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Abstract

A popular F test of Granger-causality relies on normally distributed errors of or-
dinary least squares (OLS) linear regressions. There is a long-standing need for a
user-friendly algorithm replacing the OLS by kernel regressions, and the F test by a
bootstrap. This paper introduces a version (1.1.6) of the R package ‘generalCorr’ which
offers (bootGcRsq) to satisfy the need. Granger causality requires the ‘cause’ to occur
at a time before the ‘effect’ occurs, ruling out concurrent causality. The R command
(causeSummary) for assessing concurrent causality possibly in cross-sectional data is
now enhanced by (causeSummBlk). The command (gmcmtx0) for the non-symmetric
matrix of generalized correlation coefficients R∗ is enhanced by (gmcmtxBlk). The
asymmetric R∗ leads to two new concepts, (i) measures of dependence implemented
by the command (depMeas), and (ii) generalized canonical correlations which explic-
itly incorporate pairwise non-linear dependence between linear combinations of vari-
ables. The latter needs a new Lagrangian maximization implemented by the command
(canonRho). We illustrate its application using joint production of wool and mutton
by capital and labor.
Keywords: generalized measure of correlation, non-parametric regression, observational
data, endogeneity.

1 Introduction: Improving correlation as a measure of

dependence

The threefold aim of this paper is to discuss usage of three software tools or functions newly
available in the R package ‘generalCorr’ versions (1.1.6) and later.

(i) Newer measures of dependence in Section 2.

*Vinod: Professor of Economics, Fordham University, Bronx, New York, USA 104 58. E-mail:
vinod@fordham.edu. https://www.ssrn.com/abstract=3737870 also has this paper which is a vignette
number 5 of the R package ‘generalCorr.’
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(ii) Granger-causality using kernel regressions and maximum entropy bootstrap in Section
3

(iii) Canonical correlations defined for non-symmetric matrix of generalized correlation co-
efficients R∗ in Section 4.

We include examples with R code illustrating the usage of these new tools. The reader is
invited to copy any, if not all, material in the red font and paste it on their own R console.
The response by R should match the material in blue font. We have shortened the response
output of the code for brevity.

2 Newer measures of dependence

Karl Pearson developed the correlation coefficient r(X, Y) in the 1890s. We show that it
can underestimate the dependence between two variables by as much as 91%. Expanding
on Zheng et al. (2012) Vinod (2014) develops new generalized correlation coefficient which
avoids underestimation, furthermore showing that when r∗(Y |X) > r∗(X|Y ), X is the“kernel
cause” of Y . Vinod (2017) reports simulations favoring kernel causality. An R software pack-
age called ‘generalCorr’ (at www.r-project.org) computes generalized correlations, partial
correlations, and plausible causal paths. This short paper describes the block versions of
various R functions added to the ‘generalCorr’ package in versions 1.1.5 and later. Vinod
(2019) describes the latest rendering of the underlying theory behind causal paths including
formal theorems with proofs. The newer R function ‘causeSummBlk(.)’ is recommended for
practitioners.

An R package in Vinod (2016) called ‘generalCorr’ provides software tools for computing
generalized correlation coefficients and preliminary determination of causal directions among
a set of variables. Newer versions provide further enhancements. In the sequel we use the
red font to identify code which is ready for copy and paste to the reader’s own R console.
For example consider the code:

library(generalCorr)

x=1:20; y=sin(x)

cor.test(x,y)

Note that y = sin(x) is perfectly dependent on x in this example. Next, we shall see that
the usual correlation coefficient underestimates dependence. The output of the above code
is as follows

Pearson's product-moment correlation

data: x and y

t = -0.40418, df = 18, p-value = 0.6908

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.5157148 0.3629142
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sample estimates:

cor

-0.0948372

The above output clearly shows that the Pearson correlation coefficient rxy is close to zero
and that it is statistically insignificant. Since y perfectly depends on x, a proper measure of
dependence should somehow reveal this 100% dependence. Yet we find that rxy = −0.095
underestimates dependence by 1−0.095 = 0.905, implying a staggering 91% underestimation.
The underestimation occurs because the usual correlation coefficient measures only linear
dependence, and the functional dependence of y on x by the relation y = sin(x) is nonlinear.

A general non-symmetric matrix of generalized correlation coefficients is computed by
using the ‘generalCorr’ package as follows.

gmcmtx0(cbind(x,y))

The matrix output produced by the R function ‘gmcmtx0(.)’ is non-symmetric with the
column name as the most plausible “cause” and row name as its “effect.” The conditioning
variable may be stated as r∗row|column, with an asterisk to denote the generalized correlation.
The matrix is expected to be generally non-symmetric, similar to causal paths.

> gmcmtx0(cbind(x,y))

x y

x 1 -0.04847292

y -1 1.00000000

The second row (named y) of the first column (named x) reports the generalized correlation of
r∗y|x = −1. This suggests that the independent variation in x is 100% responsible for causing

the variation in y = sin(x). On the flipped side (across the diagonal of the reported matrix),
we have the effect of independent variation in y (the second column name), r∗x|y = −0.0485.
That is, only about 5% effect on x = 1, 2, . . . 20 named along the first row can be attributed
to independent variation in y = sin(x).

Upon ignoring the causal direction, a symmetric measure of dependence can be defined
as the larger absolute value between the two generalized correlations.

depMeas = sign(rij)max(|r∗i|j|, |r∗j|i|), (1)

where we use the sign of the original correlation coefficient. For our simple problem with
n = 20 we have depMeas = −max(| − 1|, |0.0485|) = −1 implying perfect dependence of
y = sin(x) on x.

An alternate symmetric version uses the geometric mean (gm) or the square root of the
cross products of two correlations defined as

Rgm = {Rgm
ij } = {sign(rij)

√
(|(r∗i|j ∗ r∗j|i)|}, (2)

where sign(rij) denotes the sign of the Pearson coefficient as before.
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2.1 Block versions of some functions

The ‘gmcmtx0(.)’ uses nonparametric kernel regression of y on x and also of x on y via the
R package ‘np’ Hayfield and Racine (2008), which in turn uses a single bandwidth parameter
for each variable for the entire data range of n observations. Block version subdivides the
data range into k non-overlapping intervals of block length defined by a parameter blksiz=10
as the default. For example, if we have n = 10k observations, we have k blocks with the
first block of the first 10 and the next block of the next 10 and so on for the k blocks. In
general, n need not be an integer k times ‘blksiz’ chosen by the researcher. Since we cannot
have less than blksiz=10 observations for fitting our nonparametric regressions (needed by
‘gmcmtx0(.)’ using the np package), we must let the last block become larger than the
designated blksiz. For example, when n = 25, we have k = 2 blocks, with the first block
having the first 10 observations, and the next block having all remaining 15 observations.

The block version of gmcmtx0(.) called gmcmtxBlk(.) is included in versions 1.1.5
or higher of my ‘generalCorr’ package. Considerable care is needed to create nonlinear
nonparametric conditional expectation functions (fitted values) for each block and to further
string them together into an overall vector of fitted values. The reader can know the exact
algorithm by simply typing the name of the function on the R console.

A new R function depMeas(x,y) does not automatically implement the block version.
The default blksiz is ‘length(x),’ that is entire sample size n is the block size, that is no
blocking is done. A block version requires setting a smaller block size as: depMeas(x, y,

blksiz=10) assuming n > 10.
Most block versions of functions in ‘generalCorr’ package use the letters ‘Blk’ or ‘B’ in

their names and have the default of blksiz=10. For example, ‘causeSummBlk’ is a block
version of one of the most useful and easy to use functions ‘causeSummary’ in ‘general-
Corr.’ Also see ‘gmcmtxBlk’ for generalized correlation coefficients, whereas ‘parcorBijk’
and ‘parcorBMany’ provide their partial correlation versions. Causality scores with blocking
are available in ‘siPairsBlk.’

x=1:20; y=sin(x)

depMeas(x,y)

The depMeas(.) expects two vectors as inputs. The following output shows that it correctly
recognizes that y = sin(x) has perfect 100% dependence or −1 as the signed dependence
measure.

> depMeas(x,y)

[1] -1

Now we show the need for a block version for larger sample sizes, such as when n > 20
at say n = 40.

x=1:40; y=sin(x); depMeas(x,y)

The output below shows that the dependence is now wrongly estimated to be only 0.32,
whereas the correct level is 1.
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> x=1:40; y=sin(x); depMeas(x,y)

[1] 0.321893

Now we show that a block version does indeed give a correct measure of dependence
(close to perfect 100%) for two examples with n = 40, n = 60.

x=1:40; y=sin(x); depMeas(x,y,blksiz=10)

x=1:60; y=sin(x); depMeas(x,y, blksiz=10)

The output below shows that the dependence is correctly estimated to be 1.

> x=1:40; y=sin(x); depMeas(x,y,blksiz=10)

[1] 1

> x=1:60; y=sin(x); depMeas(x,y, blksiz=10)

[1] -1

The blocking works by implicitly adding an extra bandwidth parameter for each block
allowing greater flexibility in nonlinear kernel fitting at the cost of adding more bandwidth
parameters, depending on the sample size.

Let us report an illustrative complicated function relating x and y, where we expect a
good measure of dependence to be close to unity.

x=1:40

y= sin(x)+3*(cos(x))^3

depMeas(x,y, blksiz=10)

Interestingly, many complicated functions relating x and y do give high dependence results.

depMeas(x,y, blksiz=10)

[1] 0.9685486

If one tries y = exp(x) ∗ (cos(x))2 + 99 ∗ sqrt(x) we find

depMeas(x,y, blksiz=10)

[1] 0.9932447

We can safely conclude this section by claiming that great many arbitrary (complicated) but
exact nonlinear relations between x and y yield near unity measures of dependence, avoiding
the extreme underestimation by the traditional correlation coefficient.

3 Granger Causality Testing

Causality is generally difficult to test by statistical methods alone. Denote two time series
as X and Y and one wants to predict the next value of Y from past values of Y and past
values of X. If past values of X are useful for predicting Y , Economics Nobel laureate Clive
Granger suggested in Granger (1969) that we can say that X → Y or X causes Y . Granger’s
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view of causality is popular and well covered in textbooks, (Hansen, 2020, sec. 14.43), under
the name ‘Granger causality’ to be distinguished from true causation. It is usually a one-
step-ahead predictive causality, admittedly subject to the famous fallacy of “post hoc ergo
propter hoc” translated as “after this, therefore because of this.”

Granger’s tool is implemented in some R packages, including Zeileis and Hothorn’s
‘lmtest,’ which contains a bivariate version of the test. Granger’s non-causality null hy-
pothesis is as follows. The past p-values of X(Xt−1, to Xt−p) do not help in predicting the
next value of Y beyond the prediction by its own past values. We regress:

Yt = α0 + α1Yt−1 . . . αpYt−p + β1Xt−1, . . . , βpXt−p + εt, εt ∼ N(0, σ2). (3)

An F -test in the ‘lmtest’ package tests the Granger non-causality null hypothesis that all
coefficients of the past values of X are jointly zero: (β1 = β2 = . . . = βp = 0).

The R package ‘lmtest’ comes with data for an intuitively attention-grabbing question:
What came first: chicken or egg? It uses slightly changed Thurman & Fisher’s 1988 annual
data for years (1930 to 1983) on US production of these commodities. The following code
shows how to use the ‘grangertest’ function on these data.

#Example: Did Chicken came first or Eggs?

library(lmtest); data(ChickEgg)

attach(data.frame(ChickEgg))

grangertest(egg ~ chicken, order = 3, data = ChickEgg)

The output of ‘grangertest’ (omitted for brevity) shows that F statistic is 0.5916, which is
very small, with a p-value= 0.6238 > 0.05, the usual 5% type I error. Granger non-causality
null is not rejected (accepted), or the RHS variable ‘chicken’ does not Granger-cause the
LHS variable ‘egg,’ implying the causal path (egg→ chicken).

Apart from the so-called ‘post hoc’ fallacy problem associated with relying on time-
precedence to infer causality mentioned above, an important limitation of the Granger test
is that it assumes linear relations among the variables in (3) with normal errors ε ∼ N(0, σ2).
Newer versions of generalCorr (≥ 1.1.6) use nonparametric kernel regressions as well as the
bootstrap for statistical inference. The following code illustrates by using the chicken-egg
data.

#Chicken/Eggs data above, meboot and kernel regressions

library(generalCorr);options(np.messages=FALSE)

b1=bootGcRsq(x1=chicken,x2=egg,pwanted=3,px1=3,px2=3,n999=999)

bb=b1[,3]; print(length(bb[bb>0])/999)

Fn=function(x) quantile(x,prob=c(0.025, 0.975))#confInt

apply(b1,2,Fn)#reports 95 percent confidence interval

Kernel regressions and maximum entropy bootstraps for realistic estimation and statistical
inference are admittedly computer intensive. Even with only 54 data points, the above code
takes 122 minutes on a Windows 10 Dell computer with i5-7500 CPU @ 340GHz with 8GB
RAM and 64 bit operating system. The function ‘bootGcRsq’ uses ‘local linear’ fits and

6



Akaike Information Criterion (AIC) is used for bandwidth selection in the ‘np’ package. A
default setting giving ‘local constant’ fit with least squares bandwidth selection is faster
taking 61 minutes for the same job, with slightly less accurate estimates. Abridged output
of the above code follows.

[1] "dif>0 means Rsq-X1-on-X2 > Rsq-X2-on-X1 with causal path X2-->X1"

[1] "95 percent confidence intervals for each column"

> bb=b1[,3]; print(length(bb[bb>0])/999)

[1] 0.982983

> Fn=function(x) quantile(x,prob=c(0.025, 0.975))#confInt

> apply(b1,2,Fn)#reports 95 percent confidence interval

Rsq-X1-on-X2 Rsq-X2-on-X1 dif

2.5% 0.9455809 0.8088933 0.003659968

97.5% 0.9925729 0.9703288 0.166225143

The 95% confidence interval in the last column entitled ‘dif’ for the difference [R2(x1-on-
x2)−R2(x2-on-x1)] between coefficients of determination of the two flipped kernel regressions
does not contain the zero. The number of positive realizations of ‘dif’ are over 98%, suggest-
ing that x2=egg Granger-causes x1=chicken, supporting the path (egg→ chicken), with over
98% chance and agreeing with ‘lmtest.’ Thus, upon allowing for nonlinearity our bootstrap
inference based on 999 resamples agrees with the F-test-determined path (egg→ chicken) of
Granger causality.

Real-world relations are rarely linear, and regression errors (εt) are rarely bell shaped.
The above R code illustrates how to use the new function ‘bootGcRsq’ for any application
where one wants to test Granger-causality using modern 21-st century tools without assuming
(a) linear regressions and (b) Normally distributed errors needed to justify F tests.

4 Generalized Canonical Correlations

Now we turn to our third objective mentioned in the introduction. Hotelling (1936) is
concerned with dependence relations between two sets of variables in his canonical correlation
analysis (CCA). He places at least two variables in the left-hand side (LHS) set and at least
two in the right-hand side (RHS) set. Hotelling’s motivating examples include (i) relations
between the human body and mind measured by physical and mental measurements on
individuals, and (ii) jointly dependent agricultural product demands and prices based on
sets jointly demanded products such as wheat, potatoes, barley, and rye. The dimension
reduction methods of CCA are widely applied in many areas of science attested by many R
packages we mention later.

This section extends his methods to a generalized non-symmetric correlation matrix R∗

produced by the R command generalCorr::gmcmtx0 partitioned as:

R∗ =

[
Σ11 Σ12

Σ21 Σ22

]
, (4)
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involving two sets of standardized (zero mean unit variance) variables, X1 and X2 with r
and (p− r) elements, respectively, with r ≤ (p− r). We define

X ′1 = (x1, x2, . . . xr), (5)

X ′2 = (xr+1, xr+2, . . . xp), (6)

w1 = α′X1, (7)

w2 = β′X2, (8)

where w1 and w2 are two sets of linear combinations of variables with an r × 1 vector
containing LHS weights α = [αi, i = 1, 2, . . . r] and a similar (p − r) × 1 vector of RHS
weights β = [βj, j = 1, 2 . . . (p− r)]. The estimation of CCA is feasible only when the larger
set with coefficients denoted by β is on the RHS.

The traditional CCA maximizes the bilinear form α′Σ12β(= β′Σ21α), the covariance
between w1 and w2. It is a sum of cross products written as a bilinear quadratic form. Our
generalized CCA proposed here replaces the usual correlation matrix R = {rij} by a non-
symmetricR∗ = {r∗i|j}, whose elements are signed square roots ofR2 of two flipped regressions
between LHS and RHS sets (Result 3) consistent with the partition in (4). While traditional
CCA can begin with a partition of variance-covariance matrices between Xj, j = 1, 2, . . . p
variables, the first step of generalized CCA must be a partitioning of generalized correlation
matrix R∗, not a covariance matrix.

Since R∗ is non-symmetric with Σ12 6= Σ21, it makes a difference whether the maximand
is α′Σ12β or β′Σ21α. Hence, we let us maximize an average of the two bilinear forms with a
new maximand (1/2)[α′Σ12β + β′Σ21α].

The analytical implications of the new maximand are explored next. Our modified La-
grangian maximand is

L = (1/2)[α′Σ12β + β′Σ21α− µ1(α
′Σ11α− 1)− µ2(β

′Σ22β − 1)]. (9)

The first-order condition from matrix derivatives from matrix algebra texts (Vinod, 2011,
p. 256) for ∂L/∂α yields

β′[Σ′12 + Σ21] = µ1α
′(Σ11 + Σ′11), (10)

which differentiates a bilinear form involving a non-symmetric matrix. After incorporating
∂L/∂β and algebraic manipulations

β′[Σ′12 + Σ21](Σ11 + Σ′11)
−1[Σ12 + Σ′21](Σ22 + Σ′22)

−1 = µ2
2β
′.

Changing the notation µ2
2 by ρ2 and computing a transpose of both sides gives the equation

(Σ22 + Σ′22)
−1[Σ12 + Σ′21]

′(Σ11 + Σ′11)
−1[Σ′12 + Σ21]

′β − ρ2β = 0. (11)

It is convenient to simplify (11) by defining

A∗ = (Σ22 + Σ′22)
−1[Σ21 + Σ′12](Σ11 + Σ′11)

−1[Σ12 + Σ′21], (12)
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which is observable provided the two matrix inverses exist.
Substituting A∗ in (11) we have A∗β − ρ2β = 0 or (A∗ − ρ2I)β = 0. We rule out the

trivial solution β = 0 and get the determinantal equation of the usual eigenvalue-eigenvector
problem. It yields our estimate of β as the eigenvector associated with the largest eigenvalue
ρ2. We maximize of the Lagrangian by choosing the eigenvector associated with the largest
ordered eigenvalue ρ2.

Traditional CCA makes the LHS coefficients α observable by solving

α = [Σ−111 Σ12β]/ρ, (13)

where the square root ρ of the eigenvalue has an arbitrary sign, suggesting that canonical
correlation estimates of α, β are known only up to their signs. The freedom to change all signs
(from negative to positive, say) can be useful in interpreting the estimated α coefficients to
make sense in applications. Using the package ‘generalCorr,’ the command canonRho(mtx,

nLHS = 2, sgn = 1, verbo = FALSE, ridg = c(0, 0)) readily implements this.
In our non-symmetric case, we estimate α by:

α = [(Σ11 + Σ′11)
−1[Σ12 + Σ′21]β]/ρ. (14)

Our derivation above generalizes the following equation from the traditional CCA,

Σ−122 Σ21Σ
−1
11 Σ12β − ρ2β = 0 = Aβ − ρ2β, (15)

well-defined only when the two matrix inverses exist. Traditional CCA algorithm uses the
familiar eigenvalue-eigenvector problem Aβ = ρ2β to estimate β as the eigenvector associated
with the largest eigenvalue ρ2. Generalized CCA simply replaces A by A∗.

Vinod (1976) confronts some numerical issues with the traditional CCA and solves them
by adding a matrix λI before the matrix inversions in (15), where λ is a small constant based
on measurement errors. The version with

Ar = (Σ22 + λI)−1Σ21(Σ11 + λI)−1Σ12

is referred to as ‘regularized’ CCA in many computer ‘deep learning’ applications. For
example, Tuzhilina et al. (2020) discuss group regularization, and Garcia-Medina and Gon-
zalez (2020) make their estimates less sensitive to small perturbations in the data by using
λ = 0.01.

Since the generalized correlation coefficients r∗i|j comprising non-symmetric R∗ matrix are
generally larger in magnitude than the usual correlation matrix containing rij, the diagonal
blocks Σ11,Σ22 are likely to be collinear. Hence, the regularization adding the λI matrix
appears desirable in applications using our extension.

We cannot guarantee that the eigenvalue-eigenvector problem A∗β = ρ2β from asymmet-
ric R∗ matrices will always yield real eigenvalues. If eigenvalues contain imaginary numbers,
one can use our symmetric versions, Rmax or Rgm, based on nonlinear dependence defined in
(1) or (2), guaranteed to avoid imaginary eigenvalues, while admitting nonlinear dependence
among all variable pairs.
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Recall that generalized r∗i|j values avoid severe underestimation of dependence by the
usual correlation coefficients rij in cases where the dependence is nonlinear. Hence the users
of traditional CCA need an option to use a superior measure of pairwise dependence. We
have demonstrated that one can indeed replace all partitions of Σ matrices in derivations
of traditional CCA. We replace Σ by a generalized non-symmetric matrix of correlations
R∗, whose elements represent superior measures of dependence between all variable pairs.
Next, we use a similar partitioning, making several appropriate modifications of Hotelling’s
CCA derivation to obtain new estimates of coefficients (α, β), while relaxing some of his
assumptions. These new coefficients use the modified maximand from (9).

González and Déjean’s R package ‘CCA’ cites Vinod (1976) and contains data sets on
which one can try our function canonRho. The package ‘ccaPP, incorporates projection
pursuit, ‘CCP’ provides significance testing, ‘nscancor’ imposes non-negativity constraints.
Much work needs to be done in this area with numerous practical applications.

4.1 Numerical examples of new CCA

In an attempt to explore the implications of the new maximand from (9) this subsection
considers an example of joint production of wool and mutton from capital and labor inputs
from (Vinod, 2008, Sec. 5.2). Table 1 reports the usual correlation matrix R in the upper
panel and generalized R∗ in the lower panel. We partition these matrices using r = 2, p = 4,
as shown in eq. (4).

rm(list=ls()) #clean out memory of R new problem

options(prompt = " ", continue = " ", width = 68)

print(date())

labor=c(17703, 18552, 18814, 13490, 13390, 12710, 13100,

13350, 14280, 14710, 13290, 12560)

cap=c(193649, 227548, 206165, 261888, 260120, 158990,

262540, 286690, 307320, 309180, 302420, 304810)

wool=c(228091, 233309, 232258, 235807, 241284, 242177,

239101, 243713, 259939, 166563, 261249, 248538)

mutton=c(11416, 14304, 16321, 16255, 16553, 16328, 15292,

14495, 15528, 16239, 17536, 17171)

labor=ts(labor, frequency=1, start=c(1951,1))

cap=ts(cap, frequency=1, start=c(1951,1))

wool=ts(wool, frequency=1, start=c(1951,1))

mutton=ts(mutton, frequency=1, start=c(1951,1))

nn=10000 #used to re-scale all large data numbers

cap=cap/nn; labor=labor/nn; wool=wool/nn; mutton=mutton/nn

mtx=cbind(wool,mutton,cap,labor)

mtx2=apply(mtx,2,log)#log all variables

Note that mtx2 contains data on logs of wool, mutton, capital, and labor inputs. Now, we
compute the two correlation matrices.
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Table 1: Correlation coefficients rij in the upper panel and their generalized values r∗i|j in
the lower panel use logs of all variables

wool mutton capital labor
wool 1.0000 0.0883 -0.0622 -0.2411

mutton 0.0883 1.0000 0.3745 -0.5381
capital -0.0622 0.3745 1.0000 -0.3794

labor -0.2411 -0.5381 -0.3794 1.0000

wool 1.0000 0.5153 -0.0331 -0.2464
mutton 0.1280 1.0000 0.3769 -0.8974
capital -0.6573 0.6023 1.0000 -0.6228

labor -0.9621 -0.4929 -0.9994 1.0000

The R functions to compute CCA using correlation coefficients included only in the new
version (>1.1.5) is called canonRho().

library(generalCorr)

options(np.messages=FALSE)

library(xtable)

xtable(cor(mtx2),digits=4)

g1=gmcmtx0(mtx2) #define generalized corr matrix as g1

xtable(g1,digits=4)

Note that the correlation coefficient between log wool and log mutton is only 0.0883 in
the upper panel of Table 1. The lower panel has the larger magnitudes with r∗1|2 = 0.5153
and r∗2|1 = 0.1280 when nonlinear fits are considered.

Now we are ready to compute CCA coefficient vectors and the value of the maximized
eigenvalue ρ2 leading to a measure of dependence between two sets ρ as the positive square
root of the maximized eigenvalue.

c1=canonRho(cor(mtx2),verbo=TRUE)

print("Pearson corr. mtx version")

print(c1)

c2=canonRho(g1,verbo=TRUE)

print("gmcmtx0 generalized corr. mtx version")

print(c2)

c3=canonRho(symmze(g1),verbo=TRUE)

print("symmetrized gmcmtx0 generalized corr. mtx version")

print(c3)#R* version

c4=canonRho(g1,verbo=TRUE, ridg=c(0.01,0.01))

print("gmcmtx0 generalized corr. mtx with ridge regularization version")

print(c4) #not symmetrized but generalized R*

c5=canonRho(symmze(g1),verbo=TRUE, ridg=c(0.01,0.01))

print("gmcmtx0 generalized and symmetrized corr. mtx with ridge regularization version")
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print(c5)#symmetrized R* ridge version

fbet=rbind(c1$bet,c2$bet,c3$bet, c4$bet, c5$bet)

falp=cbind(c1$alp,c2$alp,c3$alp, c4$alp, c5$alp)

frho=rbind(c1$rho,c2$rho,c3$rho, c4$rho, c5$rho)

ans=cbind(t(falp),fbet,frho)

colnames(ans)=c("LnWool", "LnMutton", "LnCap", "LnLab","rho")

rownames(ans)=c("CCA","genCCA","SymGenCCA","GenRidgCCA","SymGenRidgCCA")

print(ans)

xtable(ans,digits=4)

We report the output of above code in Table 2. If eigenvalues are imaginary numbers for
the generalized correlation matrix R∗ denoted in the R code as g1, the coefficient estimates
for α, β are not meaningful and we need to use the symmze() function to create a symmetric
matrix of generalized correlation coefficients and then use canonRho().

We report α, β estimates of all five versions of CCA along rows of Table 2. Since eigen-
vector signs are arbitrary, our reported values change all signs to have a majority of positive
signs. The row labeled ‘CCA’ refers to the Hotelling version. The row labeled ‘genCCA’ uses
the R∗ matrix from the lower panel of Table 1. The row labeled ‘SymGenCCA’ reports the
results for Rd defined in eq. (1), using symmetrized R∗ without any ridge-type adjustment.
The row labeled ‘GenRidgCCA’ contains the version with the ridge-type adjustment with
λ = 0.01 for both LHS and RHS. The row labeled ‘SymGenRidgCCA’ reports the sym-
metrized Rd version with the ridge-type adjustment with λ = 0.01 for both LHS and RHS.
Logs of variables are denoted by the prefix ‘Ln’.

Note that the symmetrized Rd based on nonlinear dependence defined in eq. (1) needs
the R function symmze(). This operation is not really needed for the wool-mutton example
since eigenvalues are real. It is meant for the imaginary eigenvalue cases and the rho val-
ues reported in the last column of Table 2 do not have the usual interpretation, since the
symmetry of Rd matrix is an artificial construct.

This section has demonstrated the feasibility of generalized CCA and its potential benefit
in improving the dependence index as well as the fit based on estimated α, β weights on the
two sets of variables.

Table 2: Estimated coefficients α1, α2 and β1, β2 for Hotelling CCA, generalized CCA, and
a version of the generalized CCA using ridge-type adjustment with λ = 0.01

LnWool LnMutton LnCap LnLab
CCA -0.2779 -1.0329 0.2663 -0.9639

genCCA -0.4466 0.0412 0.6952 0.7189
SymGenCCA 0.0270 -0.0099 -0.7071 -0.7071
GenRidgCCA -0.4510 0.0404 0.6946 0.7194

SymGenRidgCCA 0.0853 -0.0311 -0.7074 -0.7068

We do not claim that the new Lagrangian for asymmetric generalized correlation matrices
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is always useful. Since this is an active area of research in many fields of science, we encourage
readers to try our algorithm ‘canonRho’ on their data sets.

5 Final Remarks

For perfectly dependent Xj = sin(Xi) example, Pearson’s product-moment correlation co-
efficient developed for the computing facilities of the 1890s, rij = −0.17, underestimates the
absolute magnitude of dependence by 83%. The generalized correlation coefficient, designed
for the modern computing environment, r∗j|i = −1, correctly reveals the perfect dependence
of the two series, even if the dependence is nonlinear. There is little reason to live with
potentially vast underestimation in ubiquitous applications of correlation coefficients. Hence
readily computed generalizations of Pearson correlation and partial correlation coefficients
available in a free R package ‘generalCorr’ are worthy of consideration.

It appears that blocking does improve the performance of generalized correlations and
causal path algorithms. The new functions causeSummBlk(cbind(x,y,z)),

gmcmtxBlk(cbind(x,y,z)) along with a measure of dependence depMeas(x,y,blksiz=10)

can be recommended for general use.
Our generalization of the Granger-causality test statistic as the difference between two

R2 values of two flipped kernel regressions allow for nonlinear and nonparametric causal
dependence between two time series. The function ‘bootGcRsq’ is shown to be easy to use.

We have analytically derived a generalization of Hotelling’s canonical correlation analysis
(CCA) to allow nonlinearities. Our example shows that the function ‘canonRho’ to imple-
ment the new CCA can be readily implemented. We are unable to demonstrate its practical
usefulness at this time.
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