Package 'gets'

July 14, 2024

Type Package

Title General-to-Specific (GETS) Modelling and Indicator Saturation Methods

Version 0.38

Date 2024-07-11

- Author Genaro Sucarrat [aut, cre], Felix Pretis [aut], James Reade [aut], Jonas Kurle [ctb], Moritz Schwarz [ctb]
- Maintainer Genaro Sucarrat <genaro.sucarrat@bi.no>

Description Automated General-to-Specific (GETS) modelling of the mean and variance of a regression, and indicator saturation methods for detecting and testing for structural breaks in the mean, see Pretis, Reade and Sucarrat (2018) <doi:10.18637/jss.v086.i03> for an overview of the package. In advanced use, the estimator and diagnostics tests can be fully user-specified, see Sucarrat (2021) <doi:10.32614/RJ-2021-024>.

License GPL (≥ 2)

Depends R (>= 3.3.0), zoo, parallel

Imports methods

Suggests lgarch, xtable, Matrix, testthat

BugReports https://github.com/gsucarrat/gets/issues

URL https://CRAN.R-project.org/package=gets,

http://www.sucarrat.net/R/gets/

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2024-07-14 07:20:06 UTC

Contents

gets-package	3
arx	6
as.arx	9
as.lm	10
biascorr	11
blocksFun	13
coef.arx	16
coef.gets	19
coef.isat	23
coef.larch	26
coef.logitx	28
diagnostics	30
distorttest	32
distorttestboot	34
dropvar	36
eqwma	37
ES	39
eviews	40
gets	41
gets.isat	42
gets.larch	44
gets.lm	48
gets.logitx	49
getslogitx	51
getsn un	55
gmm	59
hpdata	61
iim	62
infldata	64
infocrit	65
isat	66
isatdates	71
isatloop	72
isattest	73
isatvar	76
isatvar	78
	78 79
isvarcor	
isvareffcor	80
	81
larchEstfun	84
logit	85
logitx	86
logitxSim	88
mvrnormsim	90
ols	91
outlierscaletest	92

gets-package

outliertest																												93
paths																												95
periodicdummies .																												96
predict.arx																												97
predict.larch																												101
printtex		•					•			•			•	• •		•	•	•	•	•	•		•		•	•		103
recursive		•			•		•	•					•			•	•	•	•	•	•		•		•	•		105
regressorsMean			•							•			•	•					•	•								106
regressorsVariance																												
so2data																												
sp500data																												
vargaugeiis	•	•	•	•	•	•	•	•		•	•	•		•		•	•	•	•	•	•		•	•	•	•	•	112
																												114

Index

```
gets-package
```

General-to-Specific (GETS) and Indicator Saturation (ISAT) Modelling

Description

The **gets** package provides functions and methods for General-to-Specific (GETS) and Indicator Saturation (ISAT) modelling. GETS modelling is a powerful and flexible variable selection algorithm that returns a parsimonious and interpretable model. It is ideally suited for the development of models that can be used for counterfactual and predictive scenario analysis (e.g. conditional forecasting). ISAT modelling provides a comprehensive, flexible and powerful approach to the identification of structural breaks and outliers.

The code of the package originated in relation with the research project G. Sucarrat and A. Escribano (2012). In 2014, Felix Pretis and James Reade joined for the development of the *isat* code and related functions. Moritz Schwarz and Jonas Kurle joined the development team in 2020.

Details

Version:	0.38
Date:	2024-07-11
Licence:	GPL-2

GETS modelling

In the package gets, GETS methods are available for the following model classes:

• Linear regression, both static and dynamic, see arx, gets.arx and gets.lm

- Variance models, both static and dynamic, see arx
- Logit models, both static and dynamic, see logitx and gets.logitx

The function arx estimates a static linear regression, or a dynamic AR-X model with (optionally) a log-variance specification. The log-variance specification can either be static or a dynamic log-variance model with covariates (a 'log-ARCH-X' model). For the statistical details of the model, see Section 4 in Pretis, Reade and Sucarrat (2018). The function logitx estimates a static logit model, or a dynamic logit model with covariates (optionally). For complete user-specified GETS modelling, see getsFun.

ISAT modelling

ISAT methods are available for:

• Linear regression, both static and dynamic, see isat

The isat function undertakes GETS model selection of an indicator saturated mean specification. Extraction functions (mainly S3 methods) are also available, together with additional auxiliary functions. For complete user-specified ISAT modelling, see blocksFun.

Vignettes

Two vignettes are available in the package (type browseVignettes ("gets") to access them):

- An introduction to the gets package
- User-Specified General-to-Specific (GETS) and Indicator Saturation (ISAT) Methods

The former is a mildly modified version of Pretis, Reade and Sucarrat (2018), whereas the latter is an updated version of Sucarrat (2020).

Author(s)

Jonas Kurle:	https://www.jonaskurle.com/
Felix Pretis:	<pre>https://felixpretis.climateeconometrics.org/</pre>
James Reade:	https://sites.google.com/site/jjamesreade/
Moritz Schwarz:	<pre>https://www.inet.ox.ac.uk/people/moritz-schwarz</pre>
Genaro Sucarrat:	https://www.sucarrat.net/

Maintainer: Genaro Sucarrat

gets-package

References

Jurgen A. Doornik, David F. Hendry, and Felix Pretis (2013): 'Step Indicator Saturation', Oxford Economics Discussion Paper, 658. https://ideas.repec.org/p/oxf/wpaper/658.html

Felix Pretis, James Reade and Genaro Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. doi:10.18637/jss.v086.i03

Carlos Santos, David F. Hendry and Soren Johansen (2007): 'Automatic selection of indicators in a fully saturated regression'. Computational Statistics, vol 23:1, pp.317-335. doi:10.1007/s00180-0070054z

Genaro Sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12:2, pages 388-401. https://journal.r-project.org/archive/2021/RJ-2021-024/

Genaro Sucarrat and Alvaro Escribano (2012): 'Automated Financial Model Selection: General-to-Specific Modelling of the Mean and Volatility Specifications', Oxford Bulletin of Economics and Statistics 74, Issue 5 (October), pp. 716-735.

See Also

arx, gets.arx, getsm, getsv, isat, getsFun, blocksFun

Examples

```
##Simulate from an AR(1):
set.seed(123)
y <- arima.sim(list(ar=0.4), 60)</pre>
```

##Estimate an AR(2) with intercept as mean specification
##and a log-ARCH(4) as log-volatility specification:
myModel <- arx(y, mc=TRUE, ar=1:2, arch=1:4)</pre>

```
##GETS modelling of the mean of myModel:
simpleMean <- getsm(myModel)</pre>
```

```
##GETS modelling of the log-variance of myModel:
simpleVar <- getsv(myModel)</pre>
```

```
##results:
print(simpleMean)
print(simpleVar)
```

```
##step indicator saturation of an iid normal series:
set.seed(123)
y <- rnorm(30)
isat(y)
```

Description

Estimation by OLS, two-step OLS if a variance specification is specified: In the first the mean specification (AR-X) is estimated, whereas in the second step the log-variance specification (log-ARCH-X) is estimated.

The AR-X mean specification can contain an intercept, AR-terms, lagged moving averages of the regressand and other conditioning covariates ('X'). The log-variance specification can contain log-ARCH terms, asymmetry or 'leverage' terms, log(EqWMA) where EqWMA is a lagged equally weighted moving average of past squared residuals (a volatility proxy) and other conditioning covariates ('X').

Usage

```
arx(y, mc=TRUE, ar=NULL, ewma=NULL, mxreg=NULL, vc=FALSE,
    arch=NULL, asym=NULL, log.ewma=NULL, vxreg=NULL, zero.adj=NULL,
    vc.adj=TRUE, vcov.type=c("ordinary", "white", "newey-west"),
    qstat.options=NULL, normality.JarqueB=FALSE, user.estimator=NULL,
    user.diagnostics=NULL, tol=1e-07, LAPACK=FALSE, singular.ok=TRUE,
    plot=NULL)
```

Arguments

У	numeric vector, time-series or zoo object. Missing values in the beginning and at the end of the series is allowed, as they are removed with the na.trim command
mc	logical. TRUE (default) includes an intercept in the mean specification, whereas FALSE does not
ar	either NULL (default) or an integer vector, say, $c(2,4)$ or 1:4. The AR-lags to include in the mean specification. If NULL, then no lags are included
ewma	either NULL (default) or a list with arguments sent to the eqwma function. In the latter case a lagged moving average of y is included as a regressor
mxreg	either NULL (default) or a numeric vector or matrix, say, a zoo object, of con- ditioning variables. Note that, if both y and mxreg are zoo objects, then their samples are chosen to match
vc	logical. TRUE includes an intercept in the log-variance specification, whereas FALSE (default) does not. If the log-variance specification contains any other item but the log-variance intercept, then vc is set to TRUE
arch	either NULL (default) or an integer vector, say, c(1,3) or 2:5. The log-ARCH lags to include in the log-variance specification
asym	either NULL (default) or an integer vector, say, c(1) or 1:3. The asymmetry (i.e. 'leverage') terms to include in the log-variance specification

arx

arx

log.ewma	either NULL (default) or a vector of the lengths of the volatility proxies, see $\verb"leqwma"$
vxreg	either NULL (default) or a numeric vector or matrix, say, a zoo object, of condi- tioning variables. If both y and mxreg are zoo objects, then their samples are chosen to match.
zero.adj	NULL (default) or a strictly positive numeric scalar. If NULL, the zeros in the squared residuals are replaced by the 10 percent quantile of the non-zero squared residuals. If zero.adj is a strictly positive numeric scalar, then this value is used to replace the zeros of the squared residuals.
vc.adj	logical. If TRUE (default), then the log-variance intercept is adjusted by the estimate of $E[\ln(z^2)]$, where z is the standardised error. This adjustment is needed for the conditional scale to be equal to the conditional standard deviation. If FALSE, then the log-variance intercept is not adjusted
vcov.type	character vector, "ordinary" (default), "white" or "newey-west". If "ordinary", then the ordinary variance-covariance matrix is used for inference. If "white", then the White (1980) heteroscedasticity-robust matrix is used. If "newey-west", then the Newey and West (1987) heteroscedasticity and autocorrelation-robust matrix is used
qstat.options	NULL (default) or an integer vector of length two, say, c(1,1). The first value sets the lag-order of the AR diagnostic test, whereas the second value sets the lag-order of the ARCH diagnostic test. If NULL, then the two values of the vector are set automatically
normality.Jarqu	ueB
	FALSE (default) or TRUE. If TRUE, then the results of the Jarque and Bera (1980) test for non-normality in the residuals are included in the estimation results.
user.estimator	NULL (default) or a list with one entry, name, containing the name of the user- defined estimator. Additional items, if any, are passed on as arguments to the estimator in question
user.diagnostic	
-	NULL (default) or a list with two entries, name and pval, see the user.fun argument in diagnostics
tol	numeric value (default = $1e-07$). The tolerance for detecting linear dependencies in the columns of the regressors (see qr function). Only used if LAPACK is FALSE (default) and user.estimator is NULL.
LAPACK	logical. If TRUE, then use LAPACK. If FALSE (default), then use LINPACK (see qr function). Only used if user.estimator is NULL.
singular.ok	logical. If TRUE (default), the regressors are checked for singularity, and the ones causing it are automatically removed.
plot	NULL or logical. If TRUE, the fitted values and the residuals are plotted. If NULL (default), then the value set by options determines whether a plot is produced or not.

Details

For an overview of the AR-X model with log-ARCH-X errors, see Pretis, Reade and Sucarrat (2018): doi:10.18637/jss.v086.i03.

The arguments user.estimator and user.diagnostics enables the specification of user-defined estimators and user-defined diagnostics. To this end, the principles of the same arguments in getsFun are followed, see its documentation under "Details", and Sucarrat (2020): https://journal.r-project.org/archive/2021/RJ-2021-024/.

Value

A list of class 'arx'

Author(s)

Jonas Kurle:	https://www.jonaskurle.com/
Moritz Schwarz:	<pre>https://www.inet.ox.ac.uk/people/moritz-schwarz</pre>
Genaro Sucarrat:	https://www.sucarrat.net/

References

C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259. doi:10.1016/01651765(80)900245

Felix Pretis, James Reade and Genaro Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. doi:10.18637/jss.v086.i03

Genaro Sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12:2, pages 388-401. https://journal.r-project.org/archive/2021/RJ-2021-024/

Halbert White (1980): 'A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity', Econometrica 48, pp. 817-838.

Whitney K. Newey and Kenned D. West (1987): 'A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix', Econometrica 55, pp. 703-708.

See Also

Extraction functions (mostly S3 methods): coef.arx, ES, fitted.arx, plot.arx, print.arx, recursive, residuals.arx, sigma.arx, rsquared, summary.arx, VaR and vcov.arx

Related functions: getsm, getsv, isat

Examples

```
##Simulate from an AR(1):
set.seed(123)
y <- arima.sim(list(ar=0.4), 70)
##estimate an AR(2) with intercept:
arx(y, mc=TRUE, ar=1:2)</pre>
```

```
as.arx
```

```
##Simulate four independent Gaussian regressors:
xregs <- matrix(rnorm(4*70), 70, 4)</pre>
##estimate an AR(2) with intercept and four conditioning
##regressors in the mean:
arx(y, ar=1:2, mxreg=xregs)
##estimate a log-variance specification with a log-ARCH(4)
##structure:
arx(y, mc=FALSE, arch=1:4)
##estimate a log-variance specification with a log-ARCH(4)
##structure and an asymmetry/leverage term:
arx(y, mc=FALSE, arch=1:4, asym=1)
##estimate a log-variance specification with a log-ARCH(4)
##structure, an asymmetry or leverage term, a 10-period log(EWMA) as
##volatility proxy, and the log of the squareds of the conditioning
##regressors in the log-variance specification:
arx(y, mc=FALSE,
 arch=1:4, asym=1, log.ewma=list(length=10), vxreg=log(xregs^2))
##estimate an AR(2) with intercept and four conditioning regressors
##in the mean, and a log-variance specification with a log-ARCH(4)
##structure, an asymmetry or leverage term, a 10-period log(EWMA) as
##volatility proxy, and the log of the squareds of the conditioning
##regressors in the log-variance specification:
arx(y, ar=1:2, mxreg=xregs,
 arch=1:4, asym=1, log.ewma=list(length=10), vxreg=log(xregs^2))
```

```
as.arx
```

Convert an object to class 'arx'

Description

The function as.arx is a generic function and its methods returns an object of class arx.

Usage

```
as.arx(object, ...)
##S3 method for objects of class 'lm':
## S3 method for class 'lm'
as.arx(object, ...)
```

Arguments

object	object of class lm
	arguments passed on to and from other methods

Value

Object of class arx

Author(s)

Genaro Sucarrat http://www.sucarrat.net/

See Also

lm,arx

Examples

```
##generate some data:
set.seed(123) #for reproducibility
y <- rnorm(30) #generate Y
x <- matrix(rnorm(30*10), 30, 10) #create matrix of Xs
##typical situation:
mymodel <- lm(y ~ x)
as.arx(mymodel)
##use hetero-robust vcov:
as.arx(mymodel, vcov.type="white")
##add ar-dynamics:
as.arx(mymodel, ar=1:2)
##add log-variance specification:
```

as.arx(mymodel, arch=1:2)

as.lm

Convert to 'lm' object

Description

Convert 'arx'/'gets'/'isat' object to 'lm' object

Usage

as.lm(object)

Arguments

object object of class arx, gets or isat

biascorr

Value

Object of class 1m

Author(s)

Moritz Schwarz, https://www.inet.ox.ac.uk/people/moritz-schwarz Genaro Sucarrat https://www.sucarrat.net/

See Also

arx, gets, isat, lm

Examples

```
##generate data, estimate model of class 'arx':
set.seed(123)
y <- rnorm(30)
arxmod <- arx(y, mc=TRUE, ar=1:3)
as.lm(arxmod)
##from 'gets' to 'lm':
getsmod <- getsm(arxmod, keep=1)
as.lm(getsmod)
##from 'isat' to 'lm':
isatmod <- isat(y)
as.lm(isatmod)
```

biascorr

Bias-correction of coefficients following general-to-specific model selection

Description

Takes a vector of coefficients (valid for orthogonal variables), their standard errors, the significance level the variables were selected at, and the sample size, to return bias-corrected coefficient estimates to account for the bias induced by model selection.

Usage

biascorr(b, b.se, p.alpha, T)

Arguments

b	a Kx1 vector of coefficients.
b.se	a Kx1 vector of standard errors of the coefficients in 'b'.
p.alpha	numeric value between 0 and 1, the significance level at which selection was conducted.
Т	integer, the sample size of the original model selection regression.

Details

The function computes the bias-corrected estimates of coefficients in regression models post generalto-specific model selection using the approach by Hendry and Krolzig (2005). The results are valid for orthogonal regressors only. Bias correction can be applied to the coefficient path in *isat* models where the only additional covariate besides indicators is an intercept - see Pretis (2015).

Value

Returns a Kx3 matrix, where the first column lists the original coefficients, the second column the one-step corrected coefficients, and the third column the two-step bias-corrected coefficients.

Author(s)

Felix Pretis, https://felixpretis.climateeconometrics.org/

References

Hendry, D.F. and Krolzig, H.M. (2005): 'The properties of automatic Gets modelling'. Economic Journal, 115, C32-C61.

Pretis, F. (2015): 'Testing for time-varying predictive accuracy using bias-corrected indicator saturation'. Oxford Department of Economics Discussion Paper.

Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44

See Also

isat, coef.gets, plot.gets, isatvar, isattest

Examples

```
###Bias-correction of the coefficient path of the Nile data
#nile <- as.zoo(Nile)
#isat.nile <- isat(nile, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005)
#var <- isatvar(isat.nile)
#biascorr(b=var$const.path, b.se=var$const.se, p.alpha=0.005, T=length(var$const.path))
##Bias-correction of the coefficient path on artificial data
#set.seed(123)
#d <- matrix(0,100,1)</pre>
```

blocksFun

```
#d[35:55] <- 1
#e <- rnorm(100, 0, 1)
#y <- d*1 +e
#ys <- isat(y, sis=TRUE, iis=FALSE, t.pval=0.01)
#var <- isatvar(ys)
#biascorr(b=var$const.path, b.se=var$const.se, p.alpha=0.01, T=length(var$const.path))</pre>
```

```
blocksFun
```

Block-based General-to-Specific (GETS) modelling

Description

Auxiliary function (i.e. not intended for the average user) that enables block-based GETS-modelling with user-specified estimator, diagnostics and goodness-of-fit criterion.

Usage

```
blocksFun(y, x, untransformed.residuals=NULL, blocks=NULL,
no.of.blocks=NULL, max.block.size=30, ratio.threshold=0.8,
gets.of.union=TRUE, force.invertibility=FALSE,
user.estimator=list(name="ols"), t.pval=0.001, wald.pval=t.pval,
do.pet=FALSE, ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL,
user.diagnostics=NULL, gof.function=list(name="infocrit"),
gof.method=c("min", "max"), keep=NULL, include.gum=FALSE,
include.1cut=FALSE, include.empty=FALSE, max.paths=NULL,
turbo=FALSE, parallel.options=NULL, tol=1e=07, LAPACK=FALSE,
max.regs=NULL, print.searchinfo=TRUE, alarm=FALSE)
```

Arguments

У	a numeric vector (with no missing values, i.e. no non-numeric 'holes')					
x	a matrix, or a list of matrices					
untransformed.	residuals					
	NULL (default) or, when ols is used with method=6 in user.estimator, a numeric vector containing the untransformed residuals					
blocks	NULL (default) or a list of lists with vectors of integers that indicate how blocks should be put together. If NULL, then the block composition is under- taken automatically by an internal algorithm that depends on no.of.blocks, max.block.size and ratio.threshold					
no.of.blocks	NULL (default) or integer. If NULL, then the number of blocks is determined automatically by an internal algorithm					
<pre>max.block.size</pre>	integer that controls the size of blocks					
ratio.threshold						
	numeric between 0 and 1 that controls the minimum ratio of variables in each block to total observations					

gets.of.union	logical. If TRUE (default), then GETS modelling is undertaken of the union of retained variables. Otherwise it is not						
force.invertib:	force.invertibility						
	logical. If TRUE, then the x-matrix is ensured to have full row-rank before it is passed on to getsFun						
user.estimator	list, see getsFun for the details						
t.pval	numeric value between 0 and 1. The significance level used for the two-sided coefficient significance t-tests						
wald.pval	numeric value between 0 and 1. The significance level used for the Parsimo- nious Encompassing Tests (PETs)						
do.pet	logical. If TRUE, then a Parsimonious Encompassing Test (PET) against the GUM is undertaken at each variable removal for the joint significance of all the deleted regressors along the current GETS path. If FALSE, then a PET is not undertaken at each removal						
ar.LjungB	a two element vector, or NULL. In the former case, the first element contains the AR-order, the second element the significance level. If NULL, then a test for autocorrelation in the residuals is not conducted						
arch.LjungB	a two element vector, or NULL. In the former case, the first element contains the ARCH-order, the second element the significance level. If NULL, then a test for						
normality.Jarqu	ARCH in the residuals is not conducted ueB						
	NULL or a numeric value between 0 and 1. In the latter case, a test for non- normality in the residuals is conducted using a significance level equal to normality.JarqueB. If NULL, then no test for non-normality is conducted						
user.diagnostic							
	NULL (default) or a list with two entries, name and pval. See getsFun for the details						
gof.function	list. The first item should be named name and contain the name (a character) of the Goodness-of-Fit (GOF) function used. Additional items in the list gof.function are passed on as arguments to the GOF-function. See getsFun for the details						
gof.method	character. Determines whether the best Goodness-of-Fit is a minimum (de-fault) or maximum						
keep	NULL (default), vector of integers or a list of vectors of integers. In the latter case, the number of vectors should be equal to the number of matrices in x						
include.gum	logical. If TRUE, then the GUM (i.e. the starting model) is included among the terminal models						
include.1cut	logical. If TRUE, then the 1-cut model is added to the list of terminal models						
include.empty	logical. If TRUE, then the empty model is added to the list of terminal models						
max.paths	NULL (default) or integer greater than 0. If NULL, then there is no limit to the number of paths. If integer (e.g. 1), then this integer constitutes the maximum number of paths searched (e.g. a single path)						
turbo	logical. If TRUE, then (parts of) paths are not searched twice (or more) unneces- sarily in each GETS modelling. Setting turbo to TRUE entails a small additional computational costs, but may be outweighed substantially if estimation is slow, or if the number of variables to delete in each path is large						

blocksFun

parallel.options						
	NULL or integer that indicates the number of cores/threads to use for parallel computing (implemented w/makeCluster and parLapply)					
tol	numeric value, the tolerance for detecting linear dependencies in the columns of the variance-covariance matrix when computing the Wald-statistic used in the Parsimonious Encompassing Tests (PETs), see the qr.solve function					
LAPACK	currently not used					
max.regs	integer. The maximum number of regressions along a deletion path. Do not alter unless you know what you are doing!					
print.searchinfo						
	logical. If TRUE (default), then a print is returned whenever simiplification along a new path is started					
alarm	logical. If TRUE, then a sound or beep is emitted (in order to alert the user) when the model selection ends					

Details

blocksFun undertakes block-based GETS modelling by a repeated but structured call to getsFun. For the details of how to user-specify an estimator via user.estimator, diagnostics via user.diagnostics and a goodness-of-fit function via gof.function, see documentation of getsFun under "Details".

The algorithm of blocksFun is similar to that of isat, but more flexible. The main use of blocksFun is the creation of user-specified methods that employs block-based GETS modelling, e.g. indicator saturation techniques.

Value

A list with the results of the block-based GETS-modelling.

Author(s)

Genaro Sucarrat, with contributions from Jonas kurle, Felix Pretis and James Reade

References

F. Pretis, J. Reade and G. Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44

G. sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12 issue 2, pp. 388-401, https://journal.r-project.org/archive/2021/RJ-2021-024/

See Also

getsFun, ols, diagnostics, infocrit and isat

coef.arx

Examples

```
## more variables than observations:
y <- rnorm(20)
x <- matrix(rnorm(length(y)*40), length(y), 40)
blocksFun(y, x)
## 'x' as list of matrices:
z <- matrix(rnorm(length(y)*40), length(y), 40)
blocksFun(y, list(x,z))
## ensure regressor no. 3 in matrix no. 2 is not removed:
blocksFun(y, list(x,z), keep=list(integer(0), 3))
```

coef.arx

Extraction functions for 'arx' objects

Description

Extraction functions for objects of class 'arx'

Usage

```
## S3 method for class 'arx'
coef(object, spec=NULL, ...)
  ## S3 method for class 'arx'
fitted(object, spec=NULL, ...)
  ## S3 method for class 'arx'
logLik(object, ...)
  ## S3 method for class 'arx'
model.matrix(object, spec=c("mean", "variance"), response=FALSE, as.zoo=TRUE, ...)
  ## S3 method for class 'arx'
nobs(object, spec=NULL, ...)
  ## S3 method for class 'arx'
plot(x, spec=NULL, col=c("red","blue"),
    lty=c("solid", "solid"), lwd=c(1,1), ...)
  ## S3 method for class 'arx'
print(x, signif.stars=TRUE, ...)
  ## S3 method for class 'arx'
residuals(object, std=FALSE, ...)
  ## S3 method for class 'arx'
sigma(object, ...)
  ## S3 method for class 'arx'
summary(object, ...)
  ## S3 method for class 'arx'
vcov(object, spec=NULL, ...)
```

coef.arx

Arguments

object	an object of class 'arx'
х	an object of class 'arx'
spec	NULL, "mean", "variance" or, in some instances, "both". When NULL is a valid value, then it is automatically determined whether information pertaining to the mean or variance specification should be returned
response	logical. If TRUE, then the response is included in the first column
as.zoo	logical. If TRUE (default), then the returned matrix is of class zoo
signif.stars	logical. If TRUE, then p-values are additionally encoded visually, see printCoefmat
std	logical. If FALSE (default), then the mean residuals are returned. If TRUE, then the standardised residuals are returned
col	colours of actual (default=blue) and fitted (default=red) lines
lty	types of actual (default=solid) and fitted (default=solid) lines
lwd	widths of actual (default=1) and fitted (default=1) lines
	additional arguments

Value

coef:	a numeric vector containing parameter estimates
fitted:	a zoo object with fitted values
logLik:	log-likelihood (normal density)
model.matrix:	a matrix with the regressors and, optionally, the response
nobs:	the number of observations
plot:	a plot of the fitted values and the residuals
print:	a print of the estimation results
residuals:	a zoo object with the residuals
sigma:	the regression standard error ('SE of regression')
summary:	a print of the items in the arx object
vcov:	variance-covariance matrix

Author(s)

Felix Pretis, https://felixpretis.climateeconometrics.org/ James Reade, https://sites.google.com/site/jjamesreade/ Moritz Schwarz, https://www.inet.ox.ac.uk/people/moritz-schwarz Genaro Sucarrat, http://www.sucarrat.net/

See Also

arx

Examples

```
##simulate from an AR(1):
set.seed(123)
y <- arima.sim(list(ar=0.4), 40)</pre>
##simulate four independent Gaussian regressors:
xregs <- matrix(rnorm(4*40), 40, 4)</pre>
##estimate an 'arx' model: An AR(2) with intercept and four conditioning
##regressors in the mean, and log-ARCH(3) in the variance:
mymod <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs, arch=1:3)</pre>
##print results:
print(mymod)
##plot the fitted vs. actual values, and the residuals:
plot(mymod)
##print the entries of object 'mymod':
summary(mymod)
##extract coefficient estimates (automatically determined):
coef(mymod)
##extract mean coefficients only:
coef(mymod, spec="mean")
##extract log-variance coefficients only:
coef(mymod, spec="variance")
##extract all coefficient estimates:
coef(mymod, spec="both")
##extract regression standard error:
sigma(mymod)
##extract log-likelihood:
logLik(mymod)
##extract variance-covariance matrix of mean equation:
vcov(mymod)
##extract variance-covariance matrix of log-variance equation:
vcov(mymod, spec="variance")
##extract and plot the fitted mean values (automatically determined):
mfit <- fitted(mymod)</pre>
plot(mfit)
##extract and plot the fitted variance values:
vfit <- fitted(mymod, spec="variance")</pre>
plot(vfit)
```

coef.gets

```
##extract and plot both the fitted mean and variance values:
vfit <- fitted(mymod, spec="both")
plot(vfit)
##extract and plot the fitted mean values:
vfit <- fitted(mymod, spec="mean")
plot(vfit)
##extract and plot residuals:
epshat <- residuals(mymod)
plot(epshat)
##extract and plot standardised residuals:
zhat <- residuals(mymod, std=TRUE)
plot(zhat)
```

```
coef.gets
```

Extraction functions for 'gets' objects

Description

Extraction functions for objects of class 'gets'

Usage

```
## S3 method for class 'gets'
coef(object, spec=NULL, ...)
  ## S3 method for class 'gets'
fitted(object, spec=NULL, ...)
  ## S3 method for class 'gets'
logLik(object, ...)
  ## S3 method for class 'gets'
plot(x, spec=NULL, col=c("red","blue"),
    lty=c("solid", "solid"), lwd=c(1,1), ...)
  ## S3 method for class 'gets'
predict(object, spec=NULL, n.ahead=12, newmxreg=NULL,
    newvxreg=NULL, newindex=NULL, n.sim=5000, innov=NULL, probs=NULL,
    ci.levels=NULL, quantile.type=7, return=TRUE, verbose=FALSE, plot=NULL,
    plot.options=list(), ...)
  ## S3 method for class 'gets'
print(x, signif.stars=TRUE, ...)
  ## S3 method for class 'gets'
residuals(object, std=NULL, ...)
  ## S3 method for class 'gets'
sigma(object, ...)
  ## S3 method for class 'gets'
```

```
summary(object, ...)
  ## S3 method for class 'gets'
vcov(object, spec=NULL, ...)
```

Arguments

object	an object of class 'gets'
x	an object of class 'gets'
spec	NULL, "mean", "variance" or, in some instances, "both". When NULL is a valid value, then it is automatically determined whether information pertaining to the mean or variance specification should be returned
signif.stars	$\verb logical. If TRUE, then p-values are additionally encoded visually, see \verb printCoefmat $
std	logical. If FALSE (default), then the mean residuals are returned. If TRUE, then the standardised residuals are returned
n.ahead	integer that determines how many steps ahead predictions should be generated (the default is 12)
newmxreg	a matrix of n.ahead rows and NCOL(mxreg) columns with the out-of-sample values of the mxreg regressors
newvxreg	a matrix of n.ahead rows and NCOL(vxreg) columns with the out-of-sample values of the vxreg regressors
newindex	NULL (default) or the date-index for the zoo object returned by predict.arx. If NULL, then the function uses the in-sample index to generate the out-of-sample index
n.sim	integer, the number of replications used for the generation of the forecasts
innov	NULL (default) or a vector of length n.ahead * n.sim containing the standard- ised errors (that is, zero mean and unit variance) used for the forecast simu- lations. If NULL, then a classica bootstrap procedure is used to draw from the standardised in-sample residuals
probs	NULL (default) or a vector with the quantile-levels (values strictly between 0 and 1) of the forecast distribution. If NULL, then no quantiles are returned unless ci.levels is non-NULL
ci.levels	NULL (default) or a vector with the confidence levels (expressed as values strictly between 0 and 1) of the forecast distribution. The upper and lower values of the confidence interval(s) are returned as quantiles
quantile.type	an integer between 1 and 9 that selects which algorithm to be used in computing the quantiles, see the argument type in quantile
return	logical. If TRUE (default), then the out-of-sample predictions are returned. The value FALSE, which does not return the predictions, may be of interest if only a prediction plot is of interest
verbose	logical with default FALSE. If TRUE, then additional information (typically the quantiles and/or the simulated series) used in the generation of forecasts is returned. If FALSE, then only the forecasts are returned
plot	NULL (default) or logical. If NULL, then the value set by options\$plot (see options) determines whether a plot is produced or not. If TRUE, then the out-of-sample forecasts are plotted.

coef.gets

plot.options	a list of options related to the plotting of forecasts, see 'Details'
col	colours of fitted (default=red) and actual (default=blue) lines
lty	types of fitted (default=solid) and actual (default=solid) lines
lwd	widths of fitted (default=1) and actual (default=1) lines
	additional arguments

Details

The plot.options argument is a list that controls the prediction plot, see 'Details' in predict.arx

Value

coef:	a numeric vector containing parameter estimates
fitted:	a zoo object with fitted values
logLik:	a numeric, the log-likelihood (normal density)
plot:	a plot of the fitted values and the residuals
predict:	a vector of class zoo containing the out-of-sample forecasts, or a matrix of class zoo containing the out-of-sample forecasts together with prediction-quantiles, or - if return=FALSE - NULL
print:	a print of the estimation results
residuals:	a zoo object with the residuals
sigma:	the regression standard error ('SE of regression')
summary:	a print of the items in the gets object
vcov:	a variance-covariance matrix

Author(s)

Felix Pretis, https://felixpretis.climateeconometrics.org/ James Reade, https://sites.google.com/site/jjamesreade/ Moritz Schwarz, https://www.inet.ox.ac.uk/people/moritz-schwarz Genaro Sucarrat, https://www.sucarrat.net/

See Also

getsm, getsv, isat

Examples

```
##Simulate from an AR(1):
set.seed(123)
y <- arima.sim(list(ar=0.4), 100)
##Simulate four independent Gaussian regressors:
xregs <- matrix(rnorm(4*100), 100, 4)</pre>
```

##estimate an AR(2) with intercept and four conditioning

coef.gets

##regressors in the mean, and a log-ARCH(3) in the variance: mymod <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs, arch=1:3)</pre> ##General-to-Specific (GETS) model selection of the mean: meanmod <- getsm(mymod)</pre> ##General-to-Specific (GETS) model selection of the variance: varmod <- getsv(mymod)</pre> ##print results: print(meanmod) print(varmod) ##plot the fitted vs. actual values, and the residuals: plot(meanmod) plot(varmod) ##generate and plot predictions of the mean: predict(meanmod, plot=TRUE) ##print the entries of object 'gets': summary(meanmod) summary(varmod) ##extract coefficients of the simplified (specific) model: coef(meanmod) #mean spec coef(varmod) #variance spec ##extract log-likelihood: logLik(mymod) ##extract coefficient-covariance matrix of simplified ##(specific) model: vcov(meanmod) #mean spec vcov(varmod) #variance spec ##extract and plot the fitted values: mfit <- fitted(meanmod) #mean fit</pre> plot(mfit) vfit <- fitted(varmod) #variance fit</pre> plot(vfit) ##extract and plot residuals: epshat <- residuals(meanmod)</pre> plot(epshat) ##extract and plot standardised residuals: zhat <- residuals(varmod)</pre> plot(zhat)

coef.isat

Description

Extraction functions for objects of class 'isat'

Usage

```
## S3 method for class 'isat'
coef(object, ...)
  ## S3 method for class 'isat'
fitted(object, ...)
  ## S3 method for class 'isat'
logLik(object, ...)
  ## S3 method for class 'isat'
plot(x, col=c("red","blue"), lty=c("solid","solid"),
    lwd=c(1,1), coef.path=TRUE, ...)
  ## S3 method for class 'isat'
predict(object, n.ahead=12, newmxreg=NULL, newindex=NULL,
    n.sim=2000, probs=NULL, ci.levels=NULL, quantile.type=7,
    return=TRUE, verbose=FALSE, plot=NULL, plot.options=list(), ...)
  ## S3 method for class 'isat'
print(x, signif.stars=TRUE, ...)
  ## S3 method for class 'isat'
residuals(object, std=FALSE, ...)
  ## S3 method for class 'isat'
sigma(object, ...)
  ## S3 method for class 'isat'
summary(object, ...)
  ## S3 method for class 'isat'
vcov(object, ...)
```

Arguments

object	an object of class 'isat'
х	an object of class 'isat'
std	logical. If FALSE (default), then the mean residuals are returned. If TRUE, then the standardised residuals are returned
n.ahead	integer that determines how many steps ahead predictions should be generated (the default is 12)
newmxreg	a matrix of n.ahead rows and NCOL(mxreg) columns with the out-of-sample values of the mxreg regressors
newindex	NULL (default) or the date-index for the zoo object returned by predict.arx. If NULL, then the function uses the in-sample index to generate the out-of-sample index

n.sim	integer, the number of replications used for the generation of the forecasts
probs	NULL (default) or a vector with the quantile-levels (values strictly between 0 and 1) of the forecast distribution. If NULL, then no quantiles are returned unless ci.levels is non-NULL
ci.levels	NULL (default) or a vector with the confidence levels (expressed as values strictly between 0 and 1) of the forecast distribution. The upper and lower values of the confidence interval(s) are returned as quantiles
quantile.type	an integer between 1 and 9 that selects which algorithm to be used in computing the quantiles, see the argument type in quantile
return	logical. If TRUE (default), then the out-of-sample predictions are returned. The value FALSE, which does not return the predictions, may be of interest if only a prediction plot is of interest
verbose	logical with default FALSE. If TRUE, then additional information (typically the quantiles and/or the simulated series) used in the generation of forecasts is returned. If FALSE, then only the forecasts are returned
plot	NULL (default) or logical. If NULL, then the value set by options\$plot (see options) determines whether a plot is produced or not. If TRUE, then the out-of-sample forecasts are plotted.
plot.options	a list of options related to the plotting of forecasts, see 'Details'
col	colours of fitted (default=red) and actual (default=blue) lines
lty	types of fitted (default=solid) and actual (default=solid) lines
lwd	widths of fitted (default=1) and actual (default=1) lines
coef.path	logical. Only applicable if there are retained indicators after the application of isat
signif.stars	logical. If TRUE, then p-values are additionally encoded visually, see printCoefmat
	additional arguments

Details

The plot. options argument is a list that controls the prediction plot, see 'Details' in predict.arx

Value

coef:	numeric vector containing parameter estimates
fitted:	a zoo object with fitted values
logLik:	a numeric, the log-likelihood (normal density)
plot:	plot of the fitted values and the residuals
predict:	a vector of class zoo containing the out-of-sample forecasts, or a matrix of class zoo containing the out-of-sample forecasts together with prediction-quantiles, or - if return=FALSE - NULL
print:	a print of the estimation results
residuals:	a zoo object with the residuals
sigma:	the regression standard error ('SE of regression')
summary:	a print of the items in the isat object
vcov:	variance-covariance matrix

coef.isat

Author(s)

```
Felix Pretis, https://felixpretis.climateeconometrics.org/
James Reade, https://sites.google.com/site/jjamesreade/
Moritz Schwarz, https://www.inet.ox.ac.uk/people/moritz-schwarz
Genaro Sucarrat, https://www.sucarrat.net/
```

See Also

paths, terminals, coef.gets, getsm, arx

Examples

```
##step indicator saturation:
set.seed(123)
y <- rnorm(30)
isatmod <- isat(y)</pre>
```

```
##print results:
print(isatmod)
```

##plot the fitted vs. actual values, and the residuals: plot(isatmod)

```
##print the entries of object 'isatmod':
summary(isatmod)
```

```
##extract coefficients of the simplified (specific) model:
coef(isatmod)
```

```
##extract log-likelihood:
logLik(isatmod)
```

```
##extract the coefficient-covariance matrix of simplified
##(specific) model:
vcov(isatmod)
```

```
##extract and plot the fitted values:
mfit <- fitted(isatmod)
plot(mfit)
```

```
##extract and plot (mean) residuals:
epshat <- residuals(isatmod)
plot(epshat)
```

```
##extract and plot standardised residuals:
zhat <- residuals(isatmod, std=TRUE)
plot(zhat)
```

```
##generate forecasts of the simplified (specific) model:
predict(isatmod, newmxreg=matrix(1,12,1), plot=TRUE)
```

coef.larch

Description

Methods and extraction functions for 'larch' objects

Usage

```
## S3 method for class 'larch'
coef(object, ...)
  ## S3 method for class 'larch'
fitted(object, ...)
  ## S3 method for class 'larch'
logLik(object, ...)
  ## S3 method for class 'larch'
model.matrix(object, response=FALSE, as.zoo=TRUE, ...)
  ## S3 method for class 'larch'
nobs(object, ...)
  ## S3 method for class 'larch'
plot(x, col=c("red","blue"), lty=c("solid","solid"),
    lwd=c(1,1), ...)
  ## S3 method for class 'larch'
print(x, signif.stars=TRUE, verbose=FALSE, ...)
  ## S3 method for class 'larch'
residuals(object, ...)
  ## S3 method for class 'larch'
summary(object, ...)
  ## S3 method for class 'larch'
toLatex(object, ...)
  ## S3 method for class 'larch'
vcov(object, ...)
```

Arguments

object	an object of class 'larch'
х	an object of class 'larch'
response	logical. If FALSE (default), the returned object does not contain the response $(\log(e^2))$ used in the estimation
as.zoo	logical. If TRUE (default), the returned object is of class zoo
col	a character vector of length two with the colours of actual (default=blue) and fitted (default=red) lines
lty	types of actual (default=solid) and fitted (default=solid) lines
lwd	widths of actual (default=1) and fitted (default=1) lines
signif.stars	logical. If TRUE, then p-values are additionally encoded visually, see printCoefmat

coef.larch

verbose	logical. If TRUE, and if x is the results of GETS modelling, then additional
	information pertaining to the GETS modelling is printed
	additional arguments

Value

coef:	a vector containing the parameter estimates
fitted:	a zoo object with fitted values
logLik:	the log-likelihood (normal density)
<pre>model.matrix:</pre>	the model matrix (see model.matrix) of class zoo (default) of the model
nobs:	the number of observations
plot:	a plot of the fitted values and the residuals
print:	a print of the estimation results and, if verbose=TRUE and x is the result of GETS modelling, additional information pertaining to the GETS modelling
residuals:	a zoo object with the standardised residuals
summary:	a print of the items in the larch object
toLatex:	a LaTeX print of the estimation results (equation format)
vcov:	variance-covariance matrix

Author(s)

Genaro Sucarrat, https://www.sucarrat.net/

See Also

larch, zoo

Examples

```
##simulate some data:
set.seed(123)
e <- rnorm(40)
x <- matrix(rnorm(40*2), 40, 2)
##estimate a log-ARCH(3)-X model:
mymod <- larch(e, arch=1:3, vxreg=x)
##print results:
print(mymod)
##LaTeX print of the estimation results (equation format):
toLatex(mymod)
##plot the fitted vs. actual values, and the standardised residuals:
plot(mymod)
##extract coefficient estimates (automatically determined):
```

coef.logitx

##extract the fitted values: fitted(mymod)

##extract the standardised residuals: residuals(mymod)

##extract variance-covariance matrix: vcov(mymod)

##extract log-likelihood (based on the normal density):
logLik(mymod)

##extract the model matrix of the model: model.matrix(mymod)

##print the entries of object 'mymod': summary(mymod)

coef.logitx

Extraction functions for 'logitx' objects

Description

Extraction functions (of type S3 methods) for objects of class 'logitx'

Usage

```
## S3 method for class 'logitx'
coef(object, ...)
  ## S3 method for class 'logitx'
fitted(object, zero.prob=FALSE, ...)
  ## S3 method for class 'logitx'
logLik(object, ...)
  ## S3 method for class 'logitx'
plot(x, ...)
  ## S3 method for class 'logitx'
print(x, signif.stars=TRUE, ...)
  ## S3 method for class 'logitx'
summary(object, ...)
  ## S3 method for class 'logitx'
toLatex(object, digits = 4, gof = TRUE, nonumber = FALSE, nobs = "T", ...)
  ## S3 method for class 'logitx'
vcov(object, ...)
```

coef.logitx

Arguments

object	an object of class 'logitx'
x	an object of class 'logitx'
zero.prob	logical. If FALSE (default), then the probabilities of a one are returned as fitted values. If TRUE, then the zero probabilities are returned as fitted values
signif.stars	$\verb logical. If TRUE, then p-values are additionally encoded visually, see \verb printCoefmat $
digits	integer, the number of digits in the LaTeX print
gof	logical that determines whether goodness-of-fit information should be included in the LaTeX print
nonumber	logical that determines whether a "nonumber" tag should be added to each equa- tion in the LaTeX print
nobs	character that determines the label for the number of observations in the LaTeX print
	additional arguments

Value

Various, depending on the method

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

See Also

logitx, logitxSim, gets.logitx

Examples

```
##simulate from ar(1):
set.seed(123) #for reproducibility
y <- logitxSim(100, ar=0.3)</pre>
```

##estimate and store result: mymod <- logitx(y, ar=1)</pre>

##extract stuff: coef(mymod) fitted(mymod) logLik(mymod) plot(mymod) print(mymod) summary(mymod) toLatex(mymod) diagnostics

Description

Auxiliary function (i.e. not intended for the average user) called by the arx, getsm, getsv, isat, getsFun and blocksFun functions. The diagnostics function undertakes tests for autocorrelation, ARCH and non-normality in a residual series, and user-defined diagnostics provided via the user fun argument (see details). The autocorrelation and ARCH tests are conducted as Ljung and Box (1979) tests for autocorrelation in the residuals and squared residuals, respectively, whereas the test for non-normality is that of Jarque and Bera (1980).

Usage

```
diagnostics(x, ar.LjungB=c(1, 0.025), arch.LjungB=c(1, 0.025),
normality.JarqueB=NULL, verbose=TRUE, user.fun=NULL, ...)
```

Arguments

х	a list, for example the estimation result of ols. The tests for serial correlation, ARCH and normality look for an entry in the list named std.residuals or residuals	
ar.LjungB	a two element vector or NULL. In the former case, the first element contains the AR-order, the second element the significance level. If NULL, then a test for autocorrelation is not conducted	
arch.LjungB	a two element vector or NULL. In the former case, the first element contains the ARCH-order, the second element the significance level. If NULL, then a test for ARCH is not conducted	
normality.JarqueB		
	NULL (the default) or a value between 0 and 1. In the latter case, a test for non- normality is conducted using a significance level equal to normality.JarqueB. If NULL, then no test for non-normality is conducted	
verbose	logical. If TRUE, then a data.frame with the results of the diagnostics is re- turned. If FALSE, then the return-value is a logical that indicates whether the model passes the diagnostics (TRUE if it does, otherwise FALSE)	
user.fun	NULL or a list with at least one entry, name (must be of class character), which should contain the name of the user-defined function. See details	
	further arguments (ignored) to accommodate deleted arguments from past versions of the functions	

Details

The argument user.fun enables the user to specify additional diagnostics. To do this, the argument should be a list with at least one entry, name (of class character), that contains the name of the user-defined function. The call to this function is executed with do.call, whose default value on

diagnostics

envir is parent.frame(). Usually, this will be the global environment (.GlobalEnv), but it can be changed by adding an entry named envir to the list that indicates where the user-defined function resides. If the verbose argument is set to FALSE, then an entry named pval must be provided. This entry should contain the chosen significance level or levels, i.e. either a scalar or a vector of length equal to the number of *p*-values returned by the user-defined diagnostics function (see examples). The user can also specify whether a rejection of the tests should cause the diagnostics to fail (default behaviour) or whether a rejection is desirable. For that purpose, a named entry is.reject.bad can be added that stores a logical vector of length equal to the number of tests conducted in the user diagnostics function. The first entry of the vector governs the diagnostic decision for the first row that the user diagnostics function returns, the second entry the decision for the second row etc. Additional entries in the list are passed on as arguments to the user-defined function.

The user-defined function should refer to the named items of the estimation result x (see examples), and the value returned by the user-defined function should be a matrix of dimension $m \ge 3$. Here, m is the number of diagnostic tests performed by the user-defined function. For example, if only a single test is performed, then m = 1 and so the returned value should be a 1 x 3 matrix (or a vector of length 3). The three columns of the $m \ge 3$ matrix should contain, in the following order, 1) the value(s) of the test-statistic(s) (or NA), 2) the degree(s) of freedom(s) (or NA) of the tests, and 3) the *p*-value(s) of the test(s). When checking whether the model passes the diagnostics or not, the *p*-value(s) is(are) checked against the value(s) in the entry named pval in the list provided to user fun. By default, a calculated *p*-value below the corresponding element in pval causes the diagnostics to fail. If a named entry is reject.bad exists, this decision rule is only applied to tests whose corresponding entry is TRUE while the decision rule is reversed for those with entry FALSE. For these tests, the diagnostics fail if the hypothesis cannot be rejected.

Value

verbose=TRUE	a data.frame that contains the diagnostics results
verbose=FALSE	a logical (of length one) indicating whether the residuals and/or model passes ALL the diagnostics (TRUE if it does, FALSE otherwise)

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/ Jonas Kurle, https://www.jonaskurle.com/

References

C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259

G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270

See Also

arx, getsm, getsv, isat, getsFun, blocksFun

Examples

```
##generate some data:
set.seed(123)
vY <- rnorm(20) #the regressand
mX <- matrix(rnorm(3*20), 20, 3) #the regressors
est <- ols(vY,mX)</pre>
##return a data-frame with autocorrelation and ARCH diagnostics (default),
##and check whether they pass (the default p-value is 0.025):
diagnostics(est)
diagnostics(est, verbose=FALSE)
##add the Jarque-Bera normality test to the diagnostics (w/p-value=0.05):
diagnostics(est, normality.JarqueB=0.05)
diagnostics(est, normality.JarqueB=0.05, verbose=FALSE)
##user-defined Shapiro-Wilks test for non-normality of the residuals:
SWtest <- function(x, ...){</pre>
  tmp <- shapiro.test(x$residuals)</pre>
  return( c(tmp$statistic, NA, tmp$p.value) )
}
diagnostics(est, user.fun=list(name="SWtest", pval=0.05))
diagnostics(est, user.fun=list(name="SWtest", pval=0.05), verbose=FALSE)
##user-defined test but diagnostics fail if do not reject (illustration only)
diagnostics(est, user.fun=list(name="SWtest", pval=0.05, is.reject.bad = FALSE))
diagnostics(est, user.fun=list(name="SWtest", pval=0.05, is.reject.bad = FALSE),
  verbose=FALSE)
```

distorttest

Jiao-Pretis-Schwarz Outlier Distortion Test

Description

Implements the Jiao-Pretis-Schwarz test for coefficient distortion due to outliers by comparing coefficient estimates obtained using OLS to estimates obtained using the robust IIS estimator implemented using isat. See the referenced Jiao-Pretis-Schwarz Paper below for more information.

Usage

distorttest(x, coef = "all")

Arguments

х	object of class isat
coef	Either "all" (Default) to test the distortion on all coefficients or a character vector
	of explanatory variable names.

distorttest

Value

Object of class isat

Author(s)

Xiyu Jiao https://sites.google.com/view/xiyujiao

Felix Pretis https://felixpretis.climateeconometrics.org/

Moritz Schwarz https://moritzschwarz.org

References

Xiyu Jiao, Felix Pretis, and Moritz Schwarz. Testing for Coefficient Distortion due to Outliers with an Application to the Economic Impacts of Climate Change. Available at SSRN: https://www.ssrn.com/abstract=3915040 or doi:10.2139/ssrn.3915040

See Also

isat, distorttestboot

Examples

```
## Not run:
data(Nile)
nile <- isat(Nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.01)</pre>
distorttest(nile)
data("hpdata")
# Another example with co-variates
dat <- hpdata[,c("GD", "GNPQ", "FSDJ")]</pre>
Y \leq ts(dat GD, start = 1959, frequency = 4)
mxreg <- ts(dat[,c("GNPQ", "FSDJ")],start = 1959, frequency = 4)</pre>
m1 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE)</pre>
m2 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1)</pre>
m3 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE)
m4 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1, t.pval = 0.01)
distorttest(m1, coef = "all")
distorttest(m2, coef = "all")
distorttest(m3, coef = "GNPQ")
distorttest(m4, coef = c("ar1", "FSDJ"))
```

End(Not run)

```
distorttestboot
```

Description

Implements the Jiao-Pretis-Schwarz bootstrap test for coefficient distortion due to outliers by comparing coefficient estimates obtained using OLS to estimates obtained using the robust IIS estimator implemented using isat. Three bootstrap schemes are available - using the original sample (not recommended), the clean (outlier-removed) data, and using the clean (outlier-removed) sample with scaled cut-offs used to detect outliers in IIS implemented using isat. See the referenced Jiao-Pretis-Schwarz Paper below for more information.

Usage

distorttestboot(x, nboot, clean.sample = TRUE, parametric = FALSE, scale.t.pval = 1, parallel.options = NULL, quantiles = c(0.90, 0.95, 0.99), ...)

```
##S3 printing method for objects of class 'distorttestboot':
## S3 method for class 'distorttestboot'
print(x, print.proportion = FALSE, ...)
```

Arguments

х	object of class isat or the output of the distorttest function.	
nboot	numeric. Number of bootstrap replications. A high number of replications are recommended for final estimation (more than 200 at least).	
clean.sample	logical. Whether the outlier-removed sample should be used in resampling.	
parametric	logical. Whether to use a parametric bootstrap. Default is non-parametric (FALSE). Parametric currently not implemented for autoregressive models.	
<pre>scale.t.pval</pre>	numeric. Scaled target p-value (for selection) relative to the initial p-value used in isat. Default is 1. E.g. a value of 0.5 would scale an initial target p-value of 0.05 to 0.025.	
parallel.options		
	NULL (Default) or an integer, i.e. the number of cores/threads to be used for parallel computing (implemented w/makeCluster and parLapply).	
print.proportion		
	logical. Should the bootstraped Jiao-Pretis Outlier Proportion Test be printed. Default is FALSE.	
quantiles	numeric vector. Quantiles to be shown based on the bootstrapped results. Default is $c(0.90, 0.95, 0.99)$.	
	Further arguments passed to isat.	

Value

A list including an object of class h-test.

distorttestboot

Author(s)

Xiyu Jiao https://sites.google.com/view/xiyujiao

Felix Pretis https://felixpretis.climateeconometrics.org/

Moritz Schwarz https://moritzschwarz.org

References

Xiyu Jiao, Felix Pretis, and Moritz Schwarz. Testing for Coefficient Distortion due to Outliers with an Application to the Economic Impacts of Climate Change. Available at SSRN: https://www.ssrn.com/abstract=3915040 or doi:10.2139/ssrn.3915040

See Also

isat, distorttest

Examples

```
## Not run:
data(Nile)
nile <- isat(Nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.01)</pre>
distorttest(nile)
# bootstrap (with nboot = 5 to save time. Higher replications are recommended)
distorttestboot(nile, nboot = 5)
data("hpdata")
# Another example with co-variates
dat <- hpdata[,c("GD", "GNPQ", "FSDJ")]</pre>
Y \leq ts(dat GD, start = 1959, frequency = 4)
mxreg <- ts(dat[,c("GNPQ", "FSDJ")],start = 1959, frequency = 4)</pre>
m1 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE)</pre>
m2 <- isat(y = Y, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1)</pre>
m3 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE)
m4 <- isat(y = Y, mxreg = mxreg, mc = TRUE, sis = FALSE, iis = TRUE, ar = 1, t.pval = 0.01)
distorttest(m1, coef = "all")
distorttest(m2, coef = "all")
distorttest(m3, coef = "GNPQ")
distorttest(m4, coef = c("ar1", "FSDJ"))
# bootstrap (with nboot = 5 to save time. Higher replications are recommended)
distorttestboot(m1, nboot = 5)
distorttestboot(m2, nboot = 5)
distorttestboot(m3, nboot = 5)
distorttestboot(m4, nboot = 5)
distorttestboot(m4, nboot = 5, parametric = TRUE, scale.t.pval = 0.5)
```

dropvar

End(Not run)

dropvar

Drop variable

Description

Drops columns in a matrix to avoid perfect multicollinearity.

Usage

dropvar(x, tol=1e-07, LAPACK=FALSE, silent=FALSE)

Arguments

х	a matrix, possibly less than full column rank.
tol	numeric value. The tolerance for detecting linear dependencies among regressors, see qr function. Only used if LAPACK is FALSE
LAPACK	logical, TRUE or FALSE (default). If true use LAPACK otherwise use LIN-PACK, see qr function
silent	logical, TRUE (default) or FALSE. Whether to print a notification whenever a regressor is removed

Details

Original function drop.coef developed by Rune Haubo B. Christensen in package ordinal, https://cran.r-project.org/package=ordinal.

Value

a matrix whose regressors linearly independent

Author(s)

Rune Haubo B. Christensen, with modifications by Genaro Sucarrat, http://www.sucarrat.net/

References

Rune H.B. Christensen (2014): 'ordinal: Regression Models for Ordinal Data'. https://cran. r-project.org/package=ordinal

See Also

isat
eqwma

Examples

set.seed(1)
x <- matrix(rnorm(20), 5)
dropvar(x) #full rank, none are dropped
x[,4] <- x[,1]*2</pre>

dropvar(x) #less than full rank, last column dropped

eqwma

Equally Weighted Moving Average (EqWMA) of the pth. exponentiated values

Description

The function eqwma returns an Equally Weighted Moving Average (EqWMA) of the pth. exponentiated values lagged k times (the default of k is 1). Optionally, the absolute values are computed before averaging if abs=TRUE, and the natural log of the values is returned if log=TRUE. The function leqwma is a wrapper to eqwma with abs=TRUE and log=TRUE.

If x is financial return (possibly mean-corrected) and p=2, then this gives the socalled 'historical' model, also known as an integrated ARCH model where the ARCH coefficients all have the same value with sum equal to one. In the log-variance specification the lag of log(EqWMA) is thus a financial volatility proxy. It may be an imperfect proxy compared with high-frequency data (which can also be included as regressors), but - in contrast to high-frequency data - is always available and easy to compute.

Usage

```
eqwma(x, length=5, k=1, p=1, abs=FALSE, log=FALSE, as.vector=FALSE,
lag=NULL, start=NULL)
leqwma(x, length=5, k=1, p=2, as.vector=FALSE, lag=NULL, start=NULL)
```

Arguments

x	numeric vector, time-series or zoo object
length	integer or vector of integers each equal to or greater than 1. The length or lengths of the moving window or windows of averages
k	integer that determines how many periods the term(s) should be lagged. If 0 (or smaller), then the moving averages are not lagged
р	numeric value. The exponent p in x^p when abs=FALSE, and in $abs(x)^p$ when $abs=TRUE$
log	logical with default FALSE. If TRUE, then the logarithm of the moving average is returned
abs	logical with default FALSE. If TRUE, then x is transformed to absolute values before x is exponentiated

eqwma

as.vector	logical with default FALSE. If TRUE, and if length(length)==1, then the result is returned as a vector. Otherwise the returned value is always a matrix
lag	deprecated
start	deprecated

Details

The intended primary use of equma is to construct mixed frequency regressors for the mean specification of an arx model.

The intended primary use of leqwma is to construct volatility proxies for the log-variance specification in an arx model. In the latter case, the default is the lagged log of an equally weighted moving average of the squared residuals, where each average is made up of m observations. This is equivalent to an integrated ARCH(p) model where the p coefficients are all equal. For further details on the use of log(EqWMA) as a volatility proxy, see Sucarrat and Escribano (2012).

Value

numeric matrix, vector or zoo object

Author(s)

Genaro Sucarrat, https://www.sucarrat.net/

References

Genaro Sucarrat and Alvaro Escribano (2012): 'Automated Financial Model Selection: General-to-Specific Modelling of the Mean and Volatility Specifications', Oxford Bulletin of Economics and Statistics 74, Issue no. 5 (October), pp. 716-735

Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44

See Also

zoo, arx, getsm, getsv

Examples

```
##generate an iid normal series:
set.seed(123)
x <- rnorm(100)
##compute lag of EqWMA(20) for x^2:
eqwma(x, p=2)
##compute lag of EqWMA(5) and lag of EqWMA(10) for x:
eqwma(x, length=c(5,10))
##compute lag of log(EqWMA(20)) for x^2:
```

```
ES
```

```
leqwma(x)
#compute lag of log(EqWMA(5)) and lag of log(EqWMA(8))
#for abs(x)^2:
leqwma(x, length=c(4,8))
```

Conditional Value-at-Risk (VaR) and Expected Shortfall (ES)

Description

ES

Extract the in-sample conditional Value-at-Risk, or the in-sample conditional Expected Shortfall for the chosen risk level(s).

Usage

```
ES(object, level=0.99, type=7, ...)
VaR(object, level=0.99, type=7, ...)
```

Arguments

object	an arx or gets object
level	the risk level(s), must be between 0 and 1
type	the method used to compute the empirical quantiles of the standardised residuals
	arguments passed on (currently not used)

Value

A vector or matrix containing either the conditional Value-at-Risk (VaR) or the conditional Expected Shortfall (ES) for the chosen risk level(s).

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

See Also

arx, getsm, getsv

eviews

Examples

```
##generate random variates, estimate model:
y <- rnorm(50)
mymodel <- arx(y, arch=1)
##extract 99% expected shortfall:
ES(mymodel)
##extract 99%, 95% and 90% expected shortfalls:
ES(mymodel, level=c(0.99, 0.95, 0.9))
##extract 99% value-at-risk:
VaR(mymodel)
##extract 99%, 95% and 90% values-at-risk:
VaR(mymodel, level=c(0.99, 0.95, 0.9))
```

```
eviews
```

Exporting results to EViews and STATA

Description

Functions that facilitate the export of results to the commercial econometric softwares EViews and STATA, respectively.

Usage

```
eviews(object, file=NULL, print=TRUE, return=FALSE)
stata(object, file=NULL, print=TRUE, return=FALSE)
```

Arguments

object	an arx, gets or isat object
file	filename, i.e. the destination of the exported data
print	logical. If TRUE, then the estimation code in EViews (or STATA) is printed
return	logical. If TRUE, then a list is returned

Value

Either printed text or a list (if return=TRUE)

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

See Also

arx, getsm, getsv, isat

40

gets

Examples

```
##simulate random variates, estimate model:
y <- rnorm(30)
mX <- matrix(rnorm(30*2), 30, 2)
mymod <- arx(y, mc=TRUE, mxreg=mX)
##print EViews code:
eviews(mymod)
##print Stata code:
stata(mymod)
```

gets

General-to-Specific (GETS) Modelling

Description

For an overview of the **gets** package, see gets-package. Here, documentation of generic functions for GETS modelling is provided. Note that gets.arx is a convenience wrapper to getsm and getsv. For specific GETS methods for lm, logitx and isat models, see gets.lm, gets.logitx and gets.isat, respectively.

Usage

```
gets(x, ...)
## S3 method for class 'arx'
gets(x, spec=NULL, ...)
```

Arguments

х	an object to be subjected to GETS modelling
spec	NULL (default), "mean" or "variance". If "mean", then getsm is called. If "variance", then getsv is called. If NULL, then it is automatically determined whether GETS-modelling of the mean or log-variance specification should be undertaken.
	further arguments passed to or from other methods

Details

gets.arx is a convenience wrapper to getsm and getsv.

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

See Also

getsm, getsv, getsFun, blocksFun

gets.isat

General-to-Specific (GETS) Modelling 'isat' objects

Description

General-to-Specific (GETS) Modelling of a objects of class isat.

Usage

```
## S3 method for class 'isat'
gets(x, t.pval=0.05, wald.pval=t.pval, vcov.type=NULL,
    do.pet=TRUE, ar.LjungB=list(lag=NULL, pval=0.025),
    arch.LjungB=list(lag=NULL, pval=0.025), normality.JarqueB=NULL,
    user.diagnostics=NULL, info.method=c("sc","aic","aicc","hq"),
    gof.function=NULL, gof.method=NULL, keep=NULL, include.gum=FALSE,
    include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07,
    turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE,...)
```

Arguments

х	an object of class 'isat'
t.pval	numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests
wald.pval	numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs). By default, it is the same as t.pval
vcov.type	the type of variance-covariance matrix used. If NULL (default), then the type used in the estimation of the 'arx' object is used. This can be overridden by either "ordinary" (i.e. the ordinary variance-covariance matrix) or "white" (i.e. the White (1980) heteroscedasticity robust variance-covariance matrix)
do.pet	logical. If TRUE (default), then a Parsimonious Encompassing Test (PET) against the GUM is undertaken at each regressor removal for the joint significance of all the deleted regressors along the current path. If FALSE, then a PET is not undertaken at each regressor removal
ar.LjungB	a two-item list with names lag and pval, or NULL. In the former case lag con- tains the order of the Ljung and Box (1979) test for serial correlation in the stan- dardised residuals, and pval contains the significance level. If lag=NULL (de- fault), then the order used is that of the estimated 'arx' object. If ar . Ljungb=NULL, then the standardised residuals are not checked for serial correlation
arch.LjungB	a two-item list with names lag and pval, or NULL. In the former case, lag contains the order of the Ljung and Box (1979) test for serial correlation in the squared standardised residuals, and pval contains the significance level. If lag=NULL (default), then the order used is that of the estimated 'arx' object. If arch.Ljungb=NULL, then the standardised residuals are not checked for ARCH

42

gets.isat

normality.JarqueB		
	a value between 0 and 1, or NULL. In the former case, the Jarque and Bera (1980) test for non-normality is conducted using a significance level equal to the numeric value. If NULL, then no test for non-normality is undertaken	
user.diagnostic		
	NULL or a list with two entries, name and pval, see the user.fun argument in diagnostics	
info.method	character string, "sc" (default), "aic" or "hq", which determines the information criterion to be used when selecting among terminal models. The abbreviations are short for the Schwarz or Bayesian information criterion (sc), the Akaike information criterion (aic) and the Hannan-Quinn (hq) information criterion	
gof.function	NULL (default) or a list, see getsFun. If NULL, then infocrit is used	
gof.method	NULL (default) or a character, see getsFun. If NULL and gof.function is also NULL, then the best goodness-of-fit is characterised by a minimum value	
keep	the regressors to be excluded from removal in the specification search. Note that keep=c(1) is obligatory when using getsv. This excludes the log-variance intercept from removal. The regressor numbering is contained in the reg.no column of the GUM	
include.gum	logical. If TRUE, then the GUM (i.e. the starting model) is included among the terminal models. If FALSE (default), then the GUM is not included	
include.1cut	logical. If TRUE, then the 1-cut model is added to the list of terminal models. If FALSE (default), then the 1-cut is not added, unless it is a terminal model in one of the paths	
include.empty	logical. If TRUE, then an empty model is included among the terminal models, if it passes the diagnostic tests, even if it is not equal to one of the terminals. If FALSE (default), then the empty model is not included (unless it is one of the terminals)	
max.paths	NULL (default) or an integer greater than 0. If NULL, then there is no limit to the number of paths. If an integer (e.g. 1), then this integer constitutes the maximum number of paths searched (e.g. a single path)	
tol	numeric value. The tolerance for detecting linear dependencies in the columns of the variance-covariance matrix when computing the Wald-statistic used in the Parsimonious Encompassing Tests (PETs), see the qr.solve function	
turbo	logical. If TRUE, then (parts of) paths are not searched twice (or more) unneces- sarily, thus yielding a significant potential for speed-gain. However, the check- ing of whether the search has arrived at a point it has already been comes with a slight computational overhead. Accordingly, if turbo=TRUE, then the total search time might in fact be higher than if turbo=FALSE. This happens if es- timation is very fast, say, less than quarter of a second. Hence the default is FALSE	
print.searchinfo		
	logical. If TRUE (default), then a print is returned whenever simiplification along a new path is started	
plot	NULL or logical. If TRUE, then the fitted values and the residuals of the final model are plotted after model selection. If FALSE, then they are not. If NULL	

	(default), then the value set by options determines whether a plot is produced or not
alarm	logical. If TRUE, then a sound or beep is emitted (in order to alert the user) when the model selection ends
	further arguments passed on to and from methods

Details

Internally, gets.isat invokes getsm for the GETS-modelling.

Value

A list of class gets.

Author(s)

Moritz Schwarz, https://www.inet.ox.ac.uk/people/moritz-schwarz Genaro Sucarrat, https://www.sucarrat.net/

See Also

isat, getsm, getsFun, paths and terminals

Examples

```
##generate some data:
#set.seed(123) #for reproducibility
#y <- rnorm(30) #generate Y</pre>
#isatmod <- isat(y)</pre>
#gets(isatmot)
```

General-to-Specific (GETS) Modelling of a heterogeneous log-ARCH-X model

Description

The starting model, an object of the 'larch' class (see larch, is referred to as the General Unrestricted Model (GUM). The gets.larch() function undertakes multi-path GETS modelling of the log-variance specification. The diagnostic tests are undertaken on the standardised residuals, and the keep option enables regressors to be excluded from possible removal.

gets.larch

Usage

```
## S3 method for class 'larch'
gets(x, t.pval=0.05, wald.pval=t.pval, do.pet=TRUE,
    ar.LjungB=NULL, arch.LjungB=NULL, normality.JarqueB=NULL,
    user.diagnostics=NULL, info.method=c("sc", "aic", "aicc", "hq"),
    gof.function=NULL, gof.method=NULL, keep=c(1), include.gum=FALSE,
    include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e=07,
    turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE, ...)
```

Arguments

x	an object of class 'larch'	
t.pval	numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests	
wald.pval	numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs). By default, wald.pval is equal to t.pval	
do.pet	logical. If TRUE (default), then a Parsimonious Encompassing Test (PET) against the GUM is undertaken at each regressor removal for the joint significance of all the deleted regressors along the current path. If FALSE, then a PET is not undertaken at each regressor removal	
ar.LjungB	NULL (default), or a list with named items lag and pval, or a two-element numeric vector where the first element contains the lag and the second the p-value. If NULL, then the standardised residuals are not checked for autocorrelation. If ar.LjungB is a list, then lag contains the order of the Ljung and Box (1979) test for serial correlation in the standardised residuals, and pval contains the significance level. If lag=NULL, then the order used is that of the estimated 'larch' object	
arch.LjungB	NULL (default), or a list with named items lag and pval, or a two-element numeric vector where the first element contains the lag and the second the p-value. If NULL, then the standardised residuals are not checked for ARCH (autocorrelation in the squared standardised residuals). If ar.LjungB is a list, then lag contains the order of the test, and pval contains the significance level. If lag=NULL, then the order used is that of the estimated 'larch' object	
normality.Jarqu	-	
	NULL (default) or a numeric value between 0 and 1. If NULL, then no test for non- normality is undertaken. If a numeric value between 0 and 1, then the Jarque and Bera (1980) test for non-normality is conducted using a significance level equal to the numeric value	
user.diagnostics		
	NULL (default) or a list with two entries, name and pval, see the user.fun argument in <code>diagnostics</code>	
info.method	character string, "sc" (default), "aic", "aicc" or "hq", which determines the in- formation criterion to be used when selecting among terminal models. See infocrit for the details	
gof.function	NULL (default) or a list, see getsFun. If NULL, then infocrit is used	

gof.method	NULL (default) or a character, see getsFun. If NULL and gof.function is also NULL, then the best goodness-of-fit is characterised by a minimum value
keep	the regressors to be kept (i.e. excluded from removal) in the specification search. Currently, keep=c(1) is obligatory, which excludes the log-variance intercept from removal
include.gum	logical. If TRUE, the GUM (i.e. the starting model) is included among the termi- nal models. If FALSE (default), the GUM is not included
include.1cut	logical. If TRUE (default), then the 1-cut model is added to the list of terminal models. If FALSE, the 1-cut is not added, unless it is a terminal model in one of the paths
include.empty	logical. If TRUE, then an empty model is included among the terminal models, if it passes the diagnostic tests. If FALSE (default), then the empty model is not included
max.paths	NULL (default) or an integer equal to or greater than 0. If NULL, then there is no limit to the number of paths. If an integer (e.g. 1), then this integer constitutes the maximum number of paths searched (e.g. a single path)
tol	numeric value. The tolerance for detecting linear dependencies in the columns of the variance-covariance matrix when computing the Wald-statistic used in the Parsimonious Encompassing Tests (PETs), see the qr.solve function
turbo	logical. If TRUE, then paths are not searched twice (or more) unnecessarily, thus yielding a significant potential for speed-gain. However, the checking of whether the search has arrived at a point it has already been comes with a computational overhead. Accordingly, if turbo=TRUE, the total search time might in fact be higher than if turbo=FALSE. This is particularly likely to happen if estimation is very fast, say, less than a quarter of a second. Hence the default is FALSE
print.searchin	
	logical. If TRUE (default), then a print is returned whenever simiplification along a new path is started
plot	NULL or logical. If TRUE, then the fitted values and the standardised residuals of the final model are plotted after model selection. If FALSE, then they are not plotted. If NULL (default), then the value set by options determines whether a plot is produced or not
alarm	logical. If TRUE, then a sound or beep is emitted (in order to alert the user) when the model selection ends, see alarm
	additional arguments

Details

See Pretis, Reade and Sucarrat (2018): doi:10.18637/jss.v086.i03, and Sucarrat (2020): https://journal.r-project.org/archive/2021/RJ-2021-024/.

The arguments user.diagnostics and gof.function enable the specification of user-defined diagnostics and a user-defined goodness-of-fit function. For the former, see the documentation of diagnostics. For the latter, the principles of the same arguments in getsFun are followed, see its documentation under "Details", and Sucarrat (2020): https://journal.r-project.org/archive/2021/RJ-2021-024/.

gets.larch

Value

A list of class 'larch', see larch, with additional information about the GETS modelling

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

References

C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259. doi:10.1016/01651765(80)900245

G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270

Felix Pretis, James Reade and Genaro Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. doi:10.18637/jss.v086.i03

Genaro Sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12:2, pages 388-401. https://journal.r-project.org/archive/2021/RJ-2021-024/

See Also

Methods and extraction functions (mostly S3 methods): coef.larch, ES, fitted.larch, gets.larch, logLik.larch, nobs.larch, plot.larch, predict.larch, print.larch, residuals.larch, summary.larch, VaR, toLatex.larch and vcov.arx

Related functions: eqwma, leqwma, regressorsVariance, zoo, getsFun, qr. solve

Examples

```
##Simulate some data:
set.seed(123)
e <- rnorm(40)
x <- matrix(rnorm(4*40), 40, 4)
##estimate a log-ARCH(3) with asymmetry and log(x^2) as regressors:
gum <- larch(e, arch=1:3, asym=1, vxreg=log(x^2))
##GETS modelling of the log-variance:
simple <- gets(gum)
##GETS modelling with intercept and log-ARCH(1) terms
##excluded from removal:
simple <- gets(gum, keep=c(1,2))
##GETS modelling with non-default autocorrelation
##diagnostics settings:
simple <- gets(gum, ar.LjungB=list(pval=0.05))
##GETS modelling with very liberal (40%) significance level:
```

```
simple <- gets(gum, t.pval=0.4)</pre>
```

gets.lm

General-to-Specific (GETS) Modelling 'lm' objects

Description

General-to-Specific (GETS) Modelling of objects of class 1m.

Usage

```
## S3 method for class 'lm'
gets(x, keep = NULL, include.1cut = TRUE, print.searchinfo = TRUE, ...)
```

Arguments

х	an object of class 'lm', see 1m	
keep	NULL or a vector of integers that determines which regressors to be excluded from removal in the specification search	
include.1cut	logical. If TRUE (default), then the 1-cut model is added to the list of terminal models. If FALSE, then the 1-cut is not added, unless it is a terminal model in one of the paths	
print.searchinfo		
	logical. If TRUE (default), then selected info is printed during search	
	further arguments passed on to getsFun	

Details

Internally, gets.lm invokes getsFun for the GETS-modelling, which is also invoked by getsm. See their help pages for more information.

Value

A list of class 1m. Note that the 'top' of the list contains information (paths and terminal models) from the GETS modelling, see paths and terminals

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

See Also

lm, getsFun, getsm, paths and terminals

gets.logitx

Examples

```
##generate some data:
set.seed(123) #for reproducibility
y <- rnorm(30) #generate Y
x <- matrix(rnorm(30*10), 30, 10) #matrix of Xs
colnames(x) <- paste0("var", 1:NCOL(x))
##estimate model:
mymod <- lm(y ~ x)
##do gets modelling:
gets(mymod)
##ensure intercept is not removed:
gets(mymod, keep=1)
```

gets.logitx

General-to-Specific (GETS) Modelling of objects of class 'logitx'

Description

General-to-Specific (GETS) Modelling of a dynamic Autoregressive (AR) logit model with covariates ('X') of class 'dlogitx'.

Usage

```
## S3 method for class 'logitx'
gets(x, t.pval = 0.05, wald.pval = t.pval, do.pet = TRUE,
    user.diagnostics = NULL, keep = NULL, include.gum = FALSE,
    include.1cut = TRUE, include.empty = FALSE, max.paths = NULL,
    turbo = TRUE, print.searchinfo = TRUE, plot = NULL, alarm = FALSE,
    ...)
```

Arguments

х	an object of class 'logitx', see logitx
t.pval	numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests
wald.pval	numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs). By default, it is the same as t.pval
do.pet	logical that determines whether a Parsimonious Encompassing Test (PET) against the GUM should be undertaken at each regressor removal for the joint significance of all the deleted regressors along the current path. If FALSE, then a PET is not undertaken at each regressor removal
user.diagnosti	cs

NULL (default) or a list with two entries, name and pval, see getsFun

keep	NULL or a vector of integers that determines which regressors to be excluded from removal in the specification search	
include.gum	logical that determines whether the GUM (i.e. the starting model) should be included among the terminal models. If FALSE (default), then the GUM is not included	
include.1cut	logical that determines whether the 1-cut model should be added to the list of terminal models. If FALSE (default), then the 1-cut is not added, unless it is a terminal model in one of the paths	
include.empty	logical that determines whether an empty model should be added to the list of terminal models, if it passes the diagnostic tests. If FALSE (default), then the empty model is not added, unless it is a terminal model in one of the paths	
max.paths	NULL (default) or an integer greater than 0. If NULL, then there is no limit to the number of paths. If an integer (e.g. 1), then this integer constitutes the maximum number of paths searched (e.g. a single path)	
turbo	logical. If TRUE (the default), then (parts of) paths are not searched twice (or more) unnecessarily, thus yielding a significant potential for speed-gain. The checking of whether the search has arrived at a point it has already been at comes with a slight computational overhead. So faster search is not guaranteed when turbo=TRUE	
print.searchinfo		
	logical. If TRUE (default), then a print is returned whenever simiplification along a new path is started	
plot	NULL or logical. If TRUE, then a plot is produced. If NULL (default), then the value set by options determines whether a plot is produced or not	
alarm	logical. If TRUE, then a sound or beep is emitted (in order to alert the user) when the model selection ends	
	further arguments passed to or from other methods	

Details

The model of class 'logitx' is a dynamic Autoregressive (AR) logit model with (optional) covariates ('X') proposed by Kauppi and Saikkonen (2008). Internally, gets.logitx undertakes the General-to-Specific (GETS) modelling with the getsFun function, see Sucarrat (2020).

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

References

Heikki Kauppi and Penti Saikkonen (2008): 'Predicting U.S. Recessions with Dynamic Binary Response Models'. The Review of Economic Statistics 90, pp. 777-791

See Also

logitx, logitxSim, coef.logitx, getsFun

getsFun

Examples

```
##simulate from ar(1), create covariates:
set.seed(123) #for reproducibility
y <- logitxSim(100, ar=0.3)
x <- matrix(rnorm(5*100), 100, 5)
##estimate model:
mymod <- logitx(y, ar=1:4, xreg=x)
##do gets modelling:
gets(mymod)
```

```
getsFun
```

General-to-Specific (GETS) modelling function

Description

Auxiliary function (i.e. not intended for the average user) that enables fast and efficient GETSmodelling with user-specified estimators and models, and user-specified diagnostics and goodnessof-fit criteria. The function is called by and relied upon by getsm, getsv, isat and blocksFun.

Usage

```
getsFun(y, x, untransformed.residuals=NULL,
  user.estimator=list(name="ols"), gum.result=NULL, t.pval=0.05,
  wald.pval=t.pval, do.pet=TRUE, ar.LjungB=NULL, arch.LjungB=NULL,
  normality.JarqueB=NULL, user.diagnostics=NULL,
  gof.function=list(name="infocrit"), gof.method=c("min", "max"),
  keep=NULL, include.gum=FALSE, include.1cut=FALSE,
  include.empty=FALSE, max.paths=NULL, turbo=FALSE, tol=1e-07,
  LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, alarm=FALSE)
```

Arguments

У	a numeric vector (with no missing values, i.e. no non-numeric 'holes')
х	a matrix or NULL
untransformed.residuals	
	NULL (default) or, when ols is used with method=6 in user.estimator, a numeric vector containing the untransformed residuals
user.estimator	a list. The first item should be named name and contain the name (a character) of the estimation function (the default is "ols"). Additional items, if any, in the list user.estimator are passed on as arguments to the estimator in question. Optionally, the list can also contain an item named envir, a character, which indicates the environment in which the user-specified estimator resides. The value returned by the user-specified estimator should be a list, see details

gum.result	a list with the estimation results of the General Unrestricted Model (GUM), or NULL (default). If the estimation results of the GUM are already available, then re-estimation of the GUM is skipped if the estimation results are provided via this argument	
t.pval	numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests	
wald.pval	numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs)	
do.pet	logical. If TRUE (default), then a Parsimonious Encompassing Test (PET) against the GUM is undertaken at each regressor removal for the joint significance of all the deleted regressors along the current path. If FALSE, then a PET is not undertaken at each regressor removal	
ar.LjungB	a two element vector or NULL (default). In the former case, the first element contains the AR-order, the second element the significance level. If NULL, then a test for autocorrelation is not conducted	
arch.LjungB	a two element vector or NULL (default). In the former case, the first element contains the ARCH-order, the second element the significance level. If NULL, then a test for ARCH is not conducted	
normality.Jarqu		
	NULL or a numeric value between 0 and 1. In the latter case, a test for non- normality is conducted using a significance level equal to normality.JarqueB. If NULL, then no test for non-normality is conducted	
user.diagnostic		
	NULL (default) or a list with two entries, name and pval. The first item (name) should contain the name of the user-defined function, and must be of class character. The second item should contain the chosen significance level or levels, i.e. either a scalar or a vector of length equal to the number of p-values returned by the user-defined diagnostics function, see details. Optionally, the list user.diagnostics can also contain a third item named envir, a character, which indicates the environment in which the user-defined function resides	
gof.function	a list. The first item should be named name and contain the name (a character) of the Goodness-of-Fit (GOF) function used. Additional items in the list gof.function are passed on as arguments to the GOF-function. The value returned by the GOF-function should be a numeric value (of length 1). Optionally, the list gof.function can also contain an item named envir, a character, which indicates the environment in which the user-defined function resides	
gof.method	a character. Determines whether the best Goodness-of-Fit is a minimum or maximum	
keep	NULL or an integer vector that indicates which regressors to be excluded from removal in the search	
include.gum	logical. If TRUE, then the GUM (i.e. the starting model) is included among the terminal models. If FALSE (default), then the GUM is not included	
include.1cut	logical. If TRUE, then the 1-cut model is added to the list of terminal models. If FALSE (default), then the 1-cut is not added, unless it is a terminal model in one of the paths	

include.empty	logical. If TRUE, then the empty model is added to the list of terminal models. If FALSE (default), then the empty model is not added, unless it is a terminal model in one of the paths	
max.paths	NULL (default) or an integer equal to or greater than 0. If NULL, then there is no limit to the number of paths. If an integer, for example 1, then this integer constitutes the maximum number of paths searched	
turbo	logical. If TRUE, then (parts of) paths are not searched twice (or more) unnecessarily, thus yielding a significant potential for speed-gain. However, the checking of whether the search has arrived at a point it has already been comes with a slight computational overhead. Accordingly, if turbo=TRUE, then the total search time might in fact be higher than if turbo=FALSE. This happens if estimation is very fast, say, less than quarter of a second. Hence the default is FALSE	
tol	numeric value (default = $1e-07$). The tolerance for detecting linear dependencies in the columns of the variance-covariance matrix when computing the Wald-statistic used in the Parsimonious Encompassing Tests (PETs), see the qr.solve function	
LAPACK	currently not used	
max.regs	integer. The maximum number of regressions along a deletion path. Do not alter unless you know what you are doing!	
print.searchinfo		
	logical. If TRUE (default), then a print is returned whenever simiplification along a new path is started	
alarm	logical. If TRUE, then a sound or beep is emitted (in order to alert the user) when the model selection ends	

Details

The value returned by the estimator specified in user.estimator should be a list containing at least six items: "coefficients", "df", "vcov", "logl", "n" and "k". The item "coefficients" should be a vector of length NCOL(x) containing the estimated coefficients. The item named "df" is used to compute the *p*-values associated with the *t*-statistics, i.e. coef/std.err. The item named "vcov" contains the (symmetric) coefficient-covariance matrix of the estimated coefficients. The items "logl" (the log-likelihood), "n" (the number of observations) and "k" (the number of estimated parameters; not necessarily equal to the number of coefficients) are used to compute the information criterion. Finally, the estimator MUST be able to handle empty regressor-matrices (i.e. is.null(x)=TRUE or NCOL(x)=0). In this case, then the first three items (i.e. "coefficients", "df" and "vcov") can - and should - be NULL.

The argument user.estimator enables the user to specify an estimator that differs from the default (ols). To do this, the argument should be a list with at least one entry, name (of class character), that contains the name of the user-defined function. The call to this function is executed with do.call, whose default value on envir is parent.frame(). Usually, this will be the global environment (.GlobalEnv), but it can be changed by adding an entry named envir to the list that indicates where the user-defined function resides.

The argument user.diagnostics enables the user to specify additional - or alternative - diagnostics, see diagnostics.

The argument gof.function enables the user to specify a goodness-of-fit function that differs from the default (infocrit). The principles to follow are the same as that of user.estimator: The argument should be a list with at least one entry, name, that contains the name of the user-defined function, additional entries in the list are passed on to the user-specified goodness-of-fit function, and optionally an entry named envir may indicate where the user-defined function resides.

Value

A list with the results of the specification search.

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

References

C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259

G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270

F. Pretis, J. Reade and G. Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44

G. sucarrat (2019): 'User-Specified General-to-Specific and Indicator Saturation Methods', Munich Personal RePEc Archive: https://mpra.ub.uni-muenchen.de/96653/

See Also

ols, diagnostics, infocrit, getsv

Examples

```
##aim: do gets on the x-part (i.e. the covariates) of an arma-x model.
##create the user-defined estimator (essentially adding, renaming
##and re-organising the items returned by the estimator):
myEstimator <- function(y, x)
{
   tmp <- arima(y, order=c(1,0,1), xreg=x)
   #rename and re-organise:
   result <- list()
   result$coefficients <- tmp$coef[-c(1:3)]
   result$vcov <- tmp$var.coef
   result$vcov <- result$vcov[-c(1:3),-c(1:3)]
   result$logl <- tmp$loglik
   result$n <- tmp$nobs
   result$k <- NCOL(x)
   result$df <- result$n - result$k</pre>
```

return(result)

54

getsm

}

```
##generate some data:
##a series w/structural break and eleven step-dummies near the break
set.seed(123)
eps <- arima.sim(list(ar=0.4, ma=0.1), 60)
x <- coredata(sim(eps, which.ones=25:35)) #eleven step-dummies
y <- 4*x[,"sis30"] + eps #create shift upwards at observation 30
plot(y)
##estimate the gum and then do gets in a single step:
##getsFun(y, x, user.estimator=list(name="myEstimator"))
##estimate the gum and then do gets in two steps:
#mygum <- myEstimator(y, x)
##getsFun(y, x, user.estimator=list(name="myEstimator"), gum.result=mygum)
```

getsm

General-to-Specific (GETS) Modelling of an AR-X model (the mean specification) with log-ARCH-X errors (the log-variance specification).

Description

The starting model, an object of the 'arx' class, is referred to as the General Unrestricted Model (GUM). The getsm function undertakes multi-path GETS modelling of the mean specification, whereas getsv does the same for the log-variance specification. The diagnostic tests are undertaken on the standardised residuals, and the keep option enables regressors to be excluded from possible removal.

Usage

```
##GETS-modelling of mean specification:
getsm(object, t.pval=0.05, wald.pval=t.pval, vcov.type=NULL,
   do.pet=TRUE, ar.LjungB=list(lag=NULL, pval=0.025),
   arch.LjungB=list(lag=NULL, pval=0.025), normality.JarqueB=NULL,
   user.diagnostics=NULL, info.method=c("sc","aic","aicc", "hq"),
   gof.function=NULL, gof.method=NULL, keep=NULL, include.gum=FALSE,
   include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07,
    turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE)
##GETS modelling of log-variance specification:
getsv(object, t.pval=0.05, wald.pval=t.pval,
    do.pet=TRUE, ar.LjungB=list(lag=NULL, pval=0.025),
   arch.LjungB=list(lag=NULL, pval=0.025), normality.JarqueB=NULL,
   user.diagnostics=NULL, info.method=c("sc","aic","aicc","hq"),
   gof.function=NULL, gof.method=NULL, keep=c(1), include.gum=FALSE,
   include.1cut=TRUE, include.empty=FALSE, max.paths=NULL, tol=1e-07,
   turbo=FALSE, print.searchinfo=TRUE, plot=NULL, alarm=FALSE)
```

Arguments

object	an object of class 'arx'	
t.pval	numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests	
wald.pval	numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs). By default, it is the same as t.pval	
vcov.type	the type of variance-covariance matrix used. If NULL (default), then the type used in the estimation of the 'arx' object is used. This can be overridden by either "ordinary" (i.e. the ordinary variance-covariance matrix) or "white" (i.e. the White (1980) heteroscedasticity robust variance-covariance matrix)	
do.pet	logical. If TRUE (default), then a Parsimonious Encompassing Test (PET) against the GUM is undertaken at each regressor removal for the joint significance of all the deleted regressors along the current path. If FALSE, then a PET is not undertaken at each regressor removal	
ar.LjungB	a list with named items lag and pval, a two-element numeric vector where the first element contains the lag and the second the p-value, or NULL. In the first case, lag contains the order of the Ljung and Box (1979) test for serial cor- relation in the standardised residuals, and pval contains the significance level. If lag=NULL (default), then the order used is that of the estimated 'arx' object. If ar.Ljungb=NULL, then the standardised residuals are not checked for serial correlation	
arch.LjungB	a list with named items lag and pval, a two-element numeric vector where the first element contains the lag and the second the p-value, or NULL. In the first case, lag contains the order of the Ljung and Box (1979) test for serial corre- lation in the squared standardised residuals, and pval contains the significance level. If lag=NULL (default), then the order used is that of the estimated 'arx' object. If arch.Ljungb=NULL, then the standardised residuals are not checked for ARCH	
normality.Jarqu	eB	
	a value between 0 and 1, or NULL. In the former case, the Jarque and Bera (1980) test for non-normality is conducted using a significance level equal to the numeric value. If NULL, then no test for non-normality is undertaken	
user.diagnostic	•	
	\ensuremath{NULL} or a list with two entries, name and pval, see the user fun argument in diagnostics	
info.method	character string, "sc" (default), "aic" or "hq", which determines the information criterion to be used when selecting among terminal models. The abbreviations are short for the Schwarz or Bayesian information criterion (sc), the Akaike information criterion (aic) and the Hannan-Quinn (hq) information criterion	
gof.function	NULL (default) or a list, see getsFun. If NULL, then infocrit is used	
gof.method	NULL (default) or a character, see getsFun. If NULL and gof.function is also NULL, then the best goodness-of-fit is characterised by a minimum value	
keep	the regressors to be excluded from removal in the specification search. Note that keep=c(1) is obligatory when using getsv. This excludes the log-variance intercept from removal. The regressor numbering is contained in the reg.no column of the GUM	

getsm

include.gum	logical. If TRUE, then the GUM (i.e. the starting model) is included among the terminal models. If FALSE (default), then the GUM is not included
include.1cut	logical. If TRUE, then the 1-cut model is added to the list of terminal models. If FALSE (default), then the 1-cut is not added, unless it is a terminal model in one of the paths
include.empty	logical. If TRUE, then an empty model is included among the terminal models, if it passes the diagnostic tests, even if it is not equal to one of the terminals. If FALSE (default), then the empty model is not included (unless it is one of the terminals)
max.paths	NULL (default) or an integer greater than 0. If NULL, then there is no limit to the number of paths. If an integer (e.g. 1), then this integer constitutes the maximum number of paths searched (e.g. a single path)
tol	numeric value. The tolerance for detecting linear dependencies in the columns of the variance-covariance matrix when computing the Wald-statistic used in the Parsimonious Encompassing Tests (PETs), see the qr.solve function
turbo	logical. If TRUE, then (parts of) paths are not searched twice (or more) unneces- sarily, thus yielding a significant potential for speed-gain. However, the check- ing of whether the search has arrived at a point it has already been comes with a slight computational overhead. Accordingly, if turbo=TRUE, then the total search time might in fact be higher than if turbo=FALSE. This happens if es- timation is very fast, say, less than quarter of a second. Hence the default is FALSE
print.searchin	fo
	logical. If TRUE (default), then a print is returned whenever simiplification along a new path is started
plot	NULL or logical. If TRUE, then the fitted values and the residuals of the final model are plotted after model selection. If FALSE, then they are not. If NULL (default), then the value set by options determines whether a plot is produced or not
alarm	logical. If TRUE, then a sound or beep is emitted (in order to alert the user) when the model selection ends

Details

For an overview, see Pretis, Reade and Sucarrat (2018): doi:10.18637/jss.v086.i03.

The arguments user.diagnostics and gof.function enable the specification of user-defined diagnostics and a user-defined goodness-of-fit function. For the former, see the documentation of diagnostics. For the latter, the principles of the same arguments in getsFun are followed, see its documentation under "Details", and Sucarrat (2020): https://journal.r-project.org/archive/2021/RJ-2021-024/.

Value

A list of class 'gets'

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

References

C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259. doi:10.1016/01651765(80)900245

G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270

Felix Pretis, James Reade and Genaro Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. doi:10.18637/jss.v086.i03

Genaro Sucarrat (2020): 'User-Specified General-to-Specific and Indicator Saturation Methods'. The R Journal 12:2, pages 388-401. https://journal.r-project.org/archive/2021/RJ-2021-024/

See Also

Extraction functions: coef.gets, fitted.gets, paths, plot.gets, print.gets, residuals.gets, summary.gets, terminals, vcov.gets

Related functions: arx, eqwma, leqwma, zoo, getsFun, qr.solve

Examples

```
##Simulate from an AR(1):
set.seed(123)
y <- arima.sim(list(ar=0.4), 80)</pre>
##Simulate four independent Gaussian regressors:
xregs <- matrix(rnorm(2*80), 80, 2)</pre>
##estimate an AR(2) with intercept and four conditioning
##regressors in the mean, and a log-ARCH(3) with log(xregs^2) as
##regressors in the log-variance:
gum01 <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs, arch=1:3,</pre>
  vxreg=log(xregs^2))
##GETS model selection of the mean:
meanmod01 <- getsm(gum01)</pre>
##GETS model selection of the log-variance:
varmod01 <- getsv(gum01)</pre>
##GETS model selection of the mean with the mean intercept
##excluded from removal:
meanmod02 <- getsm(gum01, keep=1)</pre>
##GETS model selection of the mean with non-default
#serial-correlation diagnostics settings:
```

gmm

```
meanmod03 <- getsm(gum01, ar.LjungB=list(pval=0.05))
##GETS model selection of the mean with very liberal
##(20 percent) significance levels:
meanmod04 <- getsm(gum01, t.pval=0.2)
##GETS model selection of log-variance with all the
##log-ARCH terms excluded from removal:
varmod03 <- getsv(gum01, keep=2:4)</pre>
```

gmm

Generalised Method of Moment (GMM) estimation of linear models

Description

Generalised Method of Moment (GMM) estimation of linear models with either ordinary (homoscedastic error) or robust (heteroscedastic error) coefficient-covariance, see Hayashi (2000) chapter 3.

Usage

```
gmm(y, x, z, tol = .Machine$double.eps,
weighting.matrix = c("efficient", "2sls", "identity"),
vcov.type = c("ordinary", "robust"))
```

Arguments

У	numeric vector, the regressand	
x	numeric matrix, the regressors	
z	numeric matrix, the instruments	
tol	numeric value. The tolerance for detecting linear dependencies in the columns of the matrices that are inverted, see the solve function	
weighting.matrix		
	a character that determines the weighting matrix to bee used, see "details"	
vcov.type	a character that determines the expression for the coefficient-covariance, see "details"	

Details

weighting.matrix = "identity" corresponds to the Instrumental Variables (IV) estimator, weighting.matrix = "2sls" corresponds to the 2 Stage Least Squares (2SLS) estimator, whereas weighting.matrix = "efficient" corresponds to the efficient GMM estimator, see chapter 3 in Hayashi(2000).

vcov.type = "ordinary" returns the ordinary expression for the coefficient-covariance, which is valid under conditionally homoscedastic errors. vcov.type = "robust" returns an expression that is also valid under conditional heteroscedasticity, see chapter 3 in Hayashi (2000).

59

Value

A list with, amongst other, the following items:

n	number of observations
k	number of regressors
df	degrees of freedom, i.e. n-k
coefficients	a vector with the coefficient estimates
fit	a vector with the fitted values
residuals	a vector with the residuals
residuals2	a vector with the squared residuals
rss	the residual sum of squares
sigma2	the regression variance
vcov	the coefficient-covariance matrix
logl	the normal log-likelihood

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

References

F. Hayashi (2000): 'Econometrics'. Princeton: Princeton University Press

See Also

solve, ols

Examples

```
##generate data where regressor is correlated with error:
set.seed(123) #for reproducibility
n <- 100
z1 <- rnorm(n) #instrument
eps <- rnorm(n) #ensures cor(z,eps)=0
x1 <- 0.5*z1 + 0.5*eps #ensures cor(x,eps) is strong
y <- 0.4 + 0.8*x1 + eps #the dgp
cor(x1, eps) #check correlatedness of regressor
cor(z1, eps) #check uncorrelatedness of instrument
x <- cbind(1,x1) #regressor matrix
z <- cbind(1,z1) #matrix with instruments
##efficient gmm estimation:
mymod <- gmm(y, x, z)
mymod$coefficients
##ols (for comparison):
```

hpdata

```
mymod <- ols(y,x)
mymod$coefficients</pre>
```

hpdata

Hoover and Perez (1999) data

Description

Data used by Hoover and Perez (1999) in their evaluation of General-to-Specific (GETS) modelling. A detailed description of the data is found in their Table 1 (page 172). The data are quarterly, comprise 20 variables (the first variable is the quarterly index) and runs from 1959:1 to 1995:1. This corresponds to 145 observations. The original source of the data is Citibank.

Usage

data(hpdata)

Format

Date a factor that contains the (quarterly) dates of the observations

DCOINC index of four coincident indicators

GD GNP price deflator

GGEQ government purchases of goods and services

GGFEQ federal purchases of goods and services

GGFR federal government receipts

GNPQ GNP

GYDQ disposable personal income

GPIQ gross private domestic investment

FMRRA total member bank reserves

FMBASE monetary base (feredal reserve bank of St. Louis)

FM1DQ M1

 $\mathsf{FM2DQ}\ M2$

FSDJ Dow Jones stock price

FYAAAC Moody's AAA corporate bond yield

LHC labour force (16 years+, civilian)

LHUR unemployment rate

MU unfilled orders (manufacturing, all industries)

MO new orders (manufacturing, all industries)

GCQ personal consumption expenditure

Details

The data have been used for comparison and illustration of GETS model selection in several studies of the GETS methodology, including Hendry and Krolzig (1999, 2005), Doornik (2009) and Sucarrat and Escribano (2012).

Source

Retrieved 14 October 2014 from: https://www.csus.edu/indiv/p/perezs/data/data.htm

References

David F. Hendry and Hans-Martin Krolzig (1999): 'Improving on 'Data mining reconsidered' by K.D. Hoover and S.J Perez', Econometrics Journal, Vol. 2, pp. 202-219.

David F. Hendry and Hans-Martin Krolzig (2005): 'The properties of automatic Gets modelling', Economic Journal 115, C32-C61.

Jurgen Doornik (2009): 'Autometrics', in Jennifer L. Castle and Neil Shephard (eds), 'The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry', Oxford University Press, Oxford, pp. 88-121.

Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44.

Examples

```
##load Hoover and Perez (1999) data:
data(hpdata)
```

##make quarterly data-matrix of zoo type: newhpdata <- zooreg(hpdata[,-1], start=c(1959,1), frequency=4)</pre>

##plot data:
plot(newhpdata)

##transform data to log-differences in percent: dloghpdata <- diff(log(newhpdata))*100</pre>

```
##plot log-differenced data:
plot(dloghpdata)
```

iim

Make Indicator Matrices (Impulses, Steps, Trends)

Description

Auxiliary functions to make, respectively, matrices of impulse indicators (iim), step indicators (sim) and trend indicators (tim)

Usage

```
##make matrix of impulse indicators:
iim(x, which.ones = NULL)
##make matrix of step indicators:
sim(x, which.ones = NULL)
##make matrix of trend indicators:
tim(x, which.ones = NULL, log.trend = FALSE)
```

Arguments

х	either an integer (the length of the series in question) or a series (a vector or matrix) from which to use the time-series index to make indicators of
which.ones	the locations of the impulses. If NULL (the default), then all impulses are re- turned
log.trend	logical. If TRUE, then the natural log is applied on the trends

Details

If x is a series or vector of observations, then the index of x will be used for the labelling of the impulses, and in the returned zoo object.

Note: For sim and tim the first indicator is removed, since it is exactly colinear with the others.

Value

A zoo matrix containing the impulses

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

See Also

isat, zoo

Examples

```
##generate series:
y <- rnorm(40)</pre>
```

##make matrix of impulse indicators: mIIM <- iim(40)</pre>

##make matrix of step-indicators, but only every third: mSIM <- sim(y, which.ones=seq(1,40,3))</pre>

```
##give quarterly time-series attributes to y-series:
y <- zooreg(y, frequency=4, end=c(2015,4))</pre>
```

```
##make matrix of trend-indicators with quarterly labels:
mTIM <- tim(y)</pre>
```

infldata

Quarterly Norwegian year-on-year CPI inflation

Description

Quarterly Norwegian year-on-year CPI inflation from 1989(1) to 2015(4).

Usage

data("infldata")

Format

A data frame with 108 observations on the following 5 variables:

date a factor containing the dates

infl year-on-year inflation

q2dum a dummy variable equal to 1 in quarter 2 and 0 otherwise

q3dum a dummy variable equal to 1 in quarter 3 and 0 otherwise

q4dum a dummy variable equal to 1 in quarter 4 and 0 otherwise

Source

Statistics Norway (SSB): https://www.ssb.no/. The raw data comprise monthly CPI data obtained via https://www.ssb.no/statbank/table/08183.

References

Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44

Examples

```
data(infldata)
infldata <- zooreg(infldata[,-1], frequency=4, start=c(1989,1))
plot(infldata[,"infl"])</pre>
```

64

infocrit

Description

Given a log-likelihood, the number of observations and the number of estimated parameters, the average value of a chosen information criterion is computed. This facilitates comparison of models that are estimated with a different number of observations, e.g. due to different lags.

Usage

```
infocrit(x, method=c("sc","aic","aicc","hq"))
```

```
info.criterion(log1, n=NULL, k=NULL, method=c("sc","aic","aicc","hq"))
```

Arguments

X	a list that contains, at least, three items: logl (a numeric, the log-likelihood), k (a numeric, usually the number of estimated parameters) and n (a numeric, the number of observations)
method	character, either "sc" (default), "aic", "aicc" or "hq"
logl	numeric, the value of the log-likelihood
n	integer, number of observations
k	integer, number of parameters

Details

Contrary to AIC and BIC, info.criterion computes the average criterion value (i.e. division by the number of observations). This facilitates comparison of models that are estimated with a different number of observations, e.g. due to different lags.

Value

infocrit: a numeric (i.e. the value of the chosen information criterion)

info.criterion: a list with elements

method	type of information criterion
n	number of observations
k	number of parameters
value	the value on the information criterion

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

References

66

H. Akaike (1974): 'A new look at the statistical model identification'. IEEE Transactions on Automatic Control 19, pp. 716-723

E. Hannan and B. Quinn (1979): 'The determination of the order of an autoregression'. Journal of the Royal Statistical Society B 41, pp. 190-195

C.M. Hurvich and C.-L. Tsai (1989): 'Regression and Time Series Model Selection in Small Samples'. Biometrika 76, pp. 297-307

Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44

G. Schwarz (1978): 'Estimating the dimension of a model'. The Annals of Statistics 6, pp. 461-464

isat

Indicator Saturation

Description

The isat function undertakes multi-path indicator saturation to detect outliers and mean-shifts using impulses (IIS), step-shifts (SIS), or trend-indicators (TIS). Indicators are partitioned into blocks and selected over at a chosen level of significance (t.pval) using the getsm function.

Usage

isat(y, ...)

```
##default S3 method:
## Default S3 method:
isat(y, mc=TRUE, ar=NULL, ewma=NULL, mxreg=NULL, iis=FALSE, sis=TRUE,
  tis=FALSE, uis=FALSE, blocks=NULL, ratio.threshold=0.8, max.block.size=30,
  t.pval=0.001, wald.pval=t.pval,
  vcov.type= c("ordinary", "white", "newey-west"), do.pet=FALSE, ar.LjungB=NULL,
 arch.LjungB=NULL, normality.JarqueB=NULL, info.method=c("sc","aic","hq"),
  user.diagnostics=NULL, user.estimator=NULL, gof.function=NULL,
  gof.method = c("min", "max"), include.gum=NULL, include.1cut=FALSE,
  include.empty=FALSE, max.paths=NULL, parallel.options=NULL, turbo=FALSE,
  tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, plot=NULL,
  alarm=FALSE, ...)
##S3 method for objects of class 'lm':
## S3 method for class 'lm'
isat(y, ar=NULL, ewma=NULL, iis=FALSE, sis=TRUE,
  tis=FALSE, uis=FALSE, blocks=NULL, ratio.threshold=0.8, max.block.size=30,
  t.pval=0.001, wald.pval=t.pval,
  vcov.type= c("ordinary", "white", "newey-west"), do.pet=FALSE, ar.LjungB=NULL,
  arch.LjungB=NULL, normality.JarqueB=NULL, info.method=c("sc","aic","hq"),
```

```
user.diagnostics=NULL, user.estimator=NULL, gof.function=NULL,
  gof.method = c("min", "max"), include.gum=NULL, include.1cut=FALSE,
  include.empty=FALSE, max.paths=NULL, parallel.options=NULL, turbo=FALSE,
  tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, plot=NULL,
 alarm=FALSE, ...)
##S3 method for objects of class 'arx':
## S3 method for class 'arx'
isat(y, mc=TRUE, ar=NULL, ewma=NULL, iis=FALSE, sis=TRUE,
  tis=FALSE, uis=FALSE, blocks=NULL, ratio.threshold=0.8, max.block.size=30,
  t.pval=0.001, wald.pval=t.pval,
 vcov.type= c("ordinary","white","newey-west"), do.pet=FALSE, ar.LjungB=NULL,
  arch.LjungB=NULL, normality.JarqueB=NULL, info.method=c("sc","aic","hq"),
  user.diagnostics=NULL, user.estimator=NULL, gof.function=NULL,
  gof.method = c("min", "max"), include.gum=NULL, include.1cut=FALSE,
  include.empty=FALSE, max.paths=NULL, parallel.options=NULL, turbo=FALSE,
  tol=1e-07, LAPACK=FALSE, max.regs=NULL, print.searchinfo=TRUE, plot=NULL,
  alarm=FALSE, ...)
```

Arguments

У	numeric vector, time-series, zoo, or object of class lm or arx. Missing values in the beginning and at the end of the series is allowed, as they are removed with the na.trim command	
mc	logical. TRUE (default) includes an intercept in the mean specification, whereas FALSE does not	
ar	integer vector, say, $c(2,4)$ or 1:4. The AR-lags to include in the mean specification	
ewma	either NULL (default) or a list with arguments sent to the eqwma function. In the latter case a lagged moving average of y is included as a regressor	
mxreg	numeric vector or matrix, say, a zoo object, of conditioning variables. Note that missing values in the beginning or at the end of the series is allowed, as they are removed with the na.trim command. Note also that, if both y and mxreg are zoo objects, then their samples are chosen to match	
iis	logical. If TRUE, impulse indicator saturation is performed.	
sis	logical. If TRUE, step indicator saturation is performed.	
tis	logical. If TRUE, trend indicator saturation is performed.	
uis	a matrix of regressors, or a list of matrices.	
blocks	NULL (default), an integer (the number of blocks) or a user-specified list that indicates how blocks should be put together. If NULL, then the number of blocks is determined automatically	
ratio.threshold		
	Minimum ratio of variables in each block to total observations to determine the block size, default=0.8. Only relevant if blocks = NULL	

67

- max.block.size Maximum size of block of variables to be selected over, default=30. Block size used is the maximum of given by either the ratio.threshold and max.block.size
- t.pval numeric value between 0 and 1. The significance level used for the two-sided regressor significance t-tests
- wald.pval numeric value between 0 and 1. The significance level used for the Parsimonious Encompassing Tests (PETs)
- vcov.type the type of variance-covariance matrix used. If NULL (default), then the type used is that of the 'arx' object. This can be overridden by either "ordinary" (i.e. the ordinary variance-covariance matrix) or "white" (i.e. the White (1980) heteroscedasticity robust variance-covariance matrix)
- do.pet logical. If TRUE, then a Parsimonious Encompassing Test (PET) against the GUM is undertaken at each regressor removal for the joint significance of all the deleted regressors along the current path. If FALSE (default), then a PET is not undertaken at each regressor removal. By default, the numeric value is the same as that of t.pval
- ar.LjungB a two-item list with names lag and pval, or NULL (default). In the former case lag contains the order of the Ljung and Box (1979) test for serial correlation in the standardised residuals, and pval contains the significance level. If lag=NULL (default), then the order used is that of the estimated 'arx' object. If ar.Ljungb=NULL, then the standardised residuals are not checked for serial correlation
- arch.LjungB a two-item list with names lag and pval, or NULL (default). In the former case, lag contains the order of the Ljung and Box (1979) test for serial correlation in the squared standardised residuals, and pval contains the significance level. If lag=NULL (default), then the order used is that of the estimated 'arx' object. If arch.Ljungb=NULL, then the standardised residuals are not checked for ARCH
- normality.JarqueB

NULL (the default) or a value between 0 and 1. In the latter case, a test for nonnormality is conducted using a significance level equal to normality. JarqueB. If NULL, then no test for non-normality is conducted

info.method character string, "sc" (default), "aic" or "hq", which determines the information criterion to be used when selecting among terminal models. The abbreviations are short for the Schwarz or Bayesian information criterion (sc), the Akaike information criterion (aic) and the Hannan-Quinn (hq) information criterion

user.diagnostics NULL or a list with two entries, name and pval, see the user.fun argument in diagnostics

- user.estimator NULL or a list with at least one entry, name, see the user.estimator argument in getsFun
- gof.function NULL or a list with at least one entry, name, see the user.estimator argument in getsFun
- gof.method NULL or a character that determines whether the best Goodness-of-Fit is a minimum or maximum

68

include.gum ignored (temporarily deprecated)

include.1cut	logical. If TRUE, then the 1-cut model is included among the terminal models, if it passes the diagnostic tests, even if it is not equal to one of the terminals. If FALSE (default), then the 1-cut model is not included (unless it is one of the terminals)
include.empty	logical. If TRUE, then an empty model is included among the terminal models, if it passes the diagnostic tests, even if it is not equal to one of the terminals. If FALSE (default), then the empty model is not included (unless it is one of the terminals)
<pre>max.paths parallel.optior</pre>	NULL (default) or an integer indicating the maximum number of paths to search as
	NULL or an integer, i.e. the number of cores/threads to be used for parallel com- puting (implemented w/makeCluster and parLapply)
turbo	logical. If TRUE, then (parts of) paths are not searched twice (or more) unneces- sarily, thus yielding a significant potential for speed-gain. However, the check- ing of whether the search has arrived at a point it has already been comes with a slight computational overhead. Accordingly, if turbo=TRUE, then the total search time might in fact be higher than if turbo=FALSE. This happens if es- timation is very fast, say, less than quarter of a second. Hence the default is FALSE
tol	numeric value (default = 1e-07). The tolerance for detecting linear dependencies in the columns of the regressors (see qr function). Only used if LAPACK is FALSE (default)
LAPACK	logical. If TRUE, then use LAPACK. If FALSE (default), then use LINPACK (see qr function)
max.regs	integer. The maximum number of regressions along a deletion path. It is not recommended that this is altered
print.searchinf	õ
	logical. If TRUE (default), then a print is returned whenever simiplification along a new path is started, and whenever regressors are dropped due to exact multi- colinearity
plot	NULL or logical. If TRUE, then the fitted values and the residuals of the final model are plotted after model selection. If NULL (default), then the value set by options determines whether a plot is produced or not.
alarm	logical. If TRUE, then a sound is emitted (in order to alert the user) when the model selection ends
	further arguments passed to or from other methods

Details

Multi-path indicator saturation using impulses (IIS), step-shifts (SIS), or trend-indicators (TIS). Indicators are partitioned into sequential blocks (as of beta version 0.7) where the block intervals are defined by the ratio of variables to observations in each block and a specified maximum block size. Indicators are selected over using the getsm function. Retained indicators in each block are combined and re-selected over. Fixed covariates that are not selected over can be included in the regression model either in the mxreg matrix, or for auto-regressive terms through the ar specification. See Hendry, Johansen and Santos (2007) and Castle, Doornik, Hendry, and Pretis (2015)

Value

A list of class 'isat'

Author(s)

Jonas Kurle, https://www.jonaskurle.com/
Felix Pretis, https://felixpretis.climateeconometrics.org/
James Reade, https://sites.google.com/site/jjamesreade/
Moritz Schwarz, https://www.inet.ox.ac.uk/people/moritz-schwarz
Genaro Sucarrat https://www.sucarrat.net/

References

Castle, Jennifer, L., Doornik, Jurgen, A., Hendry, David F., and Pretis, Felix (2015): 'Detecting Location Shifts during Model Selection by Step-Indicator Saturation', Econometrics, vol 3:2, 240-264.

Hendry, David, F., Johansen, Soren, and Santos, Carlos (2007): 'Automatic selection of indicators in a fully saturated regression'. Computational Statistics, vol 23:1, pp.317-335.

Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44

See Also

Extraction functions for 'isat' objects: coef.isat, fitted.isat, paths, plot.isat, print.isat, residuals.isat, summary.isat, terminals, vcov.isat

Related functions: arx, eqwma, leqwma, zoo, getsFun

Examples

```
##SIS using the Nile data
data(Nile)
isat(Nile, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005)
##SIS using the Nile data in an autoregressive model
#isat(Nile, ar=1:2, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005)
##HP Data
##load Hoover and Perez (1999) data:
#data(hpdata)
##make quarterly data-matrix of zoo type
##(GCQ = personal consumption expenditure):
#y <- zooreg(hpdata$GCQ, 1959, frequency=4)
### Sistem of the disconting of the
```

##transform data to log-differences:

isatdates

```
#dlogy <- diff(log(y))</pre>
##run isat with step impulse saturation on four
##lags and a constant 1 percent significance level:
#isat(dlogy, ar=1:4, sis=TRUE, t.pval =0.01)
##Example with additional covariates entering through mxreg:
##(GYDQ = disposable personal income):
#x <- zooreg(hpdata$GYDQ, 1959, frequency=4)</pre>
##transform data to log-differences:
#dlogx <- diff(log(x))</pre>
##run isat with step impulse saturation on four
##lags and a constant 1 percent significance level:
```

```
#isat(dlogy, mxreg=dlogx, ar=1:4, sis=TRUE, t.pval =0.01)
```

```
isatdates
```

Extracting Indicator Saturation Breakdates

Description

Takes an isat object and extracts the break dates together with their estimated coefficients.

Usage

isatdates(x)

Arguments

an isat object Х

Details

The function extracts the breakdates determined by isat for iis, sis, and tis, together with their estimated coefficients and standard errors.

Value

Returns a list of three elements (one for iis, sis, and tis). Each element lists the name of the break variable, the time index of the break (labelled 'date'), the index of the break date, the estimated coefficient, the standard error of the estimated coefficient, as well as the corresponding t-statistic and p-value.

Author(s)

```
Felix Pretis, https://felixpretis.climateeconometrics.org/
```

References

Pretis, F., Reade, J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3).

See Also

isat

Examples

```
###Break date extraction of the Nile data
nile <- as.zoo(Nile)
isat.nile <- isat(nile, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005)
isatdates(isat.nile)
```

```
isatloop
```

Repeated Impulse Indicator Saturation

Description

Runs isat repeatedly at pre-specified significance levels to yield multiple iterations used in outlierscaletest.

Usage

```
isatloop(num=c(seq(from=20, to=1, by=-1)), t.pval.spec = FALSE,
print=FALSE, y, ar=NULL, iis=TRUE, sis=FALSE, ...)
```

Arguments

num	numeric, target expected number of outliers under the null hypothesis, or target proportion of outliers if t.pval.spec==TRUE
t.pval.spec	logical, if TRUE, then num specifies proportion rather than number of targeted outliers
print	logical, if TRUE, then iterations are printed
У	numeric vector, time-series or zoo object. Missing values in the beginning and at the end of the series is allowed, as they are removed with the na.trim command
ar	integer vector, say, c(2,4) or 1:4. The AR-lags to include in the mean specifica- tion
iis	logical, whether to use iis
sis	logical, whether to use sis, default is FALSE
	any argument from isat can also be used in isatloop
isattest

Details

The function repeatedly runs isat detecting outliers in a model of y at different chosen target levels of significance speciefied in num. The output of this function is used as the input for the outlierscaletest function. All additional arguments from isat can be passed to isatloop.

Value

Returns a list of two items. The first item is the number of observations. The second item is a dataframe containing the expected and observed proportion (and number of outliers) for each specified significance level of selection.

Author(s)

Felix Pretis, https://felixpretis.climateeconometrics.org/

References

Jiao, X. & Pretis, F. (2019). Testing the Presence of Outliers in Regression Models. Discussion Paper.

Pretis, F., Reade, J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3).

See Also

isat, outlierscaletest

Examples

```
###Repeated isat models using the Nile dataset
### where p-values are chosen such that the expected number of outliers under the null
### corresponds to 1, 2, 3, 4 and 5.
nile <- as.zoo(Nile)
isat.nile.loop <- isatloop(y=nile, iis=TRUE, num=c(1,2, 3, 4, 5))</pre>
```

isattest

Indicator Saturation Test

Description

Takes an 'isat' object returned by the isat function as input and returns the results of a hypothesis test on the time-varying intercept or long-run equilibrium against a specified null-hypothesis for a chosen level of significance - see Pretis (2015).

Usage

```
isattest(x, hnull=0, lr=FALSE, ci.pval=0.99, plot=NULL, plot.turn=FALSE,
  conscorr=FALSE, effcorr=FALSE, mcor = 1, biascorr=FALSE, mxfull = NULL,
  mxbreak=NULL)
```

Arguments

х	a 'gets' object obtained with the isat function
hnull	numeric. the null-hypothesis value to be tested against.
lr	logical. If TRUE and 'x' contains autoregressive elements, then isattest tests on the long-run equilibrium path. See Pretis (2015).
ci.pval	numeric between 0 and 1. Default is 0.99, the level of significance for the con- fidence interval of the test against 'hnull'.
plot	logical. If TRUE, then a plot showing the coefficient path and bias relative to 'hnull' is shown.
plot.turn	logical. If TRUE, then the plot output adds the time of the breaks to the plot showing the bias relative to 'hnull'.
biascorr	logical. If TRUE, then the coefficient path is bias-corrected using biascorr. This is only valid for the non-dynamic test without additional covariates.
conscorr	logical. If TRUE then the Johansen and Nielsen (2016) impulse-indicator con- sistency correction is applied to estimated residual variance.
effcorr	logical. If TRUE then the Johansen and Nielsen (2016) m-step efficiency correction is applied to estimated standard errors of 'fixed' regressors.
mcor	integer. The m-step efficiency correction factor, where m=mcor.
mxfull	string. The name of the full-sample variable when constructing the coefficient path of user-specified break variables.
mxbreak	string. The name of the break variables used to construct the coefficient path of user-specified break variables.

Details

The function tests the coefficient path (or long-run equilibrium path) against a specified null hypothesis at a chosen level of significance. If conducted on an isat model of a forecast error or relative forecast differential, then this corresponds to the test of time-varying predictive accuracy of Pretis (2015). The resulting output plot shows the coefficient path in the top panel (where 'hnull' is plotted as dotted lines), with the bias (significant difference relative to 'hnull') in the lower panel. If mxfull and mxbreak are specified, then the function tests on the coefficient path of the user-specified variable, where mxfull denotes the ful-sample variable name, to which the mxbreak variables are added. To correct for the under-estimation of the residual variance, the argument conscorr implements the Johansen and Nielsen (2016) consistency correction, and effcorr adds the efficiency correction for standard errors on fixed regressors which are not selected over.

isattest

Value

A Tx4 matrix (with T = number of observations) where the first two columns denote the confidence interval of the coefficient path (or the long-run equilibrium path if 'lr=TRUE'). The third and fourth column denote the bias of the coefficient path relative to the chosen null-hypothesis, where 'bias.high' denotes the bias when the series tested is above the hypothesized value, and 'bias.low' denotes the bias when the series tested is significantly below the hypothesized value.

Author(s)

```
Felix Pretis, https://felixpretis.climateeconometrics.org/
```

References

Johansen, S., & Nielsen, B. (2016): 'Asymptotic theory of outlier detection algorithms for linear time series regression models.' Scandinavian Journal of Statistics, 43(2), 321-348.

Pretis, F. (2015): 'Testing for time-varying predictive accuracy using bias-corrected indicator saturation'. Oxford Department of Economics Discussion Paper.

Hendry, David, F., Johansen, Soren, and Santos, Carlos (2007): 'Automatic selection of indicators in a fully saturated regression'. Computational Statistics, vol 23:1, pp.317-335.

See Also

isat, coef.gets, plot.gets, biascorr, isatvar

Examples

```
##Using artificial data:
#set.seed(123)
#d <- matrix(0,100,1)
#d[35:55] <- 1
#e <- rnorm(100, 0, 1)
#y <- d*2 +e
#plot(y, type="1")
##Static Test against hnull=0 using bias-correction:
#ys <- isat(y, sis=TRUE, iis=FALSE, tis=FALSE, t.pval=0.01)
#isattest(ys, hnull=0, lr=FALSE, ci.pval = 0.99, plot.turn = FALSE, biascorr=TRUE)
##Dynamic Test of the long-run equilibrium against hnull=2 with breakpoints
##labelled in the plot:
#ys <- isat(y, sis=TRUE, iis=FALSE, tis=FALSE, t.pval=0.01, ar=1:2)</pre>
```

isatvar

Description

Takes an 'isat' object returned by the isat function as input and returns the coefficient path of the constant (and long-run equilibrium if 'lr' is specified) together with its approximate variance and standard errors. If mxfull and mxbreak are specified, then the function returns the coefficient path of the user-specified variable.

Usage

```
isatvar(x, lr=FALSE, conscorr=FALSE, effcorr=FALSE, mcor = 1,
mxfull = NULL, mxbreak=NULL)
```

Arguments

х	a 'gets' object obtained with the isat function
lr	logical. If TRUE and 'x' contains autoregressive elements, then isatvar also returns the long-run equilibrium coefficient path with its variance and standard deviation. See Pretis (2015).
conscorr	logical. If TRUE then the Johansen and Nielsen (2016) impulse-indicator con- sistency correction is applied to estimated residual variance.
effcorr	logical. If TRUE then the Johansen and Nielsen (2016) m-step efficiency correction is applied to estimated standard errors of 'fixed' regressors.
mcor	integer. The m-step efficiency correction factor, where m=mcor.
mxfull	string. The name of the full-sample variable when constructing the coefficient path of user-specified break variables.
mxbreak	string. The name of the break variables used to construct the coefficient path of user-specified break variables.

Details

The function computes the approximate variance and standard errors of the intercept term with structural breaks determined by isat. This permits hypothesis testing and plotting of approximate confidence intervals for the intercept in the presence of structural breaks. For dynamic autoregressive models in isat the lr argument returns the time-varying long-run equilibrium together with its approximate variance and standard errors. If mxfull and mxbreak are specified, then the function returns the coefficient path of the user-specified variable, where mxfull denotes the ful-sample variable name, to which the mxbreak variables are added. To correct for the under-estimation of the residual variance, the argument conscorr implements the Johansen and Nielsen (2016) consistency correction, and effcorr adds the efficiency correction for standard errors on fixed regressors which are not selected over.

isatvar

Value

If lr=FALSE: A Tx4 matrix (with T = number of observations) where the first column denotes the coefficient path relative to the full sample coefficient, the second column the coefficient path of the intercept, the third the approximate variance of the coefficient path, and the fourth column the approximate standard errors of the coefficient path. If lr=TRUE: A Tx7 matrix where the first four columns are identical to the lr=FALSE case, and the additional columns denote the long-run equilibrium coefficient path.

Author(s)

```
Felix Pretis, https://felixpretis.climateeconometrics.org/
James Reade, https://sites.google.com/site/jjamesreade/
```

References

Pretis, F. (2015): 'Testing for time-varying predictive accuracy using bias-corrected indicator saturation'. Oxford Department of Economics ???orking Paper.

Johansen, S., & Nielsen, B. (2016): 'Asymptotic theory of outlier detection algorithms for linear time series regression models.' Scandinavian Journal of Statistics, 43(2), 321-348.

Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44

See Also

isat, coef.gets, plot.gets, biascorr, isattest

Examples

```
##Variance in presence of a break
#nile <- as.zoo(Nile)</pre>
#isat.nile <- isat(nile, sis=TRUE, iis=FALSE, plot=FALSE, t.pval=0.005)</pre>
#var <- isatvar(isat.nile)</pre>
#plot(nile)
#lines(isat.nile$mean.fit, col="red")
#lines(isat.nile$mean.fit + 2*var$const.se, col="blue", lty=3)
#lines(isat.nile$mean.fit - 2*var$const.se, col="blue", lty=3)
##Variance when there is no break
#set.seed(1)
#x <- as.zoo(rnorm(100, 0, 1))</pre>
#isat.x <- isat(x, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005)</pre>
#var.x <- isatvar(isat.x)</pre>
#plot(x)
#lines(isat.x$mean.fit, col="red")
#lines(isat.x$mean.fit + 2*var.x[,2], col="blue", lty=3)
#lines(isat.x$mean.fit - 2*var.x[,2], col="blue", lty=3)
```

##Variance of the long-run equilibrium coefficient path

```
#nile <- as.zoo(Nile)
#isat.nile <- isat(nile, sis=TRUE, iis=FALSE, plot=TRUE, t.pval=0.005, ar=1:2)
#var <- isatvar(isat.nile, lr=TRUE)</pre>
```

isatvarcorrect	Consistency and Efficiency Correction for Impulse Indicator Satura-
	tion

Description

Takes an isat object and corrects the estimates of the error variance and the estimated standard errors of 'forced' regressors.

Usage

```
isatvarcorrect(x, mcor=1)
```

Arguments

х	an isat object
mcor	integer, number of iterations in the correction. Default = 1 .

Details

Impulse indicator saturation results in an under-estimation of the error variance as well as the variance of regressors not selected over. The magnitude of the inconsistency increases with the p-value of selection (t.pval). The function takes an isat object and applies the impulse indicator consistency (isvarcor) and efficiency correction (isvareffcor) of the estimated error variance and the estimated variance of regressors not selected over. See Johansen and Nielsen (2016a) and (2016b).

Value

Returns an *isat* object in which the estimated standard errors, t-statistics, p-values, standard error of the regression, and log-likelihood are consistency and efficiency corrected when using impulse indicator saturation (*iis=TRUE*).

Author(s)

Felix Pretis, https://felixpretis.climateeconometrics.org/

isvarcor

References

Johansen, S., & Nielsen, B. (2016a). Asymptotic theory of outlier detection algorithms for linear time series regression models. Scandinavian Journal of Statistics, 43(2), 321-348.

Johansen, S., & Nielsen, B. (2016b). Rejoinder: Asymptotic Theory of Outlier Detection Algorithms for Linear. Scandinavian Journal of Statistics, 43(2), 374-381.

Pretis, F., Reade, J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3).

See Also

isat, isvarcor, isvareffcor

Examples

```
###Consistency and Efficiency Correction of Impulse Indicator Estimates
nile <- as.zoo(Nile)
isat.nile <- isat(nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.1)
isat.nile.corrected <- isatvarcorrect(isat.nile)</pre>
```

isat.nile\$sigma2
isat.nile.corrected\$sigma2

isvarcor

IIS Consistency Correction

Description

Consistency correction for estimate of residual variance when using impulse indicator saturation.

Usage

```
isvarcor(t.pval, sigma)
```

Arguments

t.pval	numeric value. the p-value of selection in the impulse indicator saturation model.
sigma	numeric value. The estimated standard deviation of the residuals from the impulse indicator saturation model.

Details

The Johansen and Nielsen (2016) impulse-indicator consistency correction for the estimated residual standard deviation.

Value

a data frame containing the corrected standard deviation \$sigma.cor and the correction factor used \$corxi

Author(s)

Felix Pretis, https://felixpretis.climateeconometrics.org/

References

Johansen, S., & Nielsen, B. (2016): 'Asymptotic theory of outlier detection algorithms for linear time series regression models.' Scandinavian Journal of Statistics, 43(2), 321-348.

Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44

See Also

isatvar

Examples

isvarcor(t.pval=0.05, sigma=2)

isvareffcor IIS Efficiency Correction

Description

Efficiency correction for the estimates of coefficient standard errors on fixed regressors.

Usage

isvareffcor(t.pval, se, m=1)

Arguments

t.pval	numeric value. the p-value of selection in the impulse indicator saturation model.
se	numeric value or vector. The estimated standard errors of the coefficients on fixed regressors in impulse indicator saturation model.
m	integer. The m-step correction factor.

Details

The Johansen and Nielsen (2016) impulse-indicator efficiency correction for the estimated standard errors on fixed regressors in impulse indicator models.

larch

Value

a data frame containing the corrected standard deviation se.cor and the correction factor used eta.m

Author(s)

Felix Pretis, https://felixpretis.climateeconometrics.org/

References

Johansen, S., & Nielsen, B. (2016): 'Asymptotic theory of outlier detection algorithms for linear time series regression models.' Scandinavian Journal of Statistics, 43(2), 321-348.

Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44

See Also

isatvar

Examples

isvareffcor(t.pval=0.05, se=2, m=1)

larch

Estimate a heterogeneous log-ARCH-X model

Description

The function larch() estimates a heterogeneous log-ARCH-X model, which is a generalisation of the dynamic log-variance model in Pretis, Reade and Sucarrat (2018). Internally, estimation is undertaken by a call to larchEstfun. The log-variance specification can contain log-ARCH terms, log-HARCH terms, asymmetry terms ('leverage'), the log of volatility proxies made up of past returns and other covariates ('X'), for example Realised Volatility (RV), volume or the range.

Usage

```
larch(e, vc=TRUE, arch = NULL, harch = NULL, asym = NULL, asymind = NULL,
log.ewma = NULL, vxreg = NULL, zero.adj = NULL,
vcov.type = c("robust", "hac"), qstat.options = NULL,
normality.JarqueB = FALSE, tol = 1e-07, singular.ok = TRUE, plot = NULL)
```

Arguments

е	numeric vector, time-series or zoo object. Missing values in the beginning and at the end of the series is allowed, as they are removed with the na.trim command
VC	logical. TRUE includes an intercept in the log-variance specification. Currently, vc cannot be set to any other value than TRUE
arch	either NULL (default) or an integer vector, say, c(1,3) or 2:5. The log-ARCH lags to include in the log-variance specification
harch	either NULL (default) or an integer vector, say, c(5,10). The (log of) heterogeneous ARCH terms (Muller et al. 1997) to include
asym	either NULL (default) or an integer vector, say, c(1) or 1:3. The asymmetry (i.e. 'leverage') terms to include in the log-variance specification
asymind	either NULL (default or an integer vector. The indicator asymmetry terms to include
log.ewma	either NULL (default) or a vector of the lengths of the volatility proxies, see leqwma. The terms serve as (log of) volatility proxies similar to RVs in the HAR-model of Corsi (2009). Here, the log.ewma terms are made up of past e's
vxreg	either NULL (default) or a numeric vector or matrix, say, a zoo object. If both e and vxreg are zoo objects, then their samples are chosen to match
zero.adj	NULL (default) or a strictly positive numeric scalar. If NULL, the zeros in the squared residuals are replaced by the 10 percent quantile of the non-zero squared residuals. If zero.adj is a strictly positive numeric scalar, then this value is used to replace the zeros of the squared e's
vcov.type	character. "robust" (default) or "hac" (partial matching is allowed). If "robust", the robust variance-covariance matrix of the White (1980) type is used. If "hac", the Newey and West (1987) heteroscedasticity and autocorrelation-robust matrix is used
qstat.options	NULL (default) or an integer vector of length two, say, $c(1,1)$. The first value sets the lag-order of the AR diagnostic test of the standardised residuals, whereas the second value sets the lag-order of the ARCH diagnostic test of the standard-ised residuals. If NULL, then the two values of the vector are set automatically
normality.Jarq	ueB
	FALSE (default) or TRUE. If TRUE, then the results of the Jarque and Bera (1980) test for non-normality in the residuals are included in the estimation results
tol	numeric value. The tolerance (the default is $1e-07$) for detecting linear dependencies in the columns of the regressors (see ols and qr). Only used if LAPACK is FALSE (default)
singular.ok	logical. If TRUE (default), the regressors are checked for singularity, and the ones causing it are automatically removed. If FALSE, then the function returns an error
plot	NULL (default) or logical. If TRUE, the fitted values and the residuals are plotted. If NULL, then the value set by options determines whether a plot is produced or not

larch

Details

No details for the moment

Value

A list of class 'larch'

Author(s)

Genaro Sucarrat: https://www.sucarrat.net/

References

G. Ljung and G. Box (1979): 'On a Measure of Lack of Fit in Time Series Models'. Biometrika 66, pp. 265-270

F. Corsi (2009): 'A Simple Approximate Long-Memory Model of Realized Volatility', Journal of Financial Econometrics 7, pp. 174-196

C. Jarque and A. Bera (1980): 'Efficient Tests for Normality, Homoscedasticity and Serial Independence'. Economics Letters 6, pp. 255-259. doi:10.1016/01651765(80)900245

U. Muller, M. Dacorogna, R. Dave, R. Olsen, O. Pictet and J. von Weizsacker (1997): 'Volatilities of different time resolutions - analyzing the dynamics of market components'. Journal of Empirical Finance 4, pp. 213-239

F. Pretis, J. Reade and G. Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. doi:10.18637/jss.v086.i03

H. White (1980): 'A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity', Econometrica 48, pp. 817-838.

W.K. Newey and K.D. West (1987): 'A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix', Econometrica 55, pp. 703-708.

See Also

Methods and extraction functions (mostly S3 methods): coef.larch, ES, fitted.larch, gets.larch, logLik.larch, nobs.larch, plot.larch, predict.larch, print.larch, residuals.larch, summary.larch, VaR, toLatex.larch and vcov.arx

regressorsVariance

Examples

```
##Simulate some data:
set.seed(123)
e <- rnorm(40)
x <- matrix(rnorm(40*2), 40, 2)</pre>
```

##estimate a log-variance specification with a log-ARCH(4)
##structure:

```
larch(e, arch=1:4)
##estimate a log-variance specification with a log-ARCH(4)
##structure, a log-HARCH(5) term and a first-order asymmetry/leverage
##term:
larch(e, arch=1:4, harch=5, asym=1)
##estimate a log-variance specification with a log-ARCH(4)
##structure, an asymmetry/leverage term, a 10-period log(EWMA) as
##volatility proxy, and the log of the squareds of the conditioning
##regressors in the log-variance specification:
larch(e, arch=1:4, asym=1, log.ewma=list(length=10), vxreg=log(x^2))
```

larchEstfun Estimation of a log-variance model

Description

Two-step estimation of a log-variance model: OLS in step 1, bias correction w/residuals in step 2 (see the code for details). The function larchEstfun() is not intended for the average user, but is called by larch and gets.larch.

Usage

```
larchEstfun(loge2, x, e, vcov.type = c("robust", "hac"), tol = 1e-07)
```

Arguments

loge2	numeric vector, the log of the squared errors 'e' (adjusted for zeros on e, if any)
x	numeric matrix, the regressors
е	numeric vector, the errors
vcov.type	character vector, "robust" (default) or "hac". If "robust", then the White (1980) heteroscedasticity-robust variance-covariance matrix is used for inference. If "hac", then the Newey and West (1987) heteroscedasticity and autocorrelation-robust matrix is used
tol	numeric value. The tolerance for detecting linear dependencies in the columns of the regressors in the first step estimation by OLS, see ols. Only used if LAPACK is FALSE

Details

No details for the moment.

Value

A list.

logit

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

References

No references for the moment.

See Also

qr, larch, gets.larch

Examples

##no examples for the moment

logit

Estimation of a logit model

Description

Maximum Likelihood (ML) estimation of a logit model.

Usage

```
logit(y, x, initial.values = NULL, lower = -Inf, upper = Inf,
method = 2, lag.length = NULL, control = list(), eps.tol = .Machine$double.eps,
    solve.tol = .Machine$double.eps )
```

Arguments

У	numeric vector, the binary process
x	numeric matrix, the regressors
initial.values	NULL or a numeric vector with the initial parameter values passed on to the op- timisation routine, nlminb. If NULL, the default, then the values are chosen automatically
lower	numeric vector, either of length 1 or the number of parameters to be estimated, see nlminb
upper	numeric vector, either of length 1 or the number of parameters to be estimated, see nlminb
method	an integer that determines the expression for the coefficient-covariance, see "de- tails"
lag.length	NULL or an integer that determines the lag-length used in the robust coefficient covariance. If lag.length is an integer, then it is ignored unless method = 3
control	a list passed on to the control argument of nlminb

eps.tol	numeric, a small value that ensures the fitted zero-probabilities are not too small when the log-transformation is applied when computing the log-likelihood
solve.tol	numeric value passed on to the tol argument of solve, which is called whenever the coefficient-coariance matrix is computed. The value controls the toleranse for detecting linear dependence between columns when inverting a matrix

Details

No details for the moment.

Value

A list.

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

References

No references for the moment.

See Also

nlminb, solve

Examples

##no examples for the moment

logitx

Estimate an autoregressive logit model with covariates

Description

Estimate a dynamic Autoregressive (AR) logit model with covariates ('X') by maximising the logit likelihood.

Usage

```
logitx(y, intercept = TRUE, ar = NULL, ewma = NULL, xreg = NULL,
    vcov.type = c("ordinary", "robust"), lag.length = NULL,
    initial.values = NULL, lower = -Inf, upper = Inf, control = list(),
    eps.tol = .Machine$double.eps, solve.tol = .Machine$double.eps,
    singular.ok = TRUE, plot = NULL)
```

dlogitx(y, ...)

logitx

Arguments

У	a binary numeric vector, time-series or zoo object. Missing values in the be- ginning and at the end of the series is allowed, as they are removed with the na.trim command
intercept	logical. TRUE, the default, includes an intercept in the logit specification, whereas FALSE does not
ar	either NULL (default) or an integer vector, say, $c(2,4)$ or 1:4. The AR-lags to include in the logit specification. If NULL, then no lags are included
ewma	either NULL (default) or a list with arguments sent to the eqwma function. In the latter case a lagged moving average of y is included as a regressor
xreg	either NULL (default) or a numeric vector or matrix, say, a zoo object, of covari- ates. Note that, if both y and xreg are zoo objects, then their samples are chosen to match
vcov.type	character vector of length 1, either "ordinary" (default) or "robust". Partial matching is allowed. If "ordinary", then the ordinary variance-covariance matrix is used for inference. If "robust", then a robust coefficient-covariance of the Newey and West (1987) type is used
lag.length	NULL or an integer that determines the lag-length used in the robust coefficient covariance. If lag.length is an integer, then it is ignored unless method = 3
initial.values	NULL or a numeric vector with the initial parameter values passed on to the op- timisation routine, nlminb. If NULL, the default, then the values are chosen automatically
lower	numeric vector, either of length 1 or the number of parameters to be estimated, see nlminb
upper	numeric vector, either of length 1 or the number of parameters to be estimated, see nlminb
control	a list passed on to the control argument of nlminb
eps.tol	numeric, a small value that ensures the fitted zero-probabilities are not too small when the log-transformation is applied when computing the log-likelihood
solve.tol	numeric value passed on to the tol argument of solve, which is called whenever the coefficient-coariance matrix is computed. The value controls the toleranse for detecting linear dependence between columns when inverting a matrix
singular.ok	logical. If TRUE (default), then the regressors causing the singularity are dropped (using dropvar) before estimation. If FALSE, singularity returns error
plot	NULL or logical. If TRUE, then a plot is produced. If NULL (default), then the value set by options determines whether a plot is produced or not.
	arguments passed on to logitx

Details

The function estimates a dynamic Autoregressive (AR) logit model with (optionally) covariates ('X') by maximising the logit likelihood. The estimated model is an augmented version of the model considered by Kauppi and Saikkonen (2008). Also, they considered estimation is by maximisation of the probit likelihood. Here, by contrast, estimation is by maximisation of the logit likelihood.

Value

A list of class 'logitx'.

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

References

Heikki Kauppi and Pentti Saikkonen (2008): 'Predicting U.S. Recessions with Dynamic Binary Response Models'. The Review of Economics and Statistics 90, pp. 777-791

Whitney K. Newey and Kenned D. West (1987): 'A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix', Econometrica 55, pp. 703-708

See Also

Methods: coef.logitx, fitted.logitx, gets.logitx, logLik.logitx, plot.logitx, print.logitx, summary.logitx, toLatex.logitx and vcov.logitx

Related functions: logitxSim, logit, nlminb

Examples

```
##simulate from ar(1):
set.seed(123) #for reproducibility
y <- logitxSim(100, ar=0.3)
##estimate ar(1) and store result:
mymod <- logitx(y, ar=1)
##estimate ar(4) and store result:
mymod <- logitx(y, ar=1:4)
##create some more data, estimate new model:
x <- matrix(rnorm(5*100), 100, 5)
mymod <- logitx(y, ar=1:4, xreg=x)</pre>
```

logitxSim

Simulate from a dynamic logit-x model

Description

Simulate from a dynamic Autoregressive (AR) logit model with covariates ('X'). This model is essentially a logit-version of the model of Kauppi and Saikkonen (2008).

logitxSim

Usage

dlogitxSim(n, ...)

Arguments

n	integer, the number of observations to generate
intercept	numeric, the value of the intercept in the logit specification
ar	NULL or a numeric vector with the autoregressive parameters
xreg	NULL or numeric vector with the values of the X-term
verbose	logical. If FALSE, then only the binary process (a vector) is returned. If TRUE, then a matrix with all the simulated information is returned (binary process, probabilities, etc.)
as.zoo	logical. If TRUE, then the returned object - a vector or matrix - will be of class zoo
	arguments passed on to logitxSim

Details

No details, for the moment.

Value

A vector or matrix, depending on whether verbose is FALSE or TRUE, of class zoo, depending on whether as.zoo is TRUE or FALSE

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

References

Heikki Kauppi and Penti Saikkonen (2008): 'Predicting U.S. Recessions with Dynamic Binary Response Models'. The Review of Economic Statistics 90, pp. 777-791

See Also

logitx

Examples

```
##simulate from ar(1):
set.seed(123) #for reproducibility
y <- logitxSim(100, ar=0.3)
##more output (value, probability, logit):</pre>
```

```
set.seed(123) #for reproducibility
y <- logitxSim(100, ar=0.3, verbose=TRUE)</pre>
```

mvrnormsim

Simulate from a Multivariate Normal Distribution

Description

Produces one or more samples from the specified multivariate normal distribution. Used in outlierscaletest.

Usage

```
mvrnormsim(n = 1, mu, Sigma, tol = 1e-6, empirical = FALSE)
```

Arguments

n	the number of samples required.
mu	a vector giving the means of the variables.
Sigma	a positive-definite symmetric matrix specifying the covariance matrix of the variables.
tol	tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma.
empirical	logical. If true, mu and Sigma specify the empirical not population mean and covariance matrix.

Details

Original function mvrnorm developed by Venables, W. N. & Ripley. in package MASS, https://CRAN.R-project.org/package=MASS.

Value

If n = 1 a vector of the same length as mu, otherwise an n by length(mu) matrix with one sample in each row.

Author(s)

Venables, W. N. & Ripley, with modifications by Felix Pretis, https://felixpretis.climateeconometrics.org/

References

Venables, W. N. & Ripley, B. D. (2019): 'MASS: Support Functions and Datasets for Venables and Ripley's MASS'. https://CRAN.R-project.org/package=MASS

Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0

See Also

outlierscaletest

Examples

```
Sigma <- matrix(c(3,2,1,7),2,2)
mvrnormsim(n=2, mu=c(1,2), Sigma)</pre>
```

ols

Description

OLS estimation with the QR decomposition and, for some options, computation of variance-covariance matrices

Usage

```
ols(y, x, untransformed.residuals=NULL, tol=1e-07, LAPACK=FALSE, method=3,
variance.spec=NULL, ...)
```

OLS estimation

Arguments

У	numeric vector, the regressand
х	numeric matrix, the regressors
untransformed.residuals	
	NULL (default) or, when ols is used with method=6, a numeric vector containing the untransformed residuals
tol	numeric value. The tolerance for detecting linear dependencies in the columns of the regressors, see the $.lm.fit$ function
LAPACK	deprecated and ignored
method	an integer, 1 to 6, that determines the estimation method
variance.spec	NULL or a list with items that specifies the log-variance model to be estimated,
	see arx
	further arguments (currently ignored)

Details

method = 1 or method = 2 only returns the OLS coefficient estimates together with the QR- information, the former being slightly faster. method=3 returns, in addition, the ordinary variancecovariance matrix of the OLS estimator. method=4 returns the White (1980) heteroscedasticity robust variance-covariance matrix in addition to the information returned by method=3, whereas method=5 does the same except that the variance-covariance matrix now is that of Newey and West (1987). method=6 undertakes OLS estimation of a log-variance model, see Pretis, Reade and Sucarrat (2018, Section 4). Alternatively, for method 1 to 5, a log-variance model is also estimated if variance.spec is not NULL.

ols

A list with items depending on method

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

References

W. Newey and K. West (1987): 'A Simple Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix', Econometrica 55, pp. 703-708.

F. Pretis, J. Reade and G. Sucarrat (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks', Journal of Statistical Software 86, Issue 3, pp. 1-44, DOI: https://doi.org/10.18637/jss.v086.i03

H. White (1980): 'A Heteroskedasticity-Consistent Covariance Matrix and a Direct Test for Heteroskedasticity', Econometrica 48, pp. 817-838.

See Also

.lm.fit, qr, solve.qr, arx

outlierscaletest Sum and Sup Scaling Outlier Tests

Description

Computes the Sum and Supremum Scaling Tests for the overall presence of outliers based on Jiao and Pretis (2019).

Usage

```
outlierscaletest(x, nsim = 10000)
```

Arguments

Х	list, output of the isatloop function
nsim	integer, number of replications to simulate critical values for the Sup test

Details

The function takes the output of the isatloop function and computes the Scaling Sum and Supremum Tests for the presence of outliers from Jiao and Pretis (2019). The test compares the expected and observed proportion of outliers over the range of different significance levels of selection specified in isatloop. The Sum test compares the sum of deviations against the standard normal distribution, the Sup test compares the supremum of deviations against critical values simulated with nsim replications. The null hypothesis is that the observed proportion of outliers scales with the proportion of outliers under the null of no outliers.

outliertest

Value

Returns a list of two htest objects. The first providing the results of the Sum test on the sum of the deviation of outliers against a standard normal distribution. The second providing the results on the supremum of the deviation of outliers against simulated critical values.

Author(s)

Xiyu Jiao, & Felix Pretis, https://felixpretis.climateeconometrics.org/

References

Jiao, X. & Pretis, F. (2019). Testing the Presence of Outliers in Regression Models. Discussion Paper.

Pretis, F., Reade, J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3).

See Also

isat, isatloop

Examples

```
###Repeated isat models using the Nile dataset
### where p-values are chosen such that the expected number of outliers under the null
### corresponds to 1, 2, ..., 20. Then computing the Outlier Scaling Tests:
```

#nile <- as.zoo(Nile)
#isat.nile.loop <- isatloop(y=nile)
#outlierscaletest(isat.nile.loop)</pre>

outliertest

Jiao and Pretis Outlier Proportion and Count Tests

Description

Tests whether the proportion (or number) of outliers detected using impulse indicator saturation is different from the proportion (or number) of outliers expected under the null hypothesis of no outliers using the Jiao and Pretis (2019) proportion and count outlier tests.

Usage

```
outliertest(x, noutl=NULL, t.pval=NULL, T=NULL,
m=1, infty=FALSE, alternative="two.sided")
```

Arguments

х	an isat object
noutl	integer, number of detected outliers if no isat object is provided i.e. x=NULL
t.pval	numeric, between 0 and 1. Selection p-value used in indicator saturation if no isat object is provided i.e. x=NULL
Т	integer, sample sized used in indicator saturation if no isat object is provided i.e. x=NULL
m	integer, number of iterations in variance computation, default=1
infty	logical, argument used for variance computation
alternative	"two-sided", "less", "greater", alternative hypothesis of outlier test.

Details

The function computes the estimated proportion of outliers (gauge) based on impulse indicator saturation and constructs the proportion and count outlier test statistics from Jiao and Pretis (2019). The null hypothesis is that the proportion (or count) of outliers is not different than the proportion (or count) of outliers detected under the null hypothesis of no outliers. The first test compares the estimated proportion of outliers scaled by its estimated variance against a standard normal distribution. The second test compares the number of outliers against a Poisson distribution. If an isat object is provided in x, then the function automatically extracts the detected impulses and computes the estimated outlier proportion. If no isat object is provided and x=NULL, then the tests can be conducted manually by providing the number of detected outliers (nout1), the sample size (T), and the chosen level of significance used to detect outliers (t.pva1).

Value

Returns a list of two htest objects. The first providing the results of the test on the proportion of outliers against a standard normal distribution. The second providing the results on the number of outliers against the Poisson distribution.

Author(s)

Xiyu Jiao, & Felix Pretis, https://felixpretis.climateeconometrics.org/

References

Jiao, X. & Pretis, F. (2019). Testing the Presence of Outliers in Regression Models. Discussion Paper.

Pretis, F., Reade, J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3).

See Also

isat

paths

Examples

```
###Testing the Presence of Outliers in the Nile Data
nile <- as.zoo(Nile)
isat.nile <- isat(nile, sis=FALSE, iis=TRUE, plot=TRUE, t.pval=0.1)
outliertest(isat.nile)
###Testing the number of outliers when the sample is T=200,
### with 7 detected outliers at t.pval=0.05 if no isat object is provided:
outliertest(x=NULL, noutl=7, t.pval=0.05, T=200)
```

paths

Extraction functions for 'arx', 'gets' and 'isat' objects

Description

Extraction functions for objects of class 'arx', 'gets' and 'isat'

Usage

```
paths(object, ...)
terminals(object, ...)
rsquared(object, adjusted=FALSE, ...)
```

Arguments

object	an object of class 'arx', 'gets' or 'isat'
adjusted	logical. If TRUE the adjusted R-squared is returned
	additional arguments

Details

paths and terminals can only be applied on objects of class 'gets' and 'isat'

Value

paths:	a list with the paths searched (each number refers to a regressor in the GUM)
terminals:	a list with the terminal models (each number refers to a regressor in the GUM)
rsquared:	a numeric, the R-squared of the regression, or adjusted R-squared if adjusted
	is set to TRUE

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

See Also

getsm, getsm, getsv, isat

Examples

```
##Simulate from an AR(1):
set.seed(123)
y <- arima.sim(list(ar=0.4), 50)</pre>
##Simulate four independent Gaussian regressors:
xregs <- matrix(rnorm(4*50), 50, 4)</pre>
##estimate an AR(2) with intercept and four conditioning
##regressors in the mean:
mymod <- arx(y, mc=TRUE, ar=1:2, mxreg=xregs)</pre>
rsquared(mymod)
rsquared(mymod, adjusted=TRUE)
##General-to-Specific (GETS) modelling of the mean:
meanmod <- getsm(mymod)</pre>
rsquared(meanmod)
rsquared(meanmod, adjusted=TRUE)
##extract the paths searched:
paths(meanmod)
##extract the terminal models:
terminals(meanmod)
```

periodicdummies Make matrix of periodicity (e.g. seasonal) dummies

Description

Auxiliary function that creates periodicity dummies (e.g. seasonal dummies) for regular time series. The function is similar to, but more general than, the seasonaldummy function in the package **forecast**.

Usage

```
periodicdummies(x, values=1)
```

Arguments

х	a regular time series (vector or matrix)
values	numeric of length 1 (default) or numeric vector of length equal to frequency (x)

Value

A matrix of class zoo with periodicity dummies

predict.arx

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

See Also

is.regular, zooreg, zoo, ts

Examples

```
##quarterly dummies:
x <- zooreg(rnorm(30), start=2000, frequency=4)
periodicdummies(x)
```

```
##monthly dummies:
y <- zooreg(rnorm(30), start=c(2000,1), frequency=12)
periodicdummies(y)
```

predict.arx

Forecasting with 'arx' models

Description

Generate out-of-sample forecasts up to n steps ahead for objects of class arx. Optionally, quantiles of the forecasts are also returned if any of the arguments ci.levels or probs are specified. The forecasts, confidence intervals and quantiles are obtained via simulation. By default, 5000 simulations is used, but this can be changed via the n.sim argument. Also by default, the simulations uses a classical bootstrap to sample from the standardised residuals. To use an alternative set of standardised innovations, for example the standard normal, use the innov argument. If plot=TRUE, then a plot of the forecasts is created.

Usage

```
## S3 method for class 'arx'
predict(object, spec=NULL, n.ahead=12, newmxreg=NULL,
    newvxreg=NULL, newindex=NULL, n.sim=5000, innov=NULL, probs=NULL,
    ci.levels=NULL, quantile.type=7, return=TRUE, verbose=FALSE,
    plot=NULL, plot.options=list(), ...)
```

Arguments

object	an object of class 'arx'
spec	NULL (default), "mean", "variance" or "both". If NULL, then it is automatically determined whether information pertaining to the mean or variance specification should be returned
n.ahead	integer that determines how many steps ahead predictions should be generated (the default is 12)

newmxreg	a matrix of n.ahead rows and NCOL(mxreg) columns with the out-of-sample values of the mxreg regressors
newvxreg	a matrix of n.ahead rows and NCOL(vxreg) columns with the out-of-sample values of the vxreg regressors
newindex	NULL (default) or the date-index for the zoo object returned by predict.arx. If NULL, then the function uses the in-sample index to generate the out-of-sample index
n.sim	integer, the number of replications used for the generation of the forecasts
innov	NULL (default) or a vector of length n.ahead \star n.sim containing the standard- ised errors (that is, zero mean and unit variance) used for the forecast simu- lations. If NULL, then a classica bootstrap procedure is used to draw from the standardised in-sample residuals
probs	NULL (default) or a vector with the quantile-levels (values strictly between 0 and 1) of the forecast distribution. If NULL, then no quantiles are returned unless ci.levels is non-NULL
ci.levels	NULL (default) or a vector with the confidence levels (expressed as values strictly between 0 and 1) of the forecast distribution. The upper and lower values of the confidence interval(s) are returned as quantiles
quantile.type	an integer between 1 and 9 that selects which algorithm to be used in computing the quantiles, see the argument type in quantile
return	logical. If TRUE (default), then the out-of-sample predictions are returned. The value FALSE, which does not return the predictions, may be of interest if only a prediction plot is of interest
verbose	logical with default FALSE. If TRUE, then additional information (typically the quantiles and/or the simulated series) used in the generation of forecasts is returned. If FALSE, then only the forecasts are returned
plot	NULL (default) or logical. If NULL, then the value set by options\$plot (see options) determines whether a plot is produced or not. If TRUE, then the out-of-sample forecasts are plotted.
plot.options	a list of options related to the plotting of forecasts, see 'Details'
	additional arguments

Details

The plot.options argument is a list that, optionally, can contain any of the following arguments:

- keep: integer greater than zero (the default is 12) that controls the number of in-sample actual values to plot
- line.at.origin: logical. If TRUE, then a vertical line is drawn at the forecast origin, that is, at the last in-sample observation
- start.at.origin: logical. If TRUE, then the drawing of the forecast line starts at the actual value of the forecast origin

predict.arx

- dot.at.origin: logical. If TRUE, then a dot is drawn at the forecast origin
- hlines: numeric vector that indicates where to draw grey horisontal grid lines
- col: numeric vector of length two that controls the colour of the plotted lines. The first value controls the colour of the forecasts and the fitted values, whereas the second controls the colour of the actual values
- 1ty: numeric vector of length two that controls the line type. The first value controls the line type of the forecast, whereas the second controls the line type of the actual and fitted values
- lwd: an integer that controls the width of the plotted lines (the default is 1)
- ylim: numeric vector of length two that contains the limits of the y-axis of the prediction plot
- ylab: a character that controls the text on the y-axis
- main: a character that controls the text in the overall title
- legend.text: a character vector of length two that controls how the forecast and actual lines should be named or referred to in the legend of the plot
- fitted: If TRUE, then the fitted values as well as actual values are plotted in-sample
- newmactual: numeric vector or NULL (default). Enables the plotting of actual values out-of-sample in the mean in addition to the forecasts
- newvactual: numeric vector or NULL (default). Enables the plotting of squared residuals ('actual values') out-of-sample in addition to the forecasts
- shades: numeric vector of length length(ci.levels) that contains the shades of grey associated with the confidence intervals in the prediction plot. The shades can range from 100 (white) to 0 (black)

Value

a vector of class zoo containing the out-of-sample forecasts, or a matrix of class zoo containing the out-of-sample forecasts together with prediction-quantiles, or NULL if return=FALSE

Author(s)

Felix Pretis, https://felixpretis.climateeconometrics.org/ James Reade, https://sites.google.com/site/jjamesreade/ Genaro Sucarrat, http://www.sucarrat.net/

See Also

arx

Examples

```
##simulate from an AR(1):
set.seed(123)
y <- arima.sim(list(ar=0.4), 40)</pre>
##estimate AR(2) model with intercept:
mymod <- arx(y, mc=TRUE, ar=c(1,2))</pre>
##generate out-of-sample forecasts:
predict(mymod)
##same, but plot the predictions in addition:
#predict(mymod, plot=TRUE)
##same, but return also the quantiles of the confidence intervals:
#predict(mymod, ci.levels=c(0.50,0.90), plot=TRUE)
##same, but with non-default levels on the confidence intervals:
#predict(mymod, ci.levels=c(0.20,0.80, 0.99), plot=TRUE)
##same, but with more confidence intervals:
#predict(mymod, ci.levels=seq(0.20, 0.95, by=0.05), plot=TRUE)
##same, but with less rugged ci's (achieved by increasing n.sim):
##predict(mymod, ci.levels=seq(0.20, 0.95, by=0.05), n.sim=50000, plot=TRUE)
##same, but using standard normals (instead of bootstrap) in the simulations:
#n.sim <- 2000
#n.ahead <- 12 #the default on n.ahead</pre>
#predict(mymod, ci.levels=seq(0.20, 0.95, by=0.05), n.sim=n.sim,
# innov=rnorm(n.ahead*n.sim), plot=TRUE)
##make x-regressors:
x <- matrix(rnorm(40*3), 40, 3)</pre>
##estimate AR(1) model with intercept and covariates:
mymod <- arx(y, mc=TRUE, ar=1, mxreg=x)</pre>
##predict up to 5 steps ahead, setting x's to 0 out-of-sample:
predict(mymod, n.ahead=5, newmxreg=matrix(0,5,NCOL(x)))
##same, but do also plot:
#predict(mymod, n.ahead=5, newmxreg=matrix(0,5,NCOL(x)),
# plot=TRUE)
##estimate an AR(2) model w/intercept and a log-ARCH(1) specification
##on the variance:
#mymodel <- arx(y, mc=TRUE, ar=1:2, arch=1)</pre>
```

```
##generate forecasts of the conditional variances:
#predict(mymodel, spec="variance")
##same, but do also plot:
#predict(mymodel, spec="variance", plot=TRUE)
##illustrations of the usage of plot.options:
#mymodel <- arx(y, mc=TRUE, ar=1)</pre>
#predict(mymodel, plot=TRUE, plot.options=list(keep=1))
#predict(mymodel, plot=TRUE, plot.options=list(line.at.origin=TRUE))
#predict(mymodel, plot=TRUE, plot.options=list(start.at.origin=FALSE))
#predict(mymodel, plot=TRUE,
# plot.options=list(start.at.origin=FALSE, fitted=TRUE))
#predict(mymodel, plot=TRUE, plot.options=list(dot.at.origin=FALSE))
#predict(mymodel, plot=TRUE, plot.options=list(hlines=c(-2,-1,0,1,2)))
#predict(mymodel, plot=TRUE, plot.options=list(col=c("darkred","green")))
#predict(mymodel, plot=TRUE, plot.options=list(lty=c(3,2)))
#predict(mymodel, plot=TRUE, plot.options=list(lwd=3))
#predict(mymodel, plot=TRUE, plot.options=list(ylim=c(-8,8)))
#predict(mymodel, plot=TRUE, plot.options=list(ylab="User-specified y-axis"))
#predict(mymodel, plot=TRUE,
# plot.options=list(main="User-specified overall title"))
#predict(mymodel, plot=TRUE,
# plot.options=list(legend.text=c("User-specified 1","User-specified 2")))
#predict(mymodel, plot=TRUE, plot.options=list(fitted=TRUE))
#predict(mymodel, plot=TRUE, plot.options=list(newmactual=rep(0,6)))
#predict(mymodel, plot=TRUE, plot.options=list(shades.of.grey=c(95,50)))
#predict(mymodel, plot=TRUE, plot.options=list(shades.of.grey=c(50,95))) #invert shades
```

predict.larch

Variance forecasting with 'larch' models

Description

Generate out-of-sample variance forecasts up to n. ahead steps ahead. Optionally, quantiles of the forecasts are also returned if the argument probs is specified. The forecasts, confidence intervals and quantiles are obtained via simulation. By default, 5000 simulations is used, but this can be changed via the n.sim argument. Also by default, the simulations uses a classical bootstrap to sample from the standardised residuals. To use an alternative set of standardised innovations, for example the standard normal, use the innov argument

Usage

Arguments

object	an object of class 'larch'
n.ahead	integer that determines how many steps ahead predictions should be generated (the default is 12)
newvxreg	a matrix of n.ahead rows and NCOL(vxreg) columns with the out-of-sample values of the vxreg regressors
newindex	NULL (default) or the date-index for the zoo object returned by predict.larch. If NULL, then the function uses the in-sample index to generate the out-of-sample index
n.sim	NULL (default) or an integer, the number of replications used for the generation of the forecasts. If NULL, the number of simulations is determined internally (usually 5000)
innov	NULL (default) or a vector of length n.ahead $*$ n.sim containing the standard- ised errors (i.e. mean zero and unit variance) used for the forecast simulations. If NULL, then a classic bootstrap procedure is used to draw from the standardised in-sample residuals
probs	NULL (default) or a vector with the quantile-levels (values strictly between 0 and 1) of the forecast distribution. If NULL, then no quantiles are returned
quantile.type	an integer between 1 and 9 that selects which algorithm to be used in computing the quantiles, see the argument type in quantile
verbose	logical with default FALSE. If TRUE, then additional information (typically the quantiles and/or the simulated series) used in the generation of forecasts is returned. If FALSE, then only the forecasts are returned
	additional arguments

Details

No details for the moment.

Value

a vector of class zoo containing the out-of-sample forecasts, or a matrix of class zoo containing the out-of-sample forecasts together with additional information (e.g. the prediction-quantiles)

Author(s)

Genaro Sucarrat, https://www.sucarrat.net/

See Also

larch

printtex

Examples

```
##Simulate some data:
set.seed(123)
e <- rnorm(40)
##estimate log-ARCH(1) model:
mymod <- larch(e, arch=1)</pre>
##generate out-of-sample forecasts:
predict(mymod)
##same, but return also selected quantiles:
predict(mymod, probs=c(0.10,0.90))
##same, but using standard normals (instead of bootstrap) in the simulations:
n.sim <- 2000
n.ahead <- 12 #the default on n.ahead
predict(mymod, probs=c(0.10,0.90), n.sim=n.sim, innov=rnorm(n.ahead*n.sim))
##make x-regressors:
x <- matrix(rnorm(40*2), 40, 2)</pre>
##estimate log-ARCH(1) model w/covariates:
mymod <- larch(e, arch=1, vxreg=x)</pre>
##predict up to 5 steps ahead, setting x's to 0 out-of-sample:
predict(mymod, n.ahead=5, newvxreg=matrix(0,5,NCOL(x)))
```

printtex

Generate LaTeX code of an estimation result

Description

Convenience functions that generates LaTeX-code of an estimation result in equation-form. printtex can, in principle, be applied to any object for which coef, vcov and logLik methods exist. Note: The generated LaTeX-code contains an eqnarray environment, which requires that the amsmath package is loaded in the preamble of the LaTeX document.

Usage

Arguments

х	an estimation result, e.g. arx, gets or isat object
object	an estimation result of class arx or gets
fitted.name	NULL or a user-specified name of left-hand side variable
xreg.names	NULL or a user-specified character vector with the names of regressors
digits	integer, the number of digits to be printed
intercept	logical or numeric. The argument determines whether one of the regressors is an intercept or not, or its location. If TRUE, then the intercept is assumed to be located at $coef(x)[1]$, and hence the regressor-name of location 1 is excluded from the print. If FALSE, then it is assumed that there is no intercept among the regressors. If numeric, then it is assumed that the regressors contain an intercept at the location equal to the numeric value
gof	logical, whether to include goodness-of-fit in the print
diagnostics	logical, whether to include diagnostics in the print
nonumber	logical, whether to remove or not (default) the equation-numbering
nobs	character, the notation to use to denote the number of observations
index	NULL or a character, only relevant if fitted.name is not NULL, and if the object in question is of class arx, gets or isat
dec	NULL or a character (for example ","). In the latter case, an attempt is made to replace the dot separator . with the character in dec
print.info	logical, whether to print the info at the start or not
•••	arguments passed on to printtex

Details

toLatex.arx and toLatex.gets are simply wrappers to printtex

Value

LaTeX code of an estimation result

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

See Also

arx, logitx, getsm, getsv, isat

recursive

Examples

```
##simulate random variates, estimate model:
y <- rnorm(30)
mX <- matrix(rnorm(30*2), 30, 2)
mymod <- arx(y, ar=1:3, mxreg=mX)
##print latex code of estimation result:
printtex(mymod)
##add intercept, at the end, to regressor matrix:
mX <- cbind(mX,1)
colnames(mX) <- c("xreg1", "xreg2", "intercept")
mymod <- arx(y, mc=FALSE, mxreg=mX)
##set intercept location to 3:
printtex(mymod, intercept=3)
```

recursive

Recursive estimation

Description

Recursive estimation of coefficients and standard errors

Usage

```
recursive(object, spec="mean", std.errors=TRUE, from=40, tol=1e-07,
LAPACK=FALSE, plot=TRUE, return=TRUE)
```

Arguments

object	an arx, gets or isat object
spec	'mean' or 'variance'. If 'mean' (default), the the recursive estimates of the mean-equation are estimated
std.errors	logical. If TRUE (default), then the coefficient standard errors are also computed
from	integer. The starting point of the recursion
tol	numeric. The tolerance for linear dependency among regressors
LAPACK	logical, TRUE or FALSE (default). If true use LAPACK otherwise use LIN-PACK, see qr function
plot	NULL or logical. If TRUE, then the recursive coefficient estimates are plotted. If NULL (default), then the value set by options determines whether a plot is produced or not.
return	logical. If TRUE (default), then the recursive estimates are returned in a list

Value

If return=TRUE, then a list is returned with the following components:

estimates a zoo matrix with the recursive estimates standard.errors

a zoo matrix with the standard errors

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

See Also

ols, qr, solve.qr

Examples

```
##generate random variates, estimate model:
y <- rnorm(100)
mX <- matrix(rnorm(4*100), 100, 4)
mymodel <- arx(y, mc=TRUE, mxreg=mX)</pre>
```

```
##compute recursive estimates and plot them:
recursive(mymodel)
```

regressorsMean Create the regressors of the mean equation

Description

The function generates the regressors of the mean equation in an arx model. The returned value is a matrix with the regressors and, by default, the regressand in column one. By default, observations (rows) with missing values are removed in the beginning and the end with na.trim, and the returned matrix is a zoo object.

Usage

```
regressorsMean(y, mc = FALSE, ar = NULL, ewma = NULL, mxreg = NULL,
    prefix="m", return.regressand = TRUE, return.as.zoo = TRUE, na.trim = TRUE,
    na.omit=FALSE)
```

Arguments

У	numeric vector, time-series or zoo object.
mc	logical. TRUE includes an intercept, whereas FALSE (default) does not.
ar	either NULL (default) or an integer vector, say, c(2,4) or 1:4 with the AR-lags
	to include in the mean specification. If NULL, then no lags are included.

ewma	either NULL (default) or a list with arguments sent to the equma function. In the latter case a lagged moving average of y is included as a regressor.	
mxreg	either NULL (default), numeric vector or matrix, say, a zoo object, or data.frame containing conditioning variables (covariates). Note that, if both y and mxreg are zoo objects, then their samples are matched.	
prefix	character, possibly of length zero, e.g. "" or character(0). The prefix added to the constant and covariate labels. The default is "m", so that the default labels are "mconst" and "mxreg".	
return.regressand		
	logical. TRUE, the default, includes the regressand as column one in the returned matrix.	
return.as.zoo	TRUE, the default, returns the matrix as a zoo object.	
na.trim	TRUE, the default, removes observations with NA-values in the beginning and the end with na.trim.	
na.omit	TRUE, the non-default, removes observations with NA-values, not necessarily in the beginning or in the end, with $na.omit$.	

Value

A matrix, by default of class zoo, with the regressand as column one (the default).

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

References

Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. DOI: https://www.jstatsoft.org/article/view/v086i03

See Also

arx, isat, regressorsVariance, zoo, eqwma, na.trim and na.trim.

Examples

```
##generate some data:
y <- rnorm(10) #regressand
x <- matrix(rnorm(10*5), 10, 5) #regressors</pre>
```

```
##create regressors (examples):
regressorsMean(y, mxreg=x)
regressorsMean(y, mxreg=x, return.regressand=FALSE)
regressorsMean(y, mc=TRUE, ar=1:3, mxreg=x)
regressorsMean(log(y^2), mc=TRUE, ar=c(2,4))
```

```
##let y and x be time-series:
y <- ts(y, frequency=4, end=c(2018,4))</pre>
```

```
x <- ts(x, frequency=4, end=c(2018,4))
regressorsMean(y, mxreg=x)
regressorsMean(y, mc=TRUE, ar=1:3, mxreg=x)
regressorsMean(log(y^2), mc=TRUE, ar=c(2,4))
##missing values (NA):
y[1] <- NA
x[10,3] <- NA
regressorsMean(y, mxreg=x)
regressorsMean(y, mxreg=x, na.trim=FALSE)</pre>
```

regressorsVariance Create regressors for a log-variance model

Description

The function creates the regressors of a log-variance model, e.g. in a arx model. The returned value is a matrix with the regressors and, by default, the regressand in the first column. By default, observations (rows) with missing values are removed in the beginning and the end with na.trim, and the returned matrix is a zoo object.

Usage

```
regressorsVariance(e, vc = TRUE, arch = NULL, harch = NULL, asym = NULL,
asymind = NULL, log.ewma = NULL, vxreg = NULL, prefix = "v", zero.adj = NULL,
vc.adj = TRUE, return.regressand = TRUE, return.as.zoo = TRUE, na.trim = TRUE,
na.omit = FALSE)
```

Arguments

e	numeric vector, time-series or zoo object.
vc	logical. TRUE includes an intercept in the log-variance specification, whereas FALSE (default) does not. If the log-variance specification contains any other item but the log-variance intercept, then vc is set to TRUE.
arch	either NULL (default) or an integer vector, say, c(1,3) or 2:5. The log-ARCH lags to include in the log-variance specification.
harch	either NULL (default) or an integer vector, say, c(5, 20). The log of heterogenous ARCH-terms as proposed by Muller et al. (1997).
asym	either NULL (default) or an integer vector, say, $c(1)$ or 1:3. The asymmetry (i.e. 'leverage') terms to include in the log-variance specification.
asymind	either NULL (default) or an integer vector, say, c(1) or 1:3. The indicator ('bi- nary') asymmetry terms to include in the log-variance specification.
log.ewma	either NULL (default) or a vector of the lengths of the volatility proxies, see leqwma. The log of heterogenous volatility proxies similar to those of Corsi (2009).

vxreg	either NULL (default) or a numeric vector or matrix, say, a zoo object, of condi- tioning variables. If both y and mxreg are zoo objects, then their samples are chosen to match.	
prefix	a character used as prefix in the labelling of the variables in vxreg and of the intercept.	
zero.adj	NULL (default) or a strictly positive numeric scalar. If NULL, the zeros in the squared e's are replaced by the 10 percent quantile of the non-zero squared e's. If zero.adj is a strictly positive numeric scalar, then this value is used to replace the zeros of the squared e's.	
vc.adj	deprecated and ignored.	
return.regressand		
	logical. TRUE (default) includes the regressand as column one in the returned matrix.	
return.as.zoo	logical. TRUE (default) returns the matrix as a zoo object.	
na.trim	logical. TRUE (default) removes observations with NA-values in the beginning and the end with na.trim.	
na.omit	logical. FALSE (default) means NA-observations that are not in the beginning or at the end are kept (i.e. not omitted). TRUE removes with na.omit.	

Value

A matrix, by default of class zoo, with the regressand as column one (the default).

Author(s)

Genaro Sucarrat, http://www.sucarrat.net/

References

Corsi, Fulvio (2009): 'A Simple Approximate Long-Memory Model of Realized Volatility', Journal of Financial Econometrics 7, pp. 174-196

Muller, Ulrich A., Dacorogna, Michel M., Dave, Rakhal D., Olsen, Richard B, Pictet, Olivier, Weizsaker, Jacob E. (1997): 'Volatilities of different time resolutions - Analyzing the dynamics of market components'. Journal of Empirical Finance 4, pp. 213-239

Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. DOI: https://www.jstatsoft.org/article/view/v086i03

Sucarrat, Genaro and Escribano, Alvaro (2012): 'Automated Financial Model Selection: Generalto-Specific Modelling of the Mean and Volatility Specifications', Oxford Bulletin of Economics and Statistics 74, Issue 5 (October), pp. 716-735

See Also

regressorsMean, arx, zoo, leqwma, na.trim and na.omit.

Examples

```
##generate some data:
eps <- rnorm(10) #error term</pre>
x <- matrix(rnorm(10*5), 10, 5) #regressors</pre>
##create regressors (examples):
regressorsVariance(eps, vxreg=x)
regressorsVariance(eps, vxreg=x, return.regressand=FALSE)
regressorsVariance(eps, arch=1:3, vxreg=x)
regressorsVariance(eps, arch=1:2, asym=1, vxreg=x)
regressorsVariance(eps, arch=1:2, asym=1, log.ewma=5)
##example where eps and x are time-series:
eps <- ts(eps, frequency=4, end=c(2018,4))</pre>
x <- ts(x, frequency=4, end=c(2018,4))</pre>
regressorsVariance(eps, vxreg=x)
regressorsVariance(eps, arch=1:3, vxreg=x)
regressorsVariance(eps, arch=1:2, asym=1, vxreg=x)
regressorsVariance(eps, arch=1:2, asym=1, log.ewma=5)
```

so2data

UK SO2 Data

Description

UK Annual Total Anthropogenic Sulphur Dioxide (SO2) Emissions 1946-2005.

Usage

data("so2data")

Format

A data frame with 60 observations on the following 4 variables.

year Year of observation

uk_tot_so2 UK annual total anthropogenic SO2 emissions in gigagrams

Luk_tot_so2 Log of UK annual total anthropogenic SO2 emissions

DLuk_tot_so2 First difference of Log UK annual total anthropogenic SO2 emissions

Details

Data reports the total estimated anthropogenic SO2 emissions aggregated over coal, petroleum, biomass combustion, smelting, fuel processing, and other processes.

sp500data

Source

Smith, SJ, J van Aardenne, Z Klimont, RJ Andres, A Volke, and S Delgado Arias. (2011). Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86. Data distributed by the NASA Socioeconomic Data and Applications Center (SEDAC), CIESIN, Columbia University, Palisades, New York. Available at

http://sedac.ciesin.columbia.edu/data/set/haso2-anthro-sulfur-dioxide-emissions-1850-2005-v2-86

References

Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44

Smith, SJ, J van Aardenne, Z Klimont, RJ Andres, A Volke, and S Delgado Arias. (2011). Anthropogenic Sulfur Dioxide Emissions: 1850-2005, Atmospheric Chemistry and Physics, 11:1101-1116.

Examples

data(so2data)

```
##create annual zoo object:
newso2data<- zooreg(so2data[,-1], start=1946, frequency=1)
##plot UK annual total anthropogenic SO2 emissions:
```

```
plot(newso2data$uk_tot_so2)
```

sp500data

Daily Standard and Poor's 500 index data

Description

Daily Standard and Poor's 500 (SP500) index data from 3 January 1950 to 8 March 2016.

Usage

```
data("sp500data")
```

Format

A data frame with 16652 observations on the following 7 variables:

Date the dates

Open the opening values of the index

High the daily maximum value of the index

Low the daily minimum value of the index

Close the closing values of the index

Volume the traded volume

Adj.Close the adjusted closing values of the index

Source

Yahoo Finance, retrieved 9 March 2016

References

Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44

Examples

```
data(sp500data)
sp500data <- zoo(sp500data[, -1], order.by = as.Date(sp500data[, "Date"]))
plot(window(sp500data, start = as.Date("2000-01-03")))</pre>
```

vargaugeiis Variance of the Impulse Indicator S	Saturation Gauge
---	------------------

Description

Computes the variance of the gauge (false-positive rate of outliers under the null of no outliers) in impulse indicator saturation based on Jiao and Pretis (2019).

Usage

vargaugeiis(t.pval, T, infty=FALSE, m=1)

Arguments

t.pval	numeric, between 0 and 1. Selection p-value used in indicator saturation.
Т	integer, sample sized used in indicator saturation.
m	integer, number of iterations in variance computation, default=1
infty	logical, argument used for variance computation

Details

The function computes the variance of the Gauge (false-positive rate of outliers in impulse indicator saturation) for a given level of significance of selection (t.pval) and sample size (T) based on Jiao and Pretis (2019). This is an auxilliary function used within the outliertest function.

vargaugeiis

Value

Returns a dataframe of the variance and standard deviation of the gauge, as well the asymptotic variance and standard deviation.

Author(s)

Felix Pretis, https://felixpretis.climateeconometrics.org/

References

Jiao, X. & Pretis, F. (2019). Testing the Presence of Outliers in Regression Models. Discussion Paper.

Pretis, F., Reade, J., & Sucarrat, G. (2018). Automated General-to-Specific (GETS) regression modeling and indicator saturation methods for the detection of outliers and structural breaks. Journal of Statistical Software, 86(3).

See Also

isat, outliertest

Examples

###Computing the variance of the gauge under the null for a sample of T=200 observations: vargaugeiis(t.pval=0.05, T=200, infty=FALSE, m=1)

Index

*** Climate Econometrics** arx, 6 as.arx,9 blocksFun, 13 coef.larch, 26 coef.logitx, 28 diagnostics, 30distorttest, 32 distorttestboot, 34 gets, 41 gets-package, 3 gets.isat, 42 gets.larch, 44 gets.lm, 48 gets.logitx, 49 getsFun, 51 isat, <mark>66</mark> larch, 81 larchEstfun, 84 logit, 85 logitx, 86 logitxSim, 88 ols, 91 predict.larch, 101 printtex, 103 * Econometrics arx, 6 as.arx,9 as.lm,10 biascorr, 11 blocksFun, 13 coef.arx, 16 coef.gets, 19 coef.isat, 23 coef.larch, 26 coef.logitx, 28 diagnostics, 30 distorttest, 32 distorttestboot, 34

dropvar, 36 eqwma, 37 ES, 39 eviews, 40gets, 41 gets-package, 3 gets.isat, 42 gets.larch, 44 gets.lm,48 gets.logitx, 49 getsFun, 51 getsm, 55 gmm, 59 hpdata, 61 iim, 62 infldata, 64 infocrit, 65 isat.66 isatdates, 71 isatloop, 72 isattest, 73 isatvar, 76 isatvarcorrect, 78 isvarcor, 79 isvareffcor, 80 larch, 81 larchEstfun, 84 logit, 85 logitx, 86 logitxSim, 88 mvrnormsim, 90 ols. 91 outlierscaletest, 92 outliertest, 93 paths, 95 periodicdummies, 96 predict.arx, 97 predict.larch, 101 printtex, 103

recursive, 105 regressorsMean, 106 regressorsVariance, 108 vargaugeiis, 112 *** Financial Econometrics** arx, 6 as.arx.9 as.lm.10 biascorr, 11 blocksFun, 13 coef.arx, 16 coef.gets, 19 coef.isat, 23 coef.larch, 26 coef.logitx, 28 diagnostics. 30 distorttest, 32 distorttestboot, 34 dropvar, 36 eqwma, 37 ES. 39 eviews, 40gets, 41 gets-package, 3 gets.isat, 42 gets.larch, 44 gets.lm, 48 gets.logitx, 49 getsFun, 51 getsm, 55 gmm, 59 hpdata, 61 iim, 62 infocrit, 65 isat, <mark>66</mark> isatdates, 71 isatloop, 72 isattest, 73 isatvar, 76 isatvarcorrect, 78 isvarcor, 79 isvareffcor, 80 larch, 81 larchEstfun, 84 logit, 85 logitx, 86 logitxSim, 88 mvrnormsim, 90

ols, <mark>91</mark> outlierscaletest, 92 outliertest, 93 paths, 95 periodicdummies, 96 predict.arx, 97 predict.larch, 101 printtex, 103 recursive, 105 regressorsMean, 106 regressorsVariance, 108 vargaugeiis, 112 * Statistical Models arx, 6 as.arx,9 as.lm.10 biascorr, 11 blocksFun, 13 coef.arx, 16 coef.gets, 19 coef.isat.23 coef.larch, 26 coef.logitx, 28 diagnostics, 30distorttest, 32 distorttestboot. 34 dropvar, 36 eqwma, 37 ES, 39 eviews, 40gets, 41 gets-package, 3 gets.isat, 42 gets.larch, 44 gets.lm,48 gets.logitx, 49 getsFun, 51 getsm, 55 gmm, 59 iim, 62 infldata, 64 infocrit, 65 isat, 66 isatdates, 71 isatloop, 72 isattest, 73 isatvar, 76 isatvarcorrect, 78

isvarcor, 79 isvareffcor, 80 larch. 81 larchEstfun, 84 logit, 85 logitx, 86 logitxSim, 88 mvrnormsim, 90 ols, 91 outlierscaletest, 92 outliertest, 93 paths, 95 periodicdummies, 96 predict.arx, 97 predict.larch, 101 printtex. 103 recursive, 105 regressorsMean, 106 regressorsVariance, 108 vargaugeiis, 112 * Time Series arx, 6 as.arx.9 as.lm, 10 biascorr, 11 blocksFun. 13 coef.arx, 16 coef.gets, 19 coef.isat, 23 coef.larch, 26 coef.logitx, 28 diagnostics, 30 distorttest, 32 distorttestboot, 34 dropvar, 36 egwma, 37 ES, 39 eviews, 40 gets, 41 gets-package, 3 gets.isat, 42 gets.larch, 44 gets.lm, 48 gets.logitx, 49 getsFun, 51 getsm, 55 gmm, 59 hpdata, 61

iim, 62 infldata, 64 infocrit. 65 isat, 66 isatdates, 71 isatloop, 72 isattest, 73 isatvar.76 isatvarcorrect, 78 isvarcor, 79 isvareffcor, 80 larch, 81 larchEstfun, 84 logit, 85 logitx, 86 logitxSim, 88 mvrnormsim, 90 ols, 91 outlierscaletest, 92 outliertest, 93 paths, 95 periodicdummies, 96 predict.arx, 97 predict.larch, 101 printtex, 103 recursive, 105 regressorsMean, 106 regressorsVariance, 108 vargaugeiis, 112 * datasets hpdata. 61 infldata. 64 so2data, 110 sp500data, 111 * emissions so2data, 110 .lm.fit, 91, 92 AIC, 65 alarm, 46 arx, 3-5, 6, 9-11, 17, 25, 30, 31, 38-40, 58, 67, 70, 91, 92, 97, 100, 104-109 as.arx,9 as.lm, 10

biascorr, 11, 74, 75, 77 BIC, 65 blocksFun, 4, 5, 13, 30, 31, 42, 51

character, 104 coef.arx, 8, 16 coef.gets, 12, 19, 25, 58, 75, 77 coef.isat, 23, 70 coef.larch, 26, 47, 83 coef.logitx, 28, 50, 88 data.frame, 30, 31, 107 diagnostics, 7, 15, 30, 43, 45, 46, 53, 54, 56, 57,68 distorttest. 32. 34. 35 distorttestboot, 33, 34 dlogitx (logitx), 86 dlogitxSim(logitxSim), 88 do.call, 30, 53 dropvar, 36, 87 eqwma, 6, 37, 47, 58, 67, 70, 87, 107 ES, 8, 39, 47, 83 eviews. 40fitted.arx.8 fitted.arx(coef.arx), 16 fitted.gets, 58 fitted.gets (coef.gets), 19 fitted.isat, 70 fitted.isat(coef.isat), 23 fitted.larch, 47, 83 fitted.larch(coef.larch), 26 fitted.logitx, 88 fitted.logitx(coef.logitx), 28 gets, 10, 11, 21, 41, 44, 104 gets-package, 3 gets.arx, 3, 5 gets.isat, 41, 42 gets.larch, 44, 47, 83-85 gets.lm, 3, 41, 48 gets.logitx, 4, 29, 41, 49, 88 getsFun, 4, 5, 8, 14, 15, 30, 31, 42-50, 51, 56-58, 68, 70 getsm, 5, 8, 21, 25, 30, 31, 38-42, 44, 48, 51, 55, 66, 69, 95, 104 getsv, 5, 8, 21, 30, 31, 38-42, 51, 54, 95, 104 getsv (getsm), 55 gmm, 59 hpdata, 61 iim, 62

infldata, 64 info.criterion (infocrit), 65 infocrit, 15, 43, 45, 54, 56, 65 is.regular, 97 isat, 3-5, 8, 10-12, 15, 21, 24, 30-36, 40, 42, 44, 51, 63, 66, 66, 71–79, 93–95, 104, 107, 113 isatdates, 71 isatloop, 72, 92, 93 isattest, 12, 73, 77 isatvar, 12, 75, 76, 80, 81 isatvarcorrect, 78 isvarcor, 78, 79, 79 isvareffcor, 78, 79, 80 larch, 27, 44, 47, 81, 84, 85, 102 larchEstfun, 81, 84 leqwma, 7, 47, 58, 70, 82, 108, 109 legwma (egwma), 37 list, 6, 7, 15, 30, 43, 45, 53, 56, 68, 84, 86, 87, 91, 95, 106, 107 lm, 9–11, 48, 67 logit, 85, 88 logitx, 4, 29, 49, 50, 86, 89, 104 logitxSim, 29, 50, 88, 88 logLik.arx(coef.arx), 16 logLik.gets (coef.gets), 19 logLik.isat(coef.isat), 23 logLik.larch, 47, 83 logLik.larch (coef.larch), 26 logLik.logitx, 88 logLik.logitx(coef.logitx), 28 model.matrix, 27 model.matrix.arx(coef.arx), 16 model.matrix.larch(coef.larch), 26 mvrnormsim, 90 na.omit, 107, 109 na.trim, 6, 67, 72, 82, 87, 106-109 nlminb, 85-88 nobs.arx(coef.arx), 16 nobs.larch, 47, 83 nobs.larch(coef.larch), 26 numeric, 95 ols, 13, 15, 30, 51, 53, 54, 60, 82, 84, 91, 91, 106 options, 7, 20, 24, 44, 46, 50, 57, 69, 82, 87, 98, 105

outlierscaletest, *72*, *73*, *90*, *91*, 92 outliertest, *93*, *112*, *113*

paths, 25, 44, 48, 58, 70, 95 periodicdummies, 96 plot.arx, 8 plot.arx (coef.arx), 16 plot.gets, 12, 58, 75, 77 plot.gets (coef.gets), 19 plot.isat, 70 plot.isat(coef.isat), 23 plot.larch, 47, 83 plot.larch (coef.larch), 26 plot.logitx, 88 plot.logitx(coef.logitx), 28 predict.arx, 21, 24, 97 predict.gets(coef.gets), 19 predict.isat(coef.isat), 23 predict.larch, 47, 83, 101 print.arx, 8 print.arx (coef.arx), 16 print.distorttestboot (distorttestboot), 34 print.gets, 58 print.gets(coef.gets), 19 print.isat, 70 print.isat(coef.isat), 23 print.larch, 47, 83 print.larch(coef.larch), 26 print.logitx, 88 print.logitx(coef.logitx), 28 printCoefmat, 17, 20, 24, 26, 29 printtex, 103

qr, 7, 36, 69, 82, 85, 92, 105, 106 qr.solve, 15, 43, 46, 47, 53, 57, 58 quantile, 20, 24, 98, 102

recursive, 8, 105 regressorsMean, 106, *109* regressorsVariance, *47*, *83*, *107*, 108 residuals.arx, *8* residuals.arx (coef.arx), 16 residuals.gets, *58* residuals.gets (coef.gets), 19 residuals.isat, *70* residuals.isat (coef.isat), 23 residuals.larch, *47*, *83* residuals.larch (coef.larch), 26

rsquared, 8 rsquared (paths), 95 seasonaldummy, 96 sigma.arx, 8 sigma.arx(coef.arx), 16 sigma.gets(coef.gets), 19 sigma.isat(coef.isat), 23 sim(iim), 62 so2data, 110 solve, 59, 60, 86, 87 solve.qr, 92, 106 sp500data, 111 stata (eviews), 40 summary.arx, 8 summary.arx(coef.arx), 16 summary.gets, 58summary.gets(coef.gets), 19 summary.isat, 70 summary.isat(coef.isat), 23 summary.larch, 47, 83 summary.larch(coef.larch), 26 summary.logitx, 88 summary.logitx(coef.logitx), 28

terminals, 25, 44, 48, 58, 70 terminals (paths), 95 tim (iim), 62 toLatex.arx (printtex), 103 toLatex.larch, 47, 83 toLatex.larch (coef.larch), 26 toLatex.logitx, 88 toLatex.logitx (coef.logitx), 28 ts, 97

VaR, 8, 47, 83 VaR (ES), 39 vargaugeiis, 112 vcov.arx, 8, 47, 83 vcov.arx (coef.arx), 16 vcov.gets, 58 vcov.gets (coef.gets), 19 vcov.isat, 70 vcov.isat (coef.isat), 23 vcov.larch (coef.larch), 26 vcov.logitx, 88 vcov.logitx (coef.logitx), 28

zoo, 6, 7, 17, 20, 21, 23, 24, 26, 27, 37, 38, 47, 58, 63, 67, 70, 72, 82, 87, 89, 96–99, 102, 106–109 zooreg, 97