis = TRUE and sis = TRUE selection
takes place over both impulse- as well as step-indicators. The different regimes made up of
indicators (e.g., retained step-functions or impulses) weighted by their estimated coefficients
describe shifts in the intercept over time – the coefficient path of the intercept. While the
detection of shifts in SIS is focused on time-series analysis, IIS can be used in cross-sectional
regression models to detect individual outliers (see e.g., Pretis and Jiao 2017).

The primary arguments for selection of indicators in isat carry over from the getsm func-
tion. The main differences and additional arguments are:

• t.pval: numeric value between 0 and 1. The significance level α used for the two-sided
t-tests of the indicators in selection. The default is lower than in regular getsm model
selection and set to 0.001 to control the number of false positives. Under the null of
no outliers (or structural breaks), the irrelevance proportion or gauge (or proportion of
spuriously retained indicators) is equal to αk where k is the number of indicators selected
over. Thus setting α ≈ 1/k yields one spuriously retained indicator on average under the
null.

• iis: logical, TRUE or FALSE. If TRUE, then a full set of impulse indicators is added and
selected over.

• sis: logical, TRUE or FALSE. If TRUE, then a full set of step indicators is added and selected
over.

• tis: logical, TRUE or FALSE. If TRUE, then a full set of trend indicators is added and
selected over.

10Note that specifications of step-functions are possible in SIS. Here we specify the steps as in (9), and thus
for interpretation every additional step is added to the previous ones. In contrast, the paper introducing SIS
(Castle et al., 2015) works with step-indicators of the form

∑n

j=2
δj1{t≤j}, in which case the steps have to be

subtracted from the previous sum of steps to interpret the coefficients.
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Figure 2: Gauge (false-detection rate) in IIS, SIS, TIS in isat under the null of no structural
breaks or outliers for varying sample sizes n at nominal selection significance of α = 1%, using
a static DGP of yt = ut where ut ∼ N(0, σ2) with 1000 replications. The gauge approaches the
nominal significance level of selection as n→ ∞.

• uis: matrix object that contains designed break functions to be selected over.

• ratio.threshold: numeric, between 0 and 1. Minimum ratio of variables in each block
to total observations to determine the block size, default equals 0.8. Block size used is
the maximum of given by either the ratio.threshold and max.block.size.

• max.block.size: an integer of at least 2. Maximum size of block of variables to be
selected over, default equals 30. Block size used is the maximum of given by either the
ratio.threshold and max.block.size.

• parallel.options: either NULL or an integer. The integer denotes the number of cores
to be used to search over blocks in parallel. If the argument is NULL then no parallel
computation is used. This option can speed up computation when the number of blocks
of indicators to be searched over is large.

6.1 Example: Structural breaks in the growth rate of UK SO2 emis-
sions

Annual emissions of the pollutant sulphur dioxide (SO2) in the UK have declined in the latter
half of the 20th century due to policy interventions and changes in energy production. Here we
assess whether there have been significant shifts in the growth rate (∆ log(SO2)t) of sulphur
dioxide emissions between 1946 and 2005, using SIS and the emission time series compiled by
Smith et al. (2011). Setting t.pval to 0.01 yields an approximate gauge of 0.01k under the null
hypothesis of no shifts for k spuriously included variables. Inclusion of a full set of indicators
implies that k = n for IIS, and k = n − 1 for SIS, and thus 0.01(n − 1) = 0.01 × 59. This
suggests less than one indicator being retained spuriously on average in a well-specified model
under the null of no shifts or outliers. Estimating an isat model using SIS (sis = TRUE is
default):
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options(plot = TRUE)

so2 <- data("so2data", package = "gets")

yso2 <- zoo(so2data[, "DLuk_tot_so2"], order.by = so2data[, "year"])

(sis <- isat(yso2, t.pval = 0.01))

SIS block 1 of 2:

30 paths to search

Searching: 1 2 3 4 ...

SIS block 2 of 2:

26 paths to search

Searching: 1 2 3 4 ...

GETS of union of retained SIS variables...

2 paths to search

Searching: 1 2

...

SPECIFIC mean equation:

coef std.error t-stat p-value

mconst 0.01465385 0.007931984 1.847438 7.026836e-02

sis1972 -0.04332051 0.011866458 -3.650669 5.990412e-04

sis1993 -0.11693333 0.020126141 -5.810023 3.625832e-07

sis1998 0.12860000 0.044305650 2.902564 5.382516e-03

sis1999 -0.28400000 0.057198348 -4.965178 7.505854e-06

sis2000 0.24550000 0.045219264 5.429102 1.441154e-06

sis2004 -0.11550000 0.035026692 -3.297485 1.746083e-03

Diagnostics:

Chi-sq df p-value

Ljung-Box AR(1) 0.61553 1 0.43271

Ljung-Box ARCH(1) 1.44153 1 0.22989

Jarque-Bera 0.57302 2 0.75088

SE of regression 0.04045

R-squared 0.73021

Log-lik.(n=60) 110.83192

The above output shows multiple detected step-shifts (labeled sis1972–sis2004) in the time
series. If plotting is active (plot = TRUE), isat also displays the output as in Figure 3 plotting
the observed and fitted values, together with the coefficient path (the time-varying intercept
through the regimes detected using SIS) as well as the standardized residuals. There is a
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Figure 3: Annual UK SO2 emission growth rate: step-indicator saturation model results. The
top panel shows observed (blue) and fit time series (red). The middle panel shows the stan-
dardized residuals, the bottom panel shows the coefficient path relative to the intercept and its
approximate 95% confidence interval.

downward step-shift detected in the growth rate in 1972, outlying observations are detected
through two subsequent step-indicators with opposite-signs (e.g., in 1998/1999), as well as
a downward step-shift at the end of the sample in 2004. This example demonstrates the
flexibility of the SIS approach – step-shifts are easily identified even at the end of the sample
while outliers can be detected simultaneously. The model can easily be extended to include
autoregressive terms using the ar argument, for example we could estimate an AR(1) model
with step-indicator saturation writing isat(yso2, ar = 1, t.pval = 0.01). Detection of
outliers and structural breaks can be directly parallelized to increase computational speed when
there are a large number of blocks searched over by setting the argument parallel.options
equal to the number of cores available for processing. For example, isat(yso2, t.pval =

0.01, parallel.options = 2) estimates the above model in parallel using two cores.
Additional covariates can be included in an IS regression model by including them in the

mxreg argument. If fixed regressors entering through mxreg induce perfect collinear with break
functions in IS, then indicators are removed automatically before selection. For example, con-
sider forcing a hypothesized step-shift in 1972 to be retained while simultaneously searching
for additional shifts throughout the sample:

x1972 <- zoo(sim(so2data[, "year"])[, 26], order.by = so2data[, "year"])

isat(yso2, t.pval = 0.01, mxreg = x1972)

The resulting estimation does not select over the fixed step-shift in 1972, though for this
particular example the estimated terminal model with a forced step shift matches the SIS
results of a general search.

6.2 Testing and bias correcting post-model selection in indicator
saturation

The coefficient path describes how the value of a coefficient on a particular variable evolves
over time. The coefficient path of the intercept of the ‘isat’ object can be extracted using the
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isatvar function. The function returns the coefficient path both as the time-varying intercept
(const.path) and as deviation relative to the full-sample intercept (coef.path), together with
the approximate variance of the coefficient path computed using the approach in Pretis (2017).
When the model is specified to include autoregressive terms, then isatvar (setting lr = TRUE)
also returns the static long-run solution of the dynamic model with its approximate variance.

sisvar <- isatvar(sis)

sisvar

coef.path const.path const.var const.se

1946 0.00000000 0.01465385 6.291637e-05 0.007931984

1947 0.00000000 0.01465385 6.291637e-05 0.007931984

...

Indicator saturation may result in an under-estimation of the error variance as observations are
“dummied out” resulting in a truncation of the distribution of the error terms. The magnitude
of this effect depends on the level of significance of selection and is generally small for low
values of α. This effect manifests itself in an under-estimation of the error variance, and an
under-estimation of the variance of regressors not selected over. Both can be corrected when
using IIS through consistency and efficiency correction factors derived in Johansen and Nielsen
(2016). These correction factors are implemented in gets as functions isvarcor which corrects
the estimated error variance, and isvareffcor for an additional correction on the estimated
variance of fixed regressors. The correction factors can be applied manually to estimation
results, or specified as arguments (conscorr = TRUE and effcorr = TRUE) within the isatvar
function. This is demonstrated below running IIS on an autoregressive model with one lag (ar
= 1) on the growth rate of SO2 emissions. The estimated variance of the coefficient path is
higher once consistency and efficiency corrections are applied:

iis <- isat(yso2, ar = 1, sis = FALSE, iis = TRUE, t.pval = 0.05)

isatvar(iis, conscorr = TRUE, effcorr = TRUE)

coef.path const.path const.var const.se

1947 0.00000000 -0.006210179 7.225479e-05 0.008500282

1948 0.00000000 -0.006210179 7.225479e-05 0.008500282

...

isatvar(iis, conscorr = FALSE, effcorr = FALSE)

coef.path const.path const.var const.se

1947 0.00000000 -0.006210179 4.483453e-05 0.006695859

1948 0.00000000 -0.006210179 4.483453e-05 0.006695859

...

The terminal models of isat are the result of model selection, and may therefore lead to a
selection bias in the coefficient estimates of selected variables. Post-selection bias-correction
for orthogonal variables can be conducted using the method proposed in Hendry and Krolzig
(2005). This is implemented as the function biascorr. Following Pretis (2017), bias-correction
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of the coefficients in a SIS model can be directly applied to the coefficient path without prior
orthogonalization. Bias-correcting the coefficient path of the above model of the growth rate
of SO2 yields the one- and two-step bias-corrected coefficients:

bcorr <- biascorr(b = sisvar[, "const.path"], b.se = sisvar[, "const.se"],

p.alpha = 0.01, T = length(sisvar[, "const.path"]))

beta beta.1step beta.2step

...

1997 -0.14560000 -0.14560000 -0.14560000

1998 -0.01700000 -0.01700000 -0.01700000

1999 -0.30100000 -0.30099983 -0.30099983

2000 -0.05550000 -0.04043232 -0.03000334

2001 -0.05550000 -0.04043232 -0.03000334

...

Bias-correction reduces the magnitude of the estimated coefficients slightly to account for po-
tential selection bias.

The function isattest makes it possible to conduct hypothesis tests on the coefficient path
of the intercept of an ‘isat’ object. This test is described in Pretis (2017) and builds on
Ericsson (2017) and Pretis et al. (2015) who use indicator saturation as a test for time-varying
forecast accuracy. The main arguments of the isattest function are:

• hnull: numeric. The null-hypothesis value to be tested against.

• lr: logical. If TRUE and the ‘isat’ object to be tested contains autoregressive terms, then
the test is conducted on the long-run equilibrium coefficient path.

• ci.pval: numeric, between 0 and 1. The level of significance for the confidence interval
and hypothesis test.

• conscorr: logical. If TRUE then the estimated error variance in IIS is consistency-corrected
using the results in Johansen and Nielsen (2016).

• effcorr: logical. If TRUE then the estimated variance of fixed regressors in IIS is efficiency
corrected using the results in Johansen and Nielsen (2016).

• biascorr: logical. If TRUE then the coefficient path is bias-corrected prior to testing.
This is only valid for a non-dynamic (no auto-regressive terms) test without additional
covariates.

Here we test the time-varying mean (as determined using SIS) of the annual growth rate of UK
SO2 emissions against the null hypothesis of zero-growth using isattest:

isattest(sis, hnull = 0, lr = FALSE, ci.pval = 0.99, plot.turn = TRUE,

biascorr = TRUE)

ci.low ci.high bias.high bias.low
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Figure 4: Hypothesis test on the annual UK SO2 emission growth rate following step-indicator
saturation. The top panel shows observed (black) and bias-corrected fit (blue). The bottom
panel shows the periods where the null-hypothesis is rejected, together with the dates of the
significant breaks.

1946 -0.006539007 0.035846700 0 0.0000000

1947 -0.006539007 0.035846700 0 0.0000000

1948 -0.006539007 0.035846700 0 0.0000000

...

The results are shown in the automatically-generated plot given in Figure 4 (the plot.turn

= TRUE argument automatically adds the break dates into the plot in the lower panel). When
testing at 1% and using bias-correction this suggests that the detected shift in 1972 does not
significantly move the growth-rate away from zero. Similarly, the upward shift in 2000 moves
the growth rate back to zero. This change, however, is off-set by the shift at the end of the
sample which shows the growth rate turning significantly negative in 2004.

6.3 Comparison of isat with other methods

Indicator saturation formulates the detection of breaks and outliers as a problem of model
(or variable) selection. Here we first provide an overview of software implementing indicator
saturation, followed by a discussion of isat in gets relative to other existing break detection
packages.

The only other currently existing software implementing indicator saturation is Automet-
rics. IIS and SIS are available in both Autometrics and gets, however, a crucial difference
within SIS is the construction and subsequent interpretation of step-indicators. In gets steps
are constructed as forward-steps: S =

(
1{t≥j}, j = 1, . . . , n

)
, where 1{t≥j} denotes the indicator

function such that 1{t≥j} = 1 for observations from j onwards, and zero otherwise. Thus the
signs of the coefficients in the retained regression model in gets correspond to the direction of
the step: positive (negative) coefficients imply an upward (downward) step, and the coefficient
path begins with the regression intercept where for each subsequent regime the coefficient on
the step indicator is added to the full sample intercept. Autometrics relies on backward-steps:
S =

(
1{t≤j}, j = 1, . . . , n

)
and thus step-coefficients have to be interpreted as opposite-signed

relative to the reported regression coefficients. Autometrics currently has no implementation
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of the computation of the coefficient path and its approximate variance, thus testing on the
different regimes is non-trivial. This is directly implemented in gets by automatically plotting
the coefficient path (if plot = TRUE), which can be extracted using isatvar. The variance
estimates in Autometrics are currently not consistency or efficiency corrected when using IS.
This is implemented in gets and – together with the extraction of the coefficient path and its
variance – enables testing on the coefficient path using the isattest function, together with
automatic bias-correction if specified. Further, automatic trend-indicator saturation (TIS) is
currently only available in gets. Both Autometrics and gets enable the selection over de-
signed break functions – through the argument uis in gets and the general more variables than
observations model selection algorithm in Autometrics.

In the broader field of detection of breaks or changepoints, the main difference to exist-
ing methods (e.g., Bai and Perron 1998, Bai and Perron 2003, Perron 2006 implemented in
strucchange by Kleiber et al. 2002) or detection of changepoints in general (as in the package
changepoint – see Killick and Eckley 2014) is the model-selection approach to break detection
in indicator saturation (for discussion of methodological differences see Castle et al. 2015, as
well as Hendry et al. 2007, and Johansen and Nielsen 2016). This makes it possible to detect
outliers (single period shifts) jointly with structural breaks (multiple period shifts), further it is
also possible to detect breaks using designed functions (Pretis et al., 2016) which is not possible
in conventional structural break methods or changepoint analysis.

Where the indicator saturation methodology overlaps in applications with existing methods
is the detection of shifts in the intercept of time series regression models, for example using
breakpoints in strucchange. Relative to strucchange and the Bai and Perron least-squares
approach in changes in the mean, isat in gets does not impose a minimum break length and can
therefore conduct outlier detection jointly with shifts in the intercept, further there is no implicit
upper limit on the number of breaks, and it is thus possible to identify outliers or shifts in the
mean at the start or end of samples as no trimming is required. Changes in regression coefficients
on random variables can be detected in isat using designed break functions through the uis

argument by interacting a full set of step-indicators with the random variable. This, however,
is computationally expensive as each additional variable whose coefficient is allowed to break
over time adds a set of n variables to be selected over the GUM. The function breakpoints

in strucchange estimates a pure structural change model where all coefficients change, isat
in gets is a partial model where the coefficients on variables included through mxreg are not
allowed to break, and only breaks in the mean (or specified coefficients through inclusion in uis)
are permitted – making it possible to pre-specify constancy. A partial structural change model
using the Bai and Perron least-squares approach can be estimated using available MATLAB

code.11

Relative to changepoint, isat in gets is focused on regression modeling and structural
breaks in the intercept of regression models jointly with outlier detection. As the authors of
changepoint themselves note, changepoint does not focus on changes in regression models.
The function isat directly enables the inclusion of covariates through mxreg or ar within isat,
only if no additional covariates are specified then isat searches for changes in the mean of a
time series as in the models used in the changepoint package while, however, simultaneously
detecting outliers.

11Available online at http://people.bu.edu/perron/code.html.
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7 Exporting results to EViews, STATA and LATEX

The two most popular commercial econometric software packages are EViews (IHS Markit,
2017) and STATA (StataCorp, 2017), but none of these provide GETS modeling capabilities.
To facilitate the usage of GETS modeling for EViews and STATA users, we provide two functions
for this purpose, eviews and stata. Both functions work in a similar way, and both can be
applied on either ‘arx’, ‘gets’ or ‘isat’ objects. For example, typing eviews(getsm05) yields
the following print output:

EViews code to estimate the model:

equation getsm05.ls(cov = white) yy mxreg4

R code (example) to export the data of the model:

eviews(getsm05, file = ’C:/Users/myname/Documents/getsdata.csv’)

In other words, the code to estimate the final model in EViews, and – if needed – a code-
suggestion for how to export the data of the model. The need to export the data of the
final model is likely to be most relevant subsequent to the use of isat. The stata function
works similarly. Note that both the eviews and stata functions are only applicable to con-
ditional mean specifications, since neither EViews nor STATA offer the estimation of dynamic
log-variance models.

The objects returned by arx, getsm, getsv and isat are lists. The entries in these lists
that contain the main estimation output are objects of class ‘data.frame’. That means the R

package xtable of Dahl (2016) can be used to generate LATEX code of the data frames.

8 Conclusions

The R package gets provides a toolkit for general-to-specific modeling through automatic vari-
able selection in regression specifications of the mean and the variance, as well as indicator
saturation methods to detect outliers and structural breaks. Starting with a general candidate
set of variables unknown to be relevant or irrelevant, selection using getsm or getsv can yield
parsimonious terminal models that satisfy a set of chosen diagnostic criteria, where parameter
changes and outlying observations are detected using isat.
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Label krel kirr Simulation DGP GUM

HP1 0 40 rt = ǫt,

ǫt = 130zt, zt
iid∼ N(0, 1)

rt =
∑41

k=1
ψkx

HP
kt + ǫt,

where xHP
37t = rt−1,

xHP
38t = rt−2, x

HP
39t = rt−3,

xHP
40t = rt−4 and xHP

41t = 1

HP2’ 1 39 rt = 0.75rt−1 + ǫt,

ǫt = 85.99zt, zt
iid∼ N(0, 1)

Same as in HP1.

HP7’ 3 37 rt = 0.75rt−1 + 1.33xHP
11t − 0.9975xHP

29t + ǫt,

ǫt = 6.44zt, zt
iid∼ N(0, 1)

Same as in HP1.

Table 4: List of experiments.

A Hoover and Perez (1999) simulations

Table 4 contains the list of experiments. The design of the experiments HP1, HP2’ and HP7’
are based on Hoover and Perez (1999, see Table 3 on p. 174), and make use of their data
xHP
1t , . . . , x

HP
36t . It should be noted that there are two typos in their Table 3. The value

√
(7/4)

should instead be
√
7/4 in the model of the autoregressive error, and the value 6.73 should

instead be 6.44 in model 7’, see also Doornik (2009). The number of relevant variables in
the GUM is krel, the number of irrelevant variables in the GUM is kirr and the total number of
variables (the constant included) in the GUM is k = krel+kirr+1. Nominal regressor significance
level used is 5%, and 1000 replications. The term m(k̂rel/krel) is the average proportion of
relevant variables k̂rel retained relative to the actual number of relevant variables krel in the
DGP. The term m(k̂irr/kirr) denotes the average proportion of irrelevant variables k̂irr retained
relative to the actual number of irrelevant variables kirr in the GUM. The estimate k̂irr includes
both significant and insignificant retained irrelevant variables (this is in line with Hendry and
Krolzig (2005), and Doornik (2009), but counter to HP which only includes significant irrelevant
variables in the estimate). p̂(DGP) is the proportion of times the DGP is found exactly. The
properties of the HP algorithm are from Hoover and Perez (1999, Table 4 on p. 179). The
properties of the PcGets algorithm are from Hendry and Krolzig (2005, Figure 1 on p. C39),
and the properties of the Autometrics algorithm are from Doornik (2009, Section 6). For
AutoSEARCH, a constant is included in all the regressions but ignored in the evaluation of
successes and failures (this is in line with Hoover and Perez (1999) but counter to Hendry and
Krolzig (2005), and Doornik (2009)), in the diagnostic checks both the AR and ARCH test of
the standardized residuals were undertaken at lag 2 using a significance level of 2.5% for each,
and as tiebreaker the Schwarz information criterion is used with a Gaussian log-likelihood made
up of the standardized residuals of the mean specification.

B Simulation tables

Tables 5, 6, 7 and 8 present the simulation results comparing gets to alternative variable
selection methods, and the properties of isat under the null of no breaks.
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ρ = 0 Gauge, m(k̂irr/kirr) Potency, m(k̂rel/krel)
krel kirr getsm LassCV LassFix 1-cut getsm LassCV LassFix 1-cut DGP
0 20 0.012 0.081 0.014 0.010
1 19 0.013 0.138 0.018 0.011 0.623 0.779 0.657 0.507 0.616
2 18 0.014 0.206 0.021 0.010 0.619 0.875 0.690 0.498 0.616
3 17 0.015 0.272 0.024 0.011 0.635 0.913 0.705 0.544 0.639
4 16 0.015 0.324 0.027 0.010 0.607 0.929 0.675 0.509 0.615
5 15 0.014 0.359 0.026 0.010 0.593 0.938 0.667 0.505 0.604
6 14 0.017 0.425 0.032 0.011 0.592 0.955 0.659 0.513 0.602
7 13 0.020 0.463 0.034 0.011 0.591 0.967 0.660 0.517 0.597
8 12 0.020 0.517 0.038 0.011 0.589 0.965 0.642 0.520 0.591
9 11 0.021 0.568 0.038 0.008 0.592 0.975 0.653 0.516 0.587
10 10 0.025 0.587 0.040 0.010 0.588 0.977 0.628 0.507 0.576

Table 5: Variable selection properties of getsm algorithm in gets compared to alternative
algorithms when regressors are uncorrelated in expectation. Variable selection in getsm is
undertaken with a nominal significance level of 1%. For a total number of k = 20 variables,
m(k̂rel/krel) defines the average proportion of relevant variables k̂rel retained relative to the

actual number of relevant variables krel. m(k̂irr/kirr), average proportion of irrelevant variables

k̂irr retained relative to the actual number of irrelevant variables kirr in the GUM. LassCV
denotes the the cross-validated LASSO using glmnet, LassFix denotes the LASSO where the
penalty parameter is chosen to match the gauge of getsm under the null. Column 1-cut denotes
1-cut selection of the GUM where all variables with p values < 1% are retained in a single
decision, DGP denotes the proportion of variables retained if the DGP is correctly estimated
and t-tests are conducted at the 1% level. Simulation undertaken on a sample of n = 100
observations using 1000 replications.
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ρ = 0.5 Gauge, m(k̂irr/kirr) Potency, m(k̂rel/krel)
krel kirr getsm LassCV LassFix 1-cut getsm LassCV LassFix 1-cut DGP
0 20 0.018 0.074 0.009 0.011
1 19 0.025 0.154 0.043 0.009 0.502 0.752 0.616 0.257 0.654
2 18 0.026 0.232 0.095 0.010 0.505 0.874 0.782 0.258 0.498
3 17 0.029 0.273 0.139 0.009 0.508 0.911 0.847 0.248 0.418
4 16 0.031 0.307 0.169 0.010 0.525 0.921 0.870 0.262 0.388
5 15 0.032 0.338 0.202 0.010 0.522 0.932 0.887 0.247 0.353
6 14 0.038 0.378 0.229 0.011 0.525 0.938 0.899 0.255 0.344
7 13 0.036 0.394 0.249 0.009 0.536 0.946 0.912 0.263 0.336
8 12 0.043 0.421 0.281 0.010 0.523 0.947 0.915 0.251 0.328
9 11 0.046 0.440 0.305 0.011 0.527 0.954 0.928 0.250 0.315
10 10 0.048 0.447 0.304 0.011 0.526 0.958 0.933 0.254 0.308

Table 6: Variable selection properties of getsm algorithm in gets compared to alternative
algorithms when regressors are positively correlated (ρ = 0.5) in expectation. Variable selection
in getsm is undertaken with a nominal significance level of 1%. For a total number of k = 20
variables, m(k̂rel/krel) defines the average proportion of relevant variables k̂rel retained relative

to the actual number of relevant variables krel. m(k̂irr/kirr), average proportion of irrelevant

variables k̂irr retained relative to the actual number of irrelevant variables kirr in the GUM.
LassCV denotes the the cross-validated LASSO using glmnet, LassFix denotes the LASSO
where the penalty parameter is chosen to match the gauge of getsm under the null. Column
1-cut denotes 1-cut selection of the GUM where all variables with p values < 1% are retained
in a single decision, DGP denotes the proportion of variables retained if the DGP is correctly
estimated and t-tests are conducted at the 1% level. Simulation undertaken on a sample of
n = 100 observations using 1000 replications.
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ρ = ±0.5 Gauge, m(k̂irr/kirr) Potency, m(k̂rel/krel)
krel kirr getsm LassCV LassFix 1-cut getsm LassCV LassFix 1-cut DGP
0 20 0.018 0.080 0.010 0.010
1 19 0.023 0.156 0.041 0.011 0.505 0.756 0.602 0.255 0.635
2 18 0.022 0.165 0.009 0.009 0.376 0.558 0.172 0.241 0.457
3 17 0.025 0.218 0.035 0.008 0.393 0.695 0.360 0.254 0.409
4 16 0.023 0.259 0.008 0.010 0.375 0.685 0.168 0.253 0.385
5 15 0.026 0.309 0.026 0.009 0.375 0.751 0.296 0.262 0.369
6 14 0.024 0.353 0.008 0.010 0.369 0.765 0.181 0.255 0.354
7 13 0.027 0.387 0.026 0.009 0.356 0.807 0.259 0.249 0.336
8 12 0.029 0.418 0.012 0.011 0.339 0.806 0.164 0.249 0.316
9 11 0.032 0.464 0.023 0.010 0.355 0.846 0.244 0.255 0.322
10 10 0.031 0.484 0.012 0.010 0.347 0.849 0.174 0.246 0.306

Table 7: Variable selection properties of getsm algorithm in gets compared to alternative
algorithms when regressors are alternatingly positively and negatively correlated (ρ = ±0.5) in
expectation. Variable selection in getsm is undertaken with a nominal significance level of 1%.
For a total number of k = 20 variables, m(k̂rel/krel) defines the average proportion of relevant

variables k̂rel retained relative to the actual number of relevant variables krel. m(k̂irr/kirr),

average proportion of irrelevant variables k̂irr retained relative to the actual number of irrelevant
variables kirr in the GUM. LassCV denotes the the cross-validated LASSO using glmnet,
LassFix denotes the LASSO where the penalty parameter is chosen to match the gauge of
getsm under the null. Column 1-cut denotes 1-cut selection of the GUM where all variables
with p values ≤ 1% are retained in a single decision, DGP denotes the proportion of variables
retained if the DGP is correctly estimated and t-tests are conducted at the 1% level. Simulation
undertaken on a sample of n = 100 observations using 1000 replications.

No. breaks Gauge, m(k̂irr/kirr)
Sample n IIS SIS TIS

30 0.013 0.028 0.042
50 0.012 0.029 0.037
100 0.011 0.019 0.016
200 0.011 0.015 0.011
300 0.010 0.013 0.011

Table 8: Gauge (false-detection rate) in IIS, SIS, TIS in isat under the null of no structural
breaks or outliers for varying sample sizes n at nominal selection significance of α = 1% using
a static DGP of yt = ut where ut ∼ N(0, σ2) with 1000 replications.
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