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geomc Markov chain Monte Carlo for discrete and continuous distributions
using geometric MH algorithms.

Description

geomc produces Markov chain samples from a target distribution. The target can be a pdf or pmf.
Users specify the target distribution by an R function that evaluates the log un-normalized pdf or
pmf. geomc uses the geometric approach of Roy (2024) to move an uninformed base density (e.g. a
random walk proposal) towards different global/local approximations of the target density. The base
density can be specified along with its mean, covariance matrix, and a function for sampling from
it. Gaussian densities can be specified by mean and variance only, although it is preferred to supply
its density and sampling functions as well. If either or both of the mean and variance arguments
and any of the density and sampling functions is missing, then a base density corresponding to a
random walk with an appropriate scale parameter is used. One or more approximate target densities
can be specified along with their means, covariance matrices, and a function for sampling from the
densities. Gaussian densities can be specified by mean and variance only, although it is preferred
to supply their densities and sampling functions as well. If either or both of the mean and variance
arguments and any of the density and sampling functions is missing for the approximate target
density, then a normal distribution with mean computed from a pilot run of a random walk Markov
chain and a diagonal covariance matrix with a large variance is used. If the Argument gaus is set
as FALSE then both the base and the approximate target can be specified by their densities and
functions for sampling from it. That is, if gaus=FALSE, the functions specifying the means and
variances of both the base and the approximate target densities are not used. If the target is a pmf
(discrete distribution), then gaus=FALSE and imp [1]=TRUE (not the default values) need to be
specified.

Usage

geomc(
log.target,
initial,
n.iter,
eps = 0.5,
ind = FALSE,
gaus = TRUE,
imp = c(FALSE, n.samp = 1000, samp.base = FALSE),
a = 1,
mean.base,
var.base,
dens.base,
samp.base,
mean.ap.tar,
var.ap.tar,
dens.ap.tar,
samp.ap.tar

)
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Arguments

log.target is the logarithm of the (un-normalized) target density function, needs to be writ-
ten as a function of the current value x.

initial is the initial values.

n.iter is the no. of samples needed.

eps is the value for epsilon perturbation. Default is 0.5.

ind is False if either the base density, f or the approximate target density, g depends
on the current value x. Default is False.

gaus is True if both f and g are normal distributions. Default is True.

imp is a vector of three elements. If gaus is TRUE, then the imp argument is not
used. imp [1] is False if numerical integration is used, otherwise, importance
sampling is used to compute ⟨

√
f,

√
g⟩. Default is False. imp [2] (n.samp) is no

of samples in importance sampling. imp [3] (samp.base) is True if samples from
f is used, otherwise samples from g is used. Default is False.

a is the probability vector for the mixture proposal density. Default is the uniform
distribution.

mean.base is the mean of the base density f , needs to be written as a function of the current
value x.

var.base is the covariance matrix of the base density f , needs to be written as a function
of the current value x.

dens.base is the density function of the base density f , needs to be written as a function
(y, x) (in this order) of the proposed value y and the current value x, although it
may not depend on x.

samp.base is the function to draw from the base density f , needs to be written as a function
of the current value x.

mean.ap.tar is the vector of means of the densities gi(y|x), i = 1, . . . , k. It needs to be
written as a function of the current value x. It must have the same dimension as
k times the length of initial.

var.ap.tar is the matrix of covariance matrices of the densities gi(y|x), i = 1, . . . , k formed
by column concatenation. It needs to be written as a function of the current value
x. It must have the same dimension as the length of initial by k times the length
of initial.

dens.ap.tar is the vector of densities gi(y|x), i = 1, . . . , k. It needs to be written as a func-
tion (y, x) (in this order) of the proposed value y and the current value x, al-
though it may not depend on x.

samp.ap.tar is the function to draw from the densities gi(y|x), i = 1, . . . , k. It needs to be
written as a function of (current value x, the indicator of mixing component kk).
It must return a vector of the length of that of the initial.

Details

Using a geometric Metropolis-Hastings algorithm geom.mc produces Markov chains with the target
as its stationary distribution. The details of the method can be found in Roy (2024).
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Value

The function returns a list with the following elements:

samples A matrix containing the MCMC samples. Each column is one sample.
acceptance.rate

The acceptance rate.

Author(s)

Vivekananda Roy vroy@iastate.edu

References

Roy, V.(2024) A geometric approach to informative MCMC sampling https://arxiv.org/abs/2406.09010

Examples

result <- geomc(log.target=function(y) dnorm(y,log=TRUE),initial=0,n.iter=500)
#target is univariate normal
result$samples # the MCMC samples.
result$acceptance.rate # the acceptance rate.
result<-geomc(log.target=function(y) log(0.5*dnorm(y)+0.5*dnorm(y,mean=10,sd=1.4)),
initial=0,n.iter=500) #target is mixture of univariate normals, default choices
hist(result$samples)
result<-geomc(log.target=function(y) log(0.5*dnorm(y)+0.5*dnorm(y,mean=10,sd=1.4)),
initial=0,n.iter=500, mean.base = function(x) x,var.base= function(x) 4,
dens.base=function(y,x) dnorm(y, mean=x,sd=2),samp.base=function(x) x+2*rnorm(1),
mean.ap.tar=function(x) c(0,10),var.ap.tar=function(x) c(1,1.4^2),
dens.ap.tar=function(y,x) c(dnorm(y),dnorm(y,mean=10,sd=1.4)),
samp.ap.tar=function(x,kk=1){if(kk==1){return(rnorm(1))} else{return(10+1.4*rnorm(1))}})
#target is mixture of univariate normals, random walk base density, an informed
#choice for dens.ap.tar
hist(result$samples)
samp.ap.tar=function(x,kk=1){s.g=sample.int(2,1,prob=c(.5,.5))
if(s.g==1){return(rnorm(1))
}else{return(10+1.4*rnorm(1))}}
result<-geomc(log.target=function(y) log(0.5*dnorm(y)+0.5*dnorm(y,mean=10,sd=1.4)),
initial=0,n.iter=500,gaus=FALSE,imp=c(TRUE,n.samp=100,samp.base=TRUE),
dens.base=function(y,x) dnorm(y, mean=x,sd=2),samp.base=function(x) x+2*rnorm(1),
dens.ap.tar=function(y,x) 0.5*dnorm(y)+0.5*dnorm(y,mean=10,sd=1.4),
samp.ap.tar=samp.ap.tar)
#target is mixture of univariate normals, random walk base density, another
#informed choice for dens.ap.tar
hist(result$samples)
result <- geomc(log.target=function(y) -0.5*crossprod(y),initial=rep(0,4),
n.iter=500) #target is multivariate normal, default choices
rowMeans(result$samples)
size=5
result <- geomc(log.target = function(y) dbinom(y, size, 0.3, log = TRUE),
initial=0,n.iter=500,ind=TRUE,gaus=FALSE,imp=c(TRUE,n.samp=1000,samp.base=TRUE),
dens.base=function(y,x) 1/(size+1), samp.base= function(x) sample(seq(0,size,1),1),
dens.ap.tar=function(y,x) dbinom(y, size, 0.7),samp.ap.tar=function(x,kk=1) rbinom(1, size, 0.7))

mailto:vroy@iastate.edu
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#target is binomial
table(result$samples)

geomc.vs Markov chain Monte Carlo for Bayesian variable selection using a
geometric MH algorithm.

Description

geomc.vs uses a geometric approach to MCMC for performing Bayesian variable selection. It
produces MCMC samples from the posterior density of a Bayesian hierarchical feature selection
model.

Usage

geomc.vs(
X,
y,
initial = NULL,
n.iter = 50,
burnin = 1,
eps = 0.5,
symm = TRUE,
move.prob = c(0.4, 0.4, 0.2),
lam0 = 0,
a0 = 0,
b0 = 0,
lam = nrow(X)/ncol(X)^2,
w = sqrt(nrow(X))/ncol(X),
model.summary = FALSE,
model.threshold = 0.5

)

Arguments

X The n × p covariate matrix without intercept. The following classes are sup-
ported: matrix and dgCMatrix. No need to center or scale this matrix manu-
ally. Scaling is performed implicitly and regression coefficients are returned on
the original scale.

y The response vector of length n. No need to center or scale.

initial is the initial model (the set of active variables). Default: Null model.

n.iter is the no. of samples needed. Default: 50.

burnin is the value of burnin used to compute the median probability model. Default:
1.

eps is the value for epsilon perturbation. Default: 0.5.
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symm indicates if the base density is of symmetric RW-MH. Default: True.

move.prob is the vector of (’addition’, ’deletion’, ’swap’) move probabilities. Default:
(0.4,0.4,0.2). move.prob is used only when symm is set to False.

lam0 The precision parameter for β0. Default: 0 (corresponding to improper uniform
prior).

a0 The shape parameter for prior on σ2. Default: 0.

b0 The scale parameter for prior on σ2. Default: 0.

lam The slab precision parameter. Default: n/p2 as suggested by the theoretical
results of Li, Dutta, Roy (2023).

w The prior inclusion probability of each variable. Default:
√
n/p.

model.summary If true, additional summaries are returned. Default: FALSE.
model.threshold

The threshold probability to select the covariates for the median model (me-
dian.model) and the weighted average model (wam). A covariate will be in-
cluded in median.model (wam) if its marginal inclusion probability (weighted
marginal inclusion probability) is greater than the threshold. Default: 0.5.

Details

geomc.vs provides MCMC samples using the geometric MH algorithm of Roy (2024) for vari-
able selection based on a hierarchical Gaussian linear model with priors placed on the regression
coefficients as well as on the model space as follows:

y|X,β0, β, γ, σ
2, w, λ ∼ N(β01 +Xγβγ , σ

2In)

βi|β0, γ, σ
2, w, λ

indep.∼ N(0, γiσ
2/λ), i = 1, . . . , p,

β0|γ, σ2, w, λ ∼ N(0, σ2/λ0)

σ2|γ,w, λ ∼ Inv −Gamma(a0, b0)

γi|w, λ
iid∼ Bernoulli(w)

where Xγ is the n × |γ| submatrix of X consisting of those columns of X for which γi = 1
and similarly, βγ is the |γ| subvector of β corresponding to γ. The density π(σ2) of σ2 ∼ Inv −
Gamma(a0, b0) has the form π(σ2) ∝ (σ2)−a0−1 exp(−b0/σ

2). The functions in the package also
allow the non-informative prior (β0, σ

2)|γ,w ∼ 1/σ2 which is obtained by setting λ0 = a0 = b0 =
0. geomc.vs provides the empirical MH acceptance rate and MCMC samples from the posterior
pmf of the models P (γ|y), which is available up to a normalizing constant. If model.summary
is set TRUE, geomc.vs also returns other model summaries. In particular, it returns the marginal
inclusion probabilities (mip) computed by the Monte Carlo average as well as the weighted marginal
inclusion probabilities (wmip) computed with weights

wi = P (γ(i)|y)/
K∑

k=1

P (γ(k)|y), i = 1, 2, ...,K
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where γ(k), k = 1, 2, ...,K are the distinct models sampled. Thus, if Nk is the no. of times the kth
distinct model γ(k) is repeated in the MCMC samples, the mip for the jth variable is

mipj =

K∑
k=1

NkI(γ
(k)
j = 1)/n.iter

and wmip for the jth variable is

wmipj =

K∑
k=1

wkI(γ
(k)
j = 1).

The median.model is the model containing variables j with mipj > model.threshold and the
wam is the model containing variables j with wmipj > model.threshold. Note that E(β|γ, y),
the conditional posterior mean of β given a model γ is available in closed form (see Li, Dutta, Roy
(2023) for details). geomc.vs returns two estimates (beta.mean, beta.wam) of the posterior mean of
β computed as

beta.mean =

K∑
k=1

NkE(β|γ(k), y)/n.iter

and

beta.wam =

K∑
k=1

wkE(β|γ(k), y),

respectively.

Value

A list with components

samples MCMC samples from P (γ|y) returned as a p×n.iter sparse lgCMatrix.
acceptance.rate

The acceptance rate based on all samples.

mip The p vector of marginal inclusion probabilities of all variables based on post
burnin samples.

median.model The median probability model based on post burnin samples.

beta.mean The Monte Carlo estimate of posterior mean of β (the p + 1 vector c(intercept,
regression coefficients)) based on post burnin samples.

wmip The p vector of weighted marginal inclusion probabilities of all variables based
on post burnin samples.

wam The weighted average model based on post burnin samples.

beta.wam The model probability weighted estimate of posterior mean of β (the p+1 vector
c(intercept, regression coefficients)) based on post burnin samples.

log.post The n.iter vector of log of the unnormalized marginal posterior pmf P (γ|y)
evaluated at the samples.

Author(s)

Vivekananda Roy
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References

Roy, V.(2024) A geometric approach to informative MCMC sampling https://arxiv.org/abs/2406.09010

Li, D., Dutta, S., Roy, V.(2023) Model Based Screening Embedded Bayesian Variable Selection for
Ultra-high Dimensional Settings, Journal of Computational and Graphical Statistics, 32, 61-73

Examples

n=50; p=100; nonzero = 3
trueidx <- 1:3
nonzero.value <- 4
TrueBeta <- numeric(p)
TrueBeta[trueidx] <- nonzero.value
rho <- 0.5
xone <- matrix(rnorm(n*p), n, p)
X <- sqrt(1-rho)*xone + sqrt(rho)*rnorm(n)
y <- 0.5 + X %*% TrueBeta + rnorm(n)
result <- geomc.vs(X=X, y=y,model.summary = TRUE)
result$samples # the MCMC samples
result$acceptance.rate #the acceptance.rate
result$mip #marginal inclusion probabilities
result$wmip #weighted marginal inclusion probabilities
result$median.model #the median.model
result$wam #the weighted average model
result$beta.mean #the posterior mean of regression coefficients
result$beta.wam #another estimate of the posterior mean of regression coefficients
result$log.post #the log (unnormalized) posterior probabilities of the MCMC samples.

logp.vs The log-unnormalized posterior probability of a model for Bayesian
variable selection.

Description

Calculates the log-unnormalized posterior probability of a model.

Usage

logp.vs(model, X, y, lam0 = 0, a0 = 0, b0 = 0, lam, w)

Arguments

model The indices of active variables.

X The n× p covariate matrix without intercept.

y The response vector of length n.

lam0 The precision parameter for β0. Default: 0 (corresponding to improper uniform
prior).

a0 The shape parameter for prior on σ2. Default: 0.
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b0 The scale parameter for prior on σ2. Default: 0.

lam The slab precision parameter.

w The prior inclusion probability of each variable.

Value

The log-unnormalized posterior probability of the model.

Author(s)

Vivekananda Roy

References

Roy, V.(2024) A geometric approach to informative MCMC sampling https://arxiv.org/abs/2406.09010

Examples

n=50; p=100; nonzero = 3
trueidx <- 1:3
nonzero.value <- 4
TrueBeta <- numeric(p)
TrueBeta[trueidx] <- nonzero.value
rho <- 0.5
xone <- matrix(rnorm(n*p), n, p)
X <- sqrt(1-rho)*xone + sqrt(rho)*rnorm(n)
y <- 0.5 + X %*% TrueBeta + rnorm(n)
result <- geomc.vs(X=X, y=y)
logp.vs(result$median.model,X,y,lam = nrow(X)/ncol(X)^2,w = sqrt(nrow(X))/ncol(X))
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