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Abstract

It is shown to be impossible to directly test Engle-Hendry-Richard’s
‘weak exogeneity,’ which relies on ‘sequential cuts’ of a likelihood func-
tion. Hausman-Wu’s indirect exogeneity test is akin to medieval-style
diagnosis of a disease (endogeneity) by showing that a (dubious) in-
strumental variables (IV) estimator remedy ‘works.’ Hence my pack-
age ‘generalCorr’ fills a need for a modern exogeneity test statistic ui
or ‘unanimity index’ based on a Theorem proved here, measuring pre-
ponderance of evidence from four orders of stochastic dominance and
new generalized partial correlation coefficients. The ui helps deter-
mine the direction and strength of causal and exogenous variables. A
simulation supports our decision rules. Illustrative examples include
air-pollution and variables driving ‘excess bond premium,’ a known
predictor of US recessions, among others.

1 Introduction

This paper provides new tools and tests for determining causal paths and
exogeneity using observational data on several variables with potential ap-
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plicability in many sciences and implemented in an R package called ‘general
Corr’. We illustrate with many examples.

Consider a possibly non-linear nonparametric regression:

Y � f�X1,X2,�Xp� � ε1, (1)

where exogeneity of a regressors Xi was first defined by Koopmans (1950) as
requiring that Xi should “approximately cause” Y , the endogenous variable.
That is, the causal path Xi � Y should hold.

An in influential lead article in Econometrica, Engle et al. (1983) (here-
after “EHR”), was perhaps the first to use flipped models in the present
context. Accordingly, a model obtained by flipping Y and Xi is:

Xi � f2�Y,X1,X2,�Xi�1,Xi�1,�Xp� � ε2, (2)

which specifies the opposite causal path Y �Xi.
A joint density can be written as a product of a conditional and marginal

density (using subscripts ‘jt’, ‘cnd’ and ‘mar’):

fjt�Y,Xi, i � 1,�p� � fcnd�Y,Xj, �j x i��SXi� � fmar�Xi�, (3)

� f �cnd�Xi, �i � 1,�p�SY � � f �mar�Y � (4)

In addition to Koopmans’ causality, EHR mention (p. 285) Zellner’s
predictability-based causality, whereby a causal direction Xi � Y requires
that Xi in eq. (1) should predict Y better, with a larger R2 than the flipped
eq. (2). EHR focus on flipped ordinary least squares (OLS) estimators for
equations (1) and (2), assuming p � 1 and f1, f2 strictly linear. Now EHR
argue that Koopman-Zellner causality is ambiguous, because the R2 values
of flipped regressions are identical.

The computing facilities in 1983 when EHR was published mostly ex-
cluded nonparametric (kernel) regressions and bootstraps. In the absence
of nonparametric tools, EHR rewrite eq. (3) after conditioning on explicit
parameters λ � �λ1, λ2) as:

fjt�Y,Xi, i � 1,�pSλ� � fcnd�Y,Xj, �j x i�SXi, λ1� � fmar�XiSλ2�, (5)

related to a factoring of the likelihood function, needed for maximum likeli-
hood (ML) estimation. Now EHR’s widely accepted “weak exogeneity” is
complicated, because it requires eq. (5) to implement a ‘sequential cut’
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extending Barndorff-Nielson notion of a cut for the exponential family of
distributions.

Definition 1.1 (EHR weak exogeneity): Xi is weakly exogenous for
parameters of interest, ψ, if there exists a re-parameterization λ � �λ1, λ2)
where

(i) ψ is a function of λ1, and
(ii) [fcnd�Y,Xj, �j x i��SXi, λ1� � fmar�XiSλ2�] operates a ‘sequential cut’

defined in eq. (5).

Properties of EHR weak exogeneity:
[WE1] Parameter Distinctions: A distinction between parameters of in-

terest, ψ, and other (nuisance) parameters λ2 is a crucial part of the defini-
tion.

[WE2] Granger Causality Irrelevant: EHR state (p. 290) that “Granger
noncausality is neither necessary nor sufficient for weak exogeneity.”

[WE3] Invariance: EHR assume that ψ are invariant to policy changes to
avoid the famous Lucas critique.

[WE4] Inability to test: EHR flip a two-equation simultaneous equations
model (their equations numbered 27 and 28 versus 30 and 31) to argue on
page 288 that “the choice of parameters of interest is the sole determinant of
weak exogeneity, which is, therefore not directly testable.”

Definition 1.2 (Strict exogeneity): An explanatory variable X1 is
strictly exogenous in a structural equation (1) if X1t is orthogonal to errors
ε1t, or Xt Ù ε1t.

As is well known from textbooks, (Davidson and MacKinnon, 1993, p.
625), strict exogeneity is a restrictive concept.

Definition 1.3 (Stochastic Dominance): Density f�X� dominates
another density f�Y � in the first order if their respective empirical cumulative
distribution functions (ecdf) satisfy: F �x� B F �y�.

Stochastic dominance has been developed in Financial Economics for com-
paring two densities (associated with competing investments). It is surveyed
in Levy (1992) and four orders of stochastic dominance are discussed later in
Section 3.1. It may seem strange at first sight that the dominating density
f�X� with larger magnitudes has smaller cumulative density.

The aim of this paper is to use the insights of strict exogeneity and sim-
plify ‘weak exogeneity’ by using certain inequalities based on nonparametric
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kernel regressions quantified by stochastic dominance tools. We overcome
the property [WE4] by developing a new computer intensive bootstrap test
for exogeneity.

1.1 Intuition behind the new exogeneity test

This section offers a preview of our exogeneity test statistic and its inference
without the details. We use 2008 European crime data called ‘EuroCrime’ in
my R package ‘generalCorr.’ The flipped variables for these data are ‘violent
crime rate (crim)’ and ‘police officer deployment (off) rate’ in 28 European
countries measured in comparable units.

The Pearson correlation coefficient between ‘crim’ and ‘off’ is large, rxy A
0.99. Elementary statistics teachers use this type of an example to explain
that high correlation does not mean police officers cause the crime, or ‘cor-
relation is not causation’. We can turn this unlikely example on its head to
show that generalized correlations can indeed have useful information about
causal path directions, provided we judiciously use modern computing tools.

Here is the intuition. The data generating process (DGP) for the ‘crim’
variable having the marginal density fmar in eq. (3) is intuitively likely
to be self-driven or exogenous, while the DGP of police officer deployment
would respond more to crime rates and less likely to be self-driven. Now
it becomes an empirically testable proposition which implies that ‘crim’ is
‘Kernel exogenous’ according to our Definition 2.1 below.

With rxy A 0.99 statistical independence null is readilty rejected. Instead,
we focus on asymmetric dependence between ‘crim’ and ‘off’ implying that
the regression specification: off� f1�crim� � ε1, should be superior to crim�

f2�off� � ε2. We propose three criteria Cr1 to Cr3 to quantify three ways of
assessing that superiority.

The intuition behind our Cr1 is the OLS consistency requirement E(crim
ε1� � 0. This is also ‘strict exogeneity’ of our Definition 1.2. The absolute
values of crossproducts between the regressor ‘crim’ and errors ε1 for the
superior model should be ‘smaller’ than those between ‘off’ and ε2. Our
Cr2 requires absolute values of residuals of the superior specification to be
stochastically ‘smaller’ with a better fit: Sε̂1S @ Sε̂2S. Zellner’s predictability-
based causality provides the intuition behind our Cr2 and Cr3. It states
that the superior model should have a better predictive ability. Applying
kernel regressions to European crime data, what matters for Cr3 is that the
superior model’s R2 � 0.9972 exceeds R2 � 0.9960 for the flipped model, even
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though they are close. Since it is not safe to rely on any one criterion, we
use ‘preponderance of evidence’ using all three.

All three criteria unanimously suggest the sensible causal path: crim�off,
yielding a sample unanimity index ui � 100. The mode of 999 bootstrap
resamples confirms crim�off, with success percent of about 65%, smaller
than the traditional 95%. Collective bargaining by unionized police officers
in some 35% European countries may have set 2008 officer deployment levels,
instead of 2008 crime rates.

We conclude this introductory motivational section with an outline of the
remaining paper. Section 2 contains our Theorem 1 and a defines ‘kernel
exogeneity.’ Section 3 further explains kernel causality including a proposi-
tion on existence of unanimity index (ui) helping to determine from our ‘sum’
criterion incorporating Cr1 to Cr3 based on some digressions needed for com-
paring the flipped models. The section ends with our decision rules. Section
4 reports a simulation of our decision rules. Section 5 considers statistical
inference using the bootstrap. Section 6 considers examples including the
famous Klein I model, air pollution data, and a model that considers what
macroeconomic variables drive (cause) ‘excess bond premium’ known to be a
good predictor of US economic recessions. Our examples include bootstrap
inference for the new test. Section 7 contains a summary and final remarks.

2 Main Result and Definition of

Kernel Exogeneity

Assuming p � 1 in eq. (1) for ease of exposition, without loss of generality
(wlog), define Model 1 as a nonlinear non-parametric kernel regression:

Yt � G1�Xt� � ε1t, t � 1,�, T, (6)

where errors are no longer Normal and independent. Our nonparametric
estimate g1�X� of the population conditional mean function G1�X� is:

g1�X� � P
T
t�1 YtK�Xt�X

h �
PT

t�1K�Xt�X
h � , (7)

whereK�.� is the well known Gaussian kernel function and h is the bandwidth
parameter often chosen by leave-one-out cross validation, Li and Racine
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(2007) and (Vinod, 2008, Sec. 8.4). It is well known that kernel regression
fits are superior to OLS.

Proposition 1.1 (Optimality of g1) Assume that g1 in eq. (7) belong
to G , a class of Borel measurable functions having finite second moment, then
g1 is an optimal predictor of of Y given X, in the sense that it minimizes the
mean squared error (MSE) in the class of Borel measurable functions.

This proposition is Theorem 2.1 proved in Li and Racine (2007)

Proposition 1.2 (Kernel Regression is CAN) Assume that
(i) �Xt, Yt� are iid and g1�x�, joint density and error variance functions

are twice differentiable.
(ii) K is a bounded second order kernel.
(iii) As T �ª, Th3 �ª and Th7 � 0.
Then kernel regression estimate of the conditional expectation function

g1 is consistent and asymptotically Normal (CAN).

Proof: See Theorem 2.7 of Li and Racine (2007) for further details and
extensions to multivariate and local polynomial generalizations, including a
proof of consistency and asymptotic normality.

The flipped kernel regression Model 2 is obtained by interchanging X and
Y in eq. (6):

Xt � G2�Yt� � ε2t, t � 1,�, T. (8)

If X and Y are statistically independent, or �X Ù Y �, joint density equals
a product of two (unconditional) marginal densities. Hence Theorem 2.1 in
Dawid (1979) argues that the independence of X and Y is symmetric by
stating that: If X Ù Y then Y ÙX must hold true. Statistical independence
can also be expressed in two equivalent ways implying a third equality as:

DySx � fcnd�Y SX� � fmar�Y � � 0, and (9)

DxSy � f �cnd�X SY � � f �mar�X� � 0, implying (10)

DySx �DxSy, (11)

defining two divergences D�.S.� between two densities.
When X and Y are dependent, eq. (11) fails to hold making for asym-

metric divergences: DySx x DxSy. Since variables are generally included in a
model because the researcher thinks they are related to each other or depen-
dent, a formal test for the null hypothesis: H0 �DySx �DxSy � 0, will generally
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be rejected. Hence we expect that one side of eq. (11) will stochastically
dominate the other side by Definition 1.3 above implying asymmetry.

What comes after we establish asymmetry? We propose digging deeper
into the relative magnitudes of divergences. Using Radon-Nikodym theorem
(Rao, 1973, p. 96) notes that conditional expectations can be defined “with-
out reference to a conditional distribution.” Hence a realization from the
divergence density DySx is provided by the observable residual ε̂1t � Yt � g1t.
Similarly a realization from DxSy is ε̂2t � Xt � g2t. Since this paper involves
comparing their numerical magnitudes, we need following assumptions to
force the residuals to have comparable magnitudes and their densities to
have a common support.

Assumptions:

(A1) Assume that flipped kernel regressions of Models 1 and 2 from equa-
tions (6) and (8) are well-identified and bandwidth selections use local
linear cross validation yielding sample estimates g1t, g2t, respectively.

(A2) Xt and Yt data are standardized such that they have zero mean and
unit variance, implying that their marginal densities have a common
support.

Now the following Lemma uses kernel regression residuals to obtain nu-
merically comparable sample realizations from divergence densities.

Lemma 1: Assuming A1 and A2, sample realizations from (DySx,DxSy)
densities forced to have common support are a set of T residuals evaluated
at the t-th observation. Let a.e. denote “almost everywhere” in a relevant
‘measure space.’ Now, using the asymmetry we have:

Sε̂1tS x Sε̂2tS, a.e. (12)

Now using the consistency of kernel regression estimates of conditional ex-
pectation functions, asymmetry also implies the following:

Sε̂1tXtS x Sε̂2tYtS, a.e. (13)

Proof: Equation (12) is an obvious asymmetric implication of statistical de-
pendence. Since the conditional expectation functions (g1, g2) are consistent
by Proposition 1.2, the associated errors must be orthogonal to the regressors
with probability limit: plimT�ª�ε1tXt�~T � 0. The numerator of the ‘plim’
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expression gives the observable left side of eq. (13) upon replacing true errors
with their sample estimates.

Lemma 2: Rewrite the inequalities (12) and (13) after replacing (x) by
(@) and interpret them as follows:

(i) Now eq. (12) becomes SYt � g1t�X�S @ SXt � g2t�Y �S, a.e., which along
with Proposition 1.1 mean that X is a better predictor of Y than vice versa.

(ii) Rewritten (13) means that X is closer to being strictly exogenous
according to our Definition 1.2, than Y is exogenous in the flipped model.

(iii) Rewritten (12) and (13) together mean that the DGP of X is more
likely to be self-driven (exogenous) than the DGP of Y in the flipped model.

Theorem 1: Assume that dependent variables Xt and Yt satisfy Lemma
1 and Lemma 2 with asymmetric conditioning behavior. Denote by F �.� a
generic cumulative distribution function of its argument and write stochastic
dominance relations (Definition 1.3)

F �Sε̂1tXtS� A F �Sε̂2tYtS�, and (14)

F �Sε̂1tS� A F �Sε̂2tS�, (15)

which together imply the following:
(i) Y depends on X relatively more than X depends on Y .
(ii) X is relatively more exogenous than Y is in the flipped models.
(iii) The DGP for X is relatively more self-driven (independent or exoge-

nous) than the DGP for Y .

Proof: Since ‘smaller’ residuals, Sε̂1tS @ Sε̂2tS, imply a better fit (Model
1 with regressor X) items (i) to (iii) here parallel to those of Lemma 2.
Stochastic dominance (Definition 1.3) says that the cumulative density of
dominating (larger magnitude) variable is smaller, as seen on the right hand
sides of equations (14) and (15).

Remark 1: The main advantage of Theorem 1(ii) is that we can assess
exogeneity without any reference to parameters of interest (ψ) or nuisance
parameters (λ2) needed by EHR. We also avoid conceptual complications as-
sociated with ‘sufficiency’ mentioned in Dawid (1979). Stochastic dominance
relations in Theorem 1 are flexible, allowing residuals of the superior model
to be larger for some t values. Our methods are intended for passively ob-
served, not controlled experimental data. We assume away applications to
estimating functional relations without random components such as Boyle’s
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law (pressure *volume = a constant) where all component variables (pressure
and volume) can be independently controlled in a laboratory.

Note that Lemmata 1 & 2 and Theorem 1 are readily extended to models
with three sets of variables, X,Y,Z, where Z contains control variables not
subject to flipping. From now on, it is convenient to let the flipped vari-
ables be Xi and Y , where we intend to flip one of Xi, i � 1,�p at a time,
while keeping some variables Z in the model without flipping. Webster’s
seventh collegiate dictionary defines kernel as “a central or essential part.”
Accordingly, let us define the essential part of exogeneity by using Theorem
1 as:

Definition 2.1 (Kernel exogeneity): A variable Xi from the joint
density, fjt in eq. (3) after including Z variables, is Kernel exogenous if the
data generating process (DGP) for Xi is relatively more self-driven using the
evidence based on Theorem 1 than Y is self-driven in a flipped model.

Properties of Kernel exogeneity: Kernel exogeneity properties are:
(KE1) Kernel exogeneity along with Theorem 1 allow us to assess exo-

geneity by comparing performance of flipped models.
(KE2) Since no parameters are explicitly involved, the concept is appli-

cable to almost any parametric or nonparametric model.

2.1 Indirect Exogeneity Testing

Lacking a direct exogeneity test, Wu (1973) had originally provided an in-
direct exogeneity test, which was later popularized as the Hausman-Wu test
(HWT). It defines a vector of contrasts, d � bOLS � bIV , between OLS, an
efficient but potentially inconsistent (due to endogeneity) estimator and inef-
ficient but consistent (by assumption) IV estimator. The covariance matrix of
d can be shown to be Vd � V �bIV ��V �bOLS�, and a quadratic form, d��Vd��1d,
is asymptotically a χ2�p�, with p degrees of freedom. The HWT amounts to
medieval diagnosing of a disease (endogeneity) by showing that a cure (bIV )
works.

Actually, the IV remedy has been found to be seriously flawed as shown
by Bound et al. (1993) with a provocative title “the cure can be worse than
the disease”and Bound et al. (1995). Of course, there are several applications
where IV estimators have proved to be useful. This paper illustrates the use
of an R package “generalCorr” to develop a new test which does not use any
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IV estimator. We indicate the very few lines of code needed to assess the
preponderance of evidence in support of a causal path using macroeconomic
examples which can serve as a template in many areas of research.

2.1.1 Avoiding IV estimators and a can-opener joke

Many authors including Bound et al. (1993) and Kiviet and Niemczyk (2007),
have warned that in finite samples instrumental variable IV estimators “have
systematic estimation errors too, and may even have no finite moments.”
Moreover they can be very inefficient (even in large samples) and unnec-
essarily change the original specification. This paper is motivated by the
following disadvantages of the Hausman-Wu test:

1. One must replace Xi with ad hoc, potentially weak and/or irrelevant
instrumental variable Z̃i before testing for exogeneity of Xi.

2. The test needs to be repeated for each potential Z̃i replacing each Xi.

3. Davidson and MacKinnon (1993) (p. 241) show that degrees of freedom
p for the χ2�p� test is too large when a subset of Xi are exogenous.

4. The Chi-square sampling distribution is subject to unverified assump-
tions of linearity and normality, especially unrealistic in finite samples.

Can-opener joke: A physicist, a chemist and an economist are stranded
on an island, with nothing to eat. A can of soup washes ashore. The physicist
says, “Let us smash the can open with a rock.” The chemist says, “Let us
build a fire and heat the can to pry it open”. The economist says, “Let us
assume that we have a can-opener”.

Econometricians’ assumption regarding the use of Instrumental Variables
(IV), presumed to be uncorrelated with unobservable errors, is a bit like
simply assuming that they have a can-opener. This is only a joke included
for comic relief, encouraged by the provocative title of Bound et al. (1993),
not intended to criticize all applications of IV models.

2.2 Kernel Regressions and Generalized Correlations

The generalized measures of correlation in Zheng et al. (2012) are:

GMC�Y SX� � �1 � E�Y �E�Y SX��2

var�Y � �,
GMC�X SY � � �1 � E�X�E�X SY ��2

var�X� �, (16)
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which are computed simply as the R2 values of flipped Models 1 and 2. Since
they generally do differ from each other, the ambiguity in Koopmans’ method
criticized by EHR disappears.

As measures of correlation the non-negative GMC’s in the range [0,1] pro-
vide no information regarding the up or down overall direction of the relation
between Y and X, revealed by the sign of rxy, the Pearson coefficient. Since
a true generalization of of rxy should not provide less information, Vinod
(2014) and Vinod (2015a) propose the following modification. A general
asymmetric correlation coefficient from the GMC�Y SX� is:

r�ySx � sign�rxy�
»
GMC�Y SX�, (17)

where �1 B r�
ySx

B 1. A matrix of generalized correlation coefficients denoted
by R� is asymmetric: r�

xSy
x r�

ySx
, as desired. A function in the generalCorr

package, gmcmtx0, provides the R� matrix from a matrix of data.
Our new test of exogeneity uses the“preponderance of evidence” standard

quantified by a comprehensive index, which is a weighted sum of causal di-
rection signs using three criteria: Cr1 to Cr3. Our Cr1 relies on Theorem 1
(iii) using cross products of local residual and regressor. Our Cr2 compares
absolute residuals of flipped models justified in Theorem 1. Our Cr3 which
compares R2 of flipped models was mentioned in Vinod (2014).

3 Kernel Causality Explained

Assessing philosophically true causality from non-experimental data is non-
trivial, Pearl (2009). Instead, we consider a modified causality called ‘kernel
causality,’ based on an empirical comparison of two flipped models guided
by our Theorem 1 and ‘kernel exogeneity.’ We warn the reader that the
scope of Kernel causality is rather limited and excludes considerable causality
literature involving careful studies of differential impacts causal variables on
certain outcomes.

Kernel causality simply provides a causal interpretation to Kernel exo-
geneity. If Xi is Kernel exogenous, we choose the causal path: Xi � Y over
the opposite path: Y � Xi. The name Kernel causality acknowledges our
reliance on both kernel regressions and ‘Kernel exogeneity.’ Recalling prop-
erty [WE2] of EHR weak exogeneity, Kernel causality has almost nothing to
do with Granger causality.
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This section uses Theorem 1 to quantify Kernel exogeneity of Definition
2.1 above. We empirically evaluate three criteria Cr1 to Cr3. If a majority of
Cr1 to Cr3 support that Xi is Kernel exogenous (independently generated) it
kernel causes Y . We begin with two digressions: (D1) stochastic dominance,
needed for Cr1 and Cr2, and (D2) partial correlations needed for Cr3.

3.1 Digression D1: Stochastic Dominance of
Four Orders

The first order stochastic dominance (SD1) was defined in Definition 1.3 with
comments and used in our Lemmata and Theorem 1. It is well known that
SD1 provides a comprehensive picture of the ranking between two probabil-
ity distributions with a focus on locally defined first moment (mean). This
subsection attempts to discuss quantification of SD1 to SD4 following the
theory and software available in (Vinod, 2008, ch.4).

The underlying computation requires bringing the two densities on a com-
mon ‘support,’ requiring ecdf’s to have up to 2T possible jumps or steps.
Hence there are 2T estimates of F �x� � F �y� denoted by a 2T � 1 vector
(sd1). Anderson (1996) shows how a simple pre-multiplication by a large
patterned matrix implements computation of (sd1). Let us use a simple cu-
mulative sum Av(sd1) whose sign (�1,0,�1) helps summarize the first order
stochastic dominance into only one number.

Second order dominance (SD2) of f�x� over f�y� requires further integrals
of ecdf’s to satisfy: R F �x� B R F �y�. One computes the numerical integral
by using the trapezoidal rule described in terms of a large patterned matrix
whose details are given in (Vinod, 2008, ch.4) and in Anderson (1996). The
2T estimates of SD2 denoted by (sd2) are locally defined variances. Their
simple cumulative sum is denoted as Av(sd2), whose sign (�1,0,�1) summa-
rizes the information regarding second order dominance.

Similarly, SD of order 3 is estimated by a vector (sd3) of 2T locally
defined skewness values defined from R R F �x� B R R F �y�. The sd3 is further
summarized by the sign of Av(sd3). Analogous SD of order 4 for kurtosis
requires R R R F �x� B R R R F �y� and measures investor ‘prudence’ according
to Vinod (2004). Cumulative sum of point-wise kurtosis estimates of SD4 are
Av(sd4), whose sign (�1,0,�1) summarizes the SD4 dominance information.

Remark 2: By analogy with two streams of investment returns, stochas-
tic dominance allows us to study realistic but fuzzy inequalities (true almost
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everywhere, but may not hold for subsets of points). Stochastic dominance
of four orders associated with the first four moments yield 2T estimates of
sd1 to sd4. The signs of their cumulative sums, Av(sd1) to Av(sd4), indicate
whether the inequality holds true in an overall sense.

3.2 Digression D2: Generalized Partial Correlations

Note that the partial correlation coefficient between (X1,X2) after removing
the effect of (X3) is:

r12;3 �
r12 � r13r23»�1 � r213�

»�1 � r223�
. (18)

Kendall and Stuart (1977) show that an alternative definition of r12,3 is a
simple correlation between residuals of the regression: X1 � f�X2,X3��error
and similar residuals of the regression: X2 � f�X1,X3� � error. We use this
method in our generalization as follows.

We consider the generalized correlations between Xi and Xj after remov-
ing the effect of a set of variable(s) in Xk. Let us first define ui,k as the
residual of kernel regression of Xi on all control variable(s) Xk. Similarly
define uj,k as the residual of kernel regression of Xj on all control variable(s)
Xk. Next, we define a symmetric version of generalized partial correlation
coefficient in the presence of control variable(s) as:

u�ij;k �
cov�ui,kuj,k�
σ�ui,k�σ�uj,k� , (19)

a symmetric correlation coefficient between two relevant residuals.
Now we recall eq. (17) based on GMC’s to obtain asymmetric general-

ized partial correlation coefficients. Denote the sign of the correlation in eq.
(19) as sign(u�ij;k). Finally we are ready to define an asymmetric matrix of
generalized partial correlation coefficients using the R2 of kernel regression:
ui,k � f��uj,k� � err as GMC�ui,kSuj,k�. Note that the generalized partial
correlations will be asymmetric since GMC’s are asymmetric.

Thus, we can define:

r��Xi,Xj;Xk� � sign�u�ij;k�
»�GMC�ui,kSuj,k��. (20)

Often, we simplify the notation and write the generalized partial correla-
tions as r�i,j;k. Section 6.5 provides an illustrative example implementing the
generalized partial correlation coefficients from data.
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3.3 Criteria Cr1 to Cr3 Details

We determine whether Xi drives Y , with the causal path Xi � Y , or vice
versa, by considering the quantitative evidence from the majority of three
criteria Cr1 to Cr3 described in this subsection. Our first criterion Cr1 is
based on Theorem 1 eq. (14). Our Cr2 is based on Theorem 1 eq. (15). Our
Cr3 requires that the fit (and forecasts) implied by the path Xi � Y should
have a larger R2 � GMC�Y SX,Z� than those of reversed path:

Sr��ySx; z�S A Sr��xSy; z�S, (21)

where generalized partial correlation coefficients defined in eq. (20) remove
the effect of control variable(s), if any. Let us begin with some definitions.

Definition 3.1: (Evidence Preponderance) According to Legal In-
formation Institute (2017) the preponderance of evidence means a burden to
show that greater than 50% of evidence points to something.

Definition 3.2: (Causal Path) We say that Xi is the kernel cause of
Y (causal path: Xi � Y ), if at least two of Cr1 to Cr3 criteria satisfying the
preponderance of evidence standard support the path.

Definition 3.3: (Bidirectional Path) Bidirectional causality (Xi �

Y ) or causality marred by the presence of confounding variable(s) occurs if
the evidence does not support either (Xi � Y ) or (Y �Xi).

Koopmans’“departmental principle”gives practitioners some flexibility in
designating certain variables as exogenous, without having to formally test
their exogeneity. These can be outside the scope for the current research
question, or non-economic variables such as: the weather, geographical areas
or distances, demographic facts.

3.4 Weighted sum of Cr1 to Cr3 and unanimity index

It is not practical to keep track of four Av(sd`) stochastic dominance indica-
tors arising from each of Cr1 and Cr2 and one indicator for Cr3 separately.
For computing ‘preponderance of evidence’ we need to compute their una-
nimity index (UI) obtained by rescaling their weighted ‘sum’ index.

Proposition 3.1 (UI exist): There exists unanimity index number,
UI1, quantifying likelihood for the DGP of Xi to be self-driven instead of Y ,
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and another index number UI2, quantifying the likelihood for the DGP of Y
to be self-driven instead of Xi. We define a tolerance constant τ � 15 (say)
such that if S�UI1 �UI2�S @ τ , the two index numbers are “too close” to each
other. Then the exogeneity of Xi and Y is indeterminate, implying either
bi-directional kernel causality, or that both Xi and Y are jointly dependent,
perhaps each needing a separate structural equation.

The proposition is established by explicitly showing how to construct
sample unanimity indexes ui as estimators of population UI in the sequel. We
first describe a summary index called sum > ��3.175,3.175�. It is transformed
by the relation

ui � 100�sum~3.175�, ui > �100,100�. (22)

Applying Remark 2 to quantify (14) for Cr1, and (15) for Cr2 we compute
four numbers Av(sd`) for ` � 1,�4 each. If SAv�sd`�S @ τ �, we say that the
sign is ambiguous, denoted as zero for the `-th SD. Even when SAv�sd`�S A τ �,
only the signs of Av(sd`), not their magnitudes matter. These signs (sg) from
the set ��1,0,�1�, are denoted as sg1`, where the first subscript 1 refers to
the criterion number in Cr1. In practice, the signs sg11 to sg14 are rarely
distinct.

What weights do we choose for combining the signs, ��1,0,�1�, not mag-
nitudes of Av(sd1) to Av(sd4) in the context of Cr1 and Cr2? Statisti-
cal theory suggests that weights on magnitudes should be inversely propor-
tional to the increasing sampling variances of the first four central moments.
(σ2,2σ4,6σ6,96σ8) from a Normal parent (applying central limit theory to
Av(sd`)) according to (Kendall and Stuart, 1977, p. 258). Instead, let us
choose the following weakly declining weights: (1.2/4, 1.1/4, 1.05/4, 1/4),
found to be reasonable in small simulations, with an option to change them.

Denote a summary sign index based on Cr1 as sC1. It is computed as:

sC1 � �1.2 � sg11 � 1.1 � sg12 � 1.05 � sg13 � sg14�~4. (23)

When all four (Av(sd1) to Av(sd4)) suggest the same sign, ie, all are ��1�,
the largest magnitude of our weighted index of sign by Cr1 is sC1 � �1.0875.

Analogous signs ��1,0,�1� of Av(sd1) to Av(sd4) representing absolute
residuals help define their weighted sum for Cr2 as:

sC2 � �1.2 � sg21 � 1.1 � sg22 � 1.05 � sg23 � sg24�~4. (24)
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As before, if all four dominance measures suggest the same sign, the largest
magnitude of sC2 is 1.0875. Hence, the sign index based on Cr2 lies in the
closed interval: sC2 > ��1.0875,1.0875�.

The computation of a Cr3 from the inequality test of (21) states that
Xi � Y if the sign defined as: sg3 � ��1,0,�1� of the absolute difference
between flipped partial correlations equals (�1). We denote the sign index
based on Cr3 as:

sC3 � sign�Sr��xSy; z�S � Sr��ySx; z�S� (25)

where the largest score, max(sg3)= 1. When sg3 @ 0, the causal path by Cr3
is Xi � Y . Note that index always lies in the closed interval: sC3 > ��1,1�.

So far, we have three sign indexes (sC1, sC2, sC3) for the three criteria,
summarizing the evidence supporting the causal path: Xi � Y . Since our
Definition 3.2 of kernel causality requires us to consider all three criteria, we
compute their ‘sum’ defined as:

sum � sC1 � sC2 � sC3, (26)

from the observed sample data. Let us denote the corresponding true un-
known population value with upper case letters as ‘SUM’. When (SUM @ 0)
holds, the causal path is Xi � Y . Based on the preponderance of evidence,
the sign of sum suggests the direction of the path, while its magnitude ap-
proximates the strength of sample evidence in support of that causal path.

Combining the three largest possible scores verify that: max�sum� �

3.175, and sum > ��3.175,3.175�, a closed interval. A transformation of sum
to our unanimity index ui is in eq. (22), designed to be always in the range
[–100,100]. Since the ‘sum’ and ui measure the extent of agreement among
the three criteria, its magnitude is a reasonable indicator of the strength (or
unanimity) of evidence for a particular causal path. When the population
parameter is smaller than a threshold value, (UI @ τ , where τ � 15, say,) we
can conclude that the causal path is Xi � Y , making Xi exogenous.

Weighted sum computation in ‘generalCorr’ package

The R command causeSummary(mtx,ctrl=Z, nam=colnames(mtx)) requires
a data matrix with p columns called ‘mtx’ with the first column for the depen-
dent variable and remaining column(s) for regressors. The order of columns
is very important. For example, mtx=cbind(x1,x2,x3), where the matrix
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‘mtx’ has three columns, denoted as p � 3. Our flipped models fix the first
column x1 and pair it with either x2 or x3 for flipping. We do not pair x2
with x3. Thus we always have p � 1 possible flipped pairs. The code indi-
cates an error if p @ 2 or if it is not a matrix. Sometimes one needs to use
as.matrix(mtx). Note that control variables are a separate argument (not
within mtx), as in: causeSummary(mtx, ctrl=0), where the default value
zero means absence of control variable(s).

The output of ‘causeSummary’ is self-explanatory based on ‘preponder-
ance of evidence’ from a weighted combination of Cr1 to Cr3. Since we have
exactly �p� 1� possible causal path pairs, the summary reports each printed
to the screen. For each pair it reports the name of the causal variable, then
the name of the response variable, the strength index in terms of unanimity
of the sign of the reported causal path. It also reports Pearson correlation
coefficient and its p-value for testing the null hypothesis: ρ � 0. If the una-
nimity strength index (ui) is close to zero, in the range [�15,15], one should
conclude that X � Y .

The code su=causeSummary(mtx);xtable(su) may be used to create
a Latex table of results from the output of the function. It is a matrix of
�p�1� rows and 5 columns providing summary of pair-wise causal path results.
The first column entitled ‘cause’ names the causal variable, while the second
column entitled ‘response’ names the response. The third column entitled
‘strength’ has absolute value of summary strength index, printed above but
now in the positive range [0,100], summarizing preponderance of evidence
from Cr1 to Cr3 from four orders of stochastic dominance and generalized
partial correlations. The fourth column entitled ‘corr’ has Pearson correlation
coefficient while the fifth column entitled ‘p-value’ is for testing the null of
zero Pearson correlation coefficient.

Our notion of causality is not the true philosophical causality, but an ap-
proximation where a ‘kernel cause’ is simply the ‘Kernel exogenous’ variable
defined above using eq. (3) from a flipped pairs of variables quantified by the
unanimity index.

3.5 Decision Rules

The ‘preponderance of evidence’ supports one of the three causal paths
listed below when the sample unanimity index ‘ui’ is inside one of the three
intervals (two half-open and one closed, using τ � 15). If one uses the
sample ‘sum’ index, the 15% threshold τ for ui translates to the number
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τ � � �15~100�3.175 � 0.476 for ‘sum’. If computational resources are avail-
able, one can use the bootstrap described in section 5 below for inference.

R1: X1�j �X1 if �ui > ��100,�15�� or sum > ��3.175,�0.476�.
R2: X1�j �X1 if �ui > �15,100�� or sum > �0.476,3.175�.
R3: X1�j �X1 if (ui > ��15,15�� or sum > ��0.476,0.476�).

4 Simulation for Checking Decision Rules

Following our Definition 2.1 of Kernel exogeneity we generate the X1 variable
independently and then define X2 to depend on X1 after adding a noise term,
ε � N�0,1�, a the standard normal deviate. Here X1 is Kernel exogenous
by construction, and hence the causal path is known to be X1 � X2, by
construction. Our sample sizes are T � 50,100,300.

Let m denote the count for indeterminate signs when we repeat the ex-
periments N � 1000 times. Define the success probability (suPr) for each
experiment as:

�suPr� � �count of correct signs�
N �m

. (27)

The simulation considers four sets of artificial data where the causal di-
rection is known to be X1 �X2.

1. Time regressor:

X1 � �1,2,3,�, T�
X2 � 3 � 4X1 � ε

2. Unit root Quadratic:

X1 has T random walk series from cumulative sum or standard normals.
X2 � 3 � 4X1 � 3X2

1 � ε

3. Two Uniforms:

X1, Z1 each have T uniform random numbers
X2 � 3 � 4X1 � 3Z1 � ε
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4. Three Uniforms:

X1, Z1, Z2 each have T uniform random numbers
X2 � 3 � 4X1 � 5Z1 � 6Z2 � ε

The simulation required about 36 hours on a Dell Optiplex Windows 10
desktop running Intel core i5-7500, cpu at 3.40 GHz, RAM 8 GB, R version
3.4.2.

The large success proportions (suPr) reported in row 7 (for T=50), row
15 (for T=100) and row 23 (for T=300) of Table 1 assume the threshold
τ � 0. The results for the four experiments in four columns show that our
decision rules using a ‘ui’ from Cr1 to Cr3 work well. The effect on success
probabilities of the choice of the threshold is studied for the T � 300 case by
using τ � 0,15,20,25, respectively, along rows 21 to 24.

Moreover since the success probabilities ‘suPr’ for τ � 0 along rows 7, 14
and 21 increase as T � 50,100,300 increases, this suggest desirable asymp-
totic convergence-type feature. Thus, our procedure using flipped models
to identify independently generated (causal) variables is supported by the
simulation.

This simulation uses our newer definition of Cr1 used in the latest versions
of ‘generalCorr’ package (ver. C 1.1.0), which directly implements Theorem
1 (iii) seen in eq. (14) using fitted residuals. An older version of Cr1 involved
additional algebra used to replace true errors with its theoretical expression,
and finally approximating the expression with the absolute gradient of local
linear fit of kernel regression. Unfortunately, newer Cr1 is not unequivocally
superior to the older Cr1. For example, when τ � 0, T � 100 the success prob-
abilities using causeSummary0 command for implementing the older version
of Cr1 are: (1.000, 0.905, 0.882, 0.970). These are quite comparable to (1.000,
0.787, 0.892, 0.803) along the row numbered 14 of Table 1.

Hence, both R functions causeSummary and its older version causeSum-

mary0 may be attempted. Any sign disagreement is clearly suggestive of
uncertainty in the estimated causal paths. Then one can perhaps postpone
if not avoid the computer intensive bootstraps described in the next section
to save computational or time resources.
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Table 1: Summary statistics for results of using the ‘ui’ measure for correct
identification of causal path indicated by its positive sign using N=1000 rep-
etitions, T=50, 100, 300 sample sizes along three horizontal panels. Success
probabilities (suPr) show convergence as T increases in the three panels.

Row stat. Expm=1 Expm=2 Expm=3 Expm=4
1 Min.T=50 31.496 -100.000 -100.000 -100.000
2 1st Qu. 63.780 31.496 31.496 -31.496
3 Median 100.000 31.496 31.496 37.008
4 Mean 82.395 33.725 24.386 27.622
5 3rd Qu. 100.000 100.000 37.008 37.008
6 Max. 100.000 100.000 100.000 100.000
7 suPr 1.000 0.793 0.808 0.712

8 Min.T=100 31.496 -100.000 -100.000 -100.000
9 1st Qu. 63.780 31.496 31.496 31.496

10 Median 81.102 31.496 31.496 37.008
11 Mean 74.691 33.106 32.822 35.879
12 3rd Qu. 100.000 100.000 37.008 37.008
13 Max. 100.000 100.000 100.000 100.000
14 suPr 1.000 0.787 0.892 0.803

15 Min.T=300 31.496 -100.000 -31.496 -63.780
16 1st Qu. 81.102 31.496 31.496 37.008
17 Median 81.102 31.496 31.496 37.008
18 Mean 80.357 43.020 42.973 42.117
19 3rd Qu. 100.000 100.000 37.008 37.008
20 Max. 100.000 100.000 100.000 100.000
21 suPr,τ � 0 1.000 0.829 0.987 0.963
22 suPr,τ � 15 1.000 0.833 0.988 0.970
23 suPr,τ � 20 1.000 0.835 0.989 0.971
24 suPr,τ � 25 1.000 0.836 0.989 0.971
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5 A Bootstrap Exogeneity Test

Statistical inference regarding causal paths and exogeneity uses the ‘sum’
statistic defined in equation (26) for estimating the parameter ‘SUM’ men-
tioned before. We can transform the ‘sum’ statistic as ui � 100�sum~3.175�,
with the parameter UI mentioned above.

Bootstrap Percentile Confidence Interval: We suggest a large num-
ber J of bootstrap resamples of �X,Y,Z� data to obtain (sum)j and (ui)j
using any bootstrap algorithm. These (j � 1,�J) values provide an approx-
imation to the sampling distribution of ‘sum’ or ‘ui.’ We can easily sort the
J values from the smallest to the largest and obtain the order statistics de-
noted as (sum)�j� and (ui)�j�, with parenthetical subscripts. Now a �1�α�100
percent confidence interval is obtained from the quantiles at α~2 and 1�α~2.
For example, if α � 0.05, J � 999, a 95% confidence limits are: (ui)�25� and
(ui)�975�.

Recalling the decision rules R1 to R3 of Section 3.5, if both confidence
limits fall inside one of the two half-open intervals, we have a statistically
significant conclusion. For example, R1 states that: X1�` � X1 if �ui >
��100,�15��. If both confidence limits of ui lie in the half-open interval:
��100,�15� we have a statistically significant conclusion that X1�` � X1, or
equivalently that X1�` is exogenous.

This paper uses the maximum entropy bootstrap (meboot) R package
described in Vinod and López-de-Lacalle (2009) because it is most familiar
to me, retains the dependence structure in the data, and is recently supported
by simulations in Yalta (2016), Vinod (2015b) and elsewhere.

Sampling Distribution Summary: The approximate sampling distri-
bution can be usefully summarized by computing bootstrap proportion of
significantly positive or negative values. Let m denote the bootstrap count
of indeterminate signs when (ui)> ��τ, τ�, where the threshold τ � 15 can be
changed by the researcher depending on the problem at hand. Now define a
bootstrap approximation to the proportion of significantly positive signs as:

P ���1� � �count of uij A τ�
J �m

. (28)

Similarly, a bootstrap approximation to the proportion of significantly nega-
tive signs is:

P ���1� � �count of uij @ �τ�
J �m

. (29)
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6 Application Examples

Let us begin with an example mentioned earlier where the cause is intuitively
known to illustrate our statistical inference using the sum and ui statistics.
Vinod (2015a) describes a cross section data example where Y denotes the
number of police officers per 1000 population, and X denotes the number of
crimes per 1000 population in T �29 European countries in 2008.

require(generalCorr);require(Hmisc)

attach(EuroCrime)#bring package data into memory

options(np.messages=FALSE)

causeSummary(cbind(crim,off))

bb=bootPairs(mtx, n999=999)

Output of above code is illustrated below. The reported k values monitor
the progress of simulation numbers 1 to J � 999, say, modulo 50.

causeSummary(cbind(crim,off))

cause response strength corr. p-value

[1,] "crim" "off" "100" "0.99" "0"

bb=bootPairs(mtx, n999=999)

[1] "k=" "1"

[1] "k=" "51"

[1] "k=" "101"

.....

[1] "k=" "951"

The output of above code causeSummary given above shows that crime causes
officer deployment with strength 100. It also reports simple correlation co-
efficient of 0.99 between ‘crim’ and ‘off’ with a p-value near zero suggesting
significantly different from zero.

The above output for bootstrap using bootPairs is abridged for brevity.
A single bootstrap computation for these data when J � 999 on a home PC
requires about 20 minutes of CPU time.

bootQuantile(bb)

bootSummary(bb)

bootSign(bb)
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The above code expects to report confidence interval, summary stats and
probability of observing the average sign, respectively. We reoprt the confi-
dence interval first.

bootQuantile(bb)

off

2.5% -100

97.5% 100

The 95% confidence interval for unanimity index UI is seen to be very wide
for the crime data. Since it covers the zero, the causal path crim�off is not
robust to sampling variation at the usual confidence level.

We report the summary stats and P ���1� � 0.647 next.

bootSummary(bb)

off

Min. -100.00000

1st Qu. -31.49606

Median 37.00787

Mean 29.73998

3rd Qu. 100.00000

Max. 100.00000

bootSign(bb)

[1] 0.6472362

An approximate sampling distribution of ‘ui’ statistic for these data is
depicted in Figure 1. We are using a histogram because the sampling dis-
tribution is categorical with nonzero frequency counts only at a finite set of
points. The mode is clearly seen at 100 in the histogram. suggesting that
the path (crime�officer deployment) is not due to random noise, but likely
to be present in the population.

The “generalCorr” versions (>1.1.2) have several functions for computing
bootstraps. The function pcause does all n999=999 bootstrap computations
and reports the probability of either positive or negative signs and finally
reports the max of the two signs. This code resembles similar function in
‘meboot’ package

Using a data matrix called with the argument mtx=c(crim,off), with
p=2 columns with the understanding that the first column is present in each
pair. The functions bootPairs(mtx) and bootPairs0(mtx) compute the
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Histogram of ‘ui' for Crime Data
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Figure 1: European Crime Data Approximate Sampling Distribution of the
ui statistic

bootstrap ‘sum’ statistics in the form of a matrix of dimension: n999�(p-
1) upon calling ‘silentPairs’ or silentPairs0’, respectively. a large number
‘n999’ of times. The results of ‘bootPairs’ are input to various summarizing
functions

bootQuantile function provides confidence interval with a choice to in-
put any desired proportions instead of default argument probs=c(0.025,

0.975) for a 95% interval.
bootSummary computes the summary of each column of output of ‘boot-

Pairs’

6.1 Klein I simultaneous equations model

This section reports the results for our three criteria regarding exogeneity of
each of the regressors of the three equations of the famous Klein I model. Let
us use the following four-character abbreviations using the upper case trail-
ing L for lagged version of a variable: cons=consumption, coPr=corporate
profits, coPL= corporate profits with a lag, wage=wages, inve=investment,
capL=capital with a lag, prWg=private sector wages, gnpL=GNP with a
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lag, and finally, tren=time trend.
Klein’s specification of the expected consumption equation (stated in

terms of fitted coefficients) is:

E�cons� � a10 � a11 coPr � a12 coPL � a13 wage. (30)

The second (investment) equation of the Klein I model is given by:

E�inve� � a20 � a21 coPr � a22 coPL � a23 capL. (31)

The third (wage) equation of the Klein I model is given by:

E�prWg� � a30 � a31 gnp � a32 gnpL � a33 tren. (32)

We report summary statistics for all three criteria combined into the
sumj, j � 1,�J defined in eq. (26) leading to a J � 999�1 vector of summary
signs, for brevity.

Table 2: Klein I model: Bootstrap summary statistics for ‘sum’ of eq. (26)
using 999 resamples to represent the population. A positive mean and median
with a large P ���1� imply the relevant regressor might not be exogenous.

cons inve prWg
Minimum -3.1750 -3.1750 -3.1750

1st Quartile, Q1 -1.1750 -1.1750 -1.1750
Median 1.0000 -0.9250 0.0875

Mean 0.4443 -0.1892 0.1874
3rd Quartile, Q3 1.1750 1.1750 1.1750

Maximum 3.1750 3.1750 3.1750
P ���1� 0.597 0.481 0.504

Three columns of Table 2 are for the three equations of the Klein I model.
The rows report descriptive statistics: the minimum, maximum, quartiles
Q1 and Q3, mean and median based on J � 999 bootstrap realizations.
The bottom row of the Table reports the bootstrap probability of a positive
result, P ���1� defined in eq. (28), which are all close to 0.5. The fact
that all equations have the same minimum, maximum, Q1 and Q3 show
that the bootstrap variability is considerable in both tails making the causal
path subject to sampling variability, implying considerable uncertainty in the
estimated ‘sum.’
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The signs of means and medians are both positive in columns 1 and 3 for
consumption and private wage equations, implying that wage appears to be
endogenous in the consumption equation (30), while gnp may be endogenous
in the private wage equation (32). The P ���1� � 0.481 @ 0.5, along with
the negative sign of the mean and the median in the second column entitled
‘inve’ suggests that coPr appears to be exogenous in the investment equation
(31).

6.2 Macro Risk Factors for Excess Bond Premium

US Macroeconomists and Federal Reserve researchers have developed new
awareness of their failure to forecast the great recession of 2007-2008. Some
have developed new data series. For example, Gilchrist and Zakrajek (2012)
have developed excess bond premium (EBP) and shown that it predicts risk
of a recession. It is interesting to find what causes the EBP itself, possibly
allowing us to understand why EBP predicts recession risk.

Potential causes are: unemployment rate (UnemR), credit creation (Cr-
Crea, not seasonally adjusted), credit destruction (CrDstr, not seasonally
adjusted), yield on 10-year treasury bonds (Yld10, not seasonally adjusted),
effective federal funds rate (EffFFR), and money stock (M2, seasonally ad-
justed billions of dollars). Arguments for using separate variables for CrCrea
and CrDstr are found in Contessi and Francis (2013) with additional refer-
ences. We use Federal Reserve’s quarterly data from 1973Q1 to 2012Q4, with
some data missing. Our software tools can efficiently handle missing data.

We study endogeneity of variables in the following regression model:

EBP � f�UnemR,CrCrea,CrDstr,Yld10,EffFFR,M2� (33)

After getting the data and relevant packages into R memory, we can use
the following commands:

mtx=cbind(EBP,UnemR,CrCrea, CrDstr,Yld10,EffFFR,M2)

p=NCOL(ntx);print(colnames(mtx)[2:p])

silentPairs(mtx)#newer version of Cr1

silentPairs0(mtx)#zero suggests older version of Cr1

The output of this shows that only CrCrea, CrDstr and M2 are negative
implying that they are exogenous.
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"UnemR" "CrCrea" "CrDstr" "Yld10" "EffFFR" "M2"

NewCr1 3.175 -1.000 -1.000 3.175 3.175 -1.000

OldCr1 1.000 -1.000 -1.000 3.175 1.000 -1.000

The above output of ‘sum’ index is in the range: ��3.175,3.175�. The re-
sults in more intuitive translated range: ��100,100� plus Pearson correlation
and its p-values require simple code:

su=causeSummary(mtx)

su0=causeSummary0(mtx)#zero suggests older version of Cr1

require(xtable)

xtable(su); xtable(su0)

The Latex Table is printed in the following Table 3. Note that only CrCrea,
CrDstr and M2 are likely to be independently generated (exogenous) causing
the excess bond premium, while the other variables seem to be caused by EBP
(endogenous). None of the magnitudes in the column entitled ‘strength’ is
less than the threshold 0.476 for ‘sum’ according to our decision rule R3,
implying that we do not have bidirectional paths.

Table 3: Excess Bond Premium and possible causes using new Cr1 and old
Cr1 indicated by row names

cause response strength corr. p-value
1 EBP UnemR 100 0.1443 0.06875

1.old EBP UnemR 31.496 0.1443 0.0688
2 CrCrea EBP 31.496 -0.087 0.27387

2.old CrCrea EBP 31.496 -0.087 0.2739
3 CrDstr EBP 31.496 0.1998 0.01132

3.old CrDstr EBP 31.496 0.1998 0.0113
4 EBP Yld10 100 0.064 0.42165

4.old EBP Yld10 100 0.064 0.4216
5 EBP EffFFR 100 0.0657 0.40915

5.old EBP EffFFR 31.496 0.0657 0.4091
6 M2 EBP 31.496 -0.0103 0.8976

6.old M2 EBP 31.496 -0.0103 0.8976

Causal directions in Table 3 for old Cr1 and new Cr1 are identical. The
strengths in rows labeled 1 and ‘1.old’ are distinct with ui � �100,31.496�,
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respectively. Same discrepancy holds between rows 5 and ‘5.old.’ Thus the
difference between two versions of Cr1 are not found to be significant for this
example.

What about sampling variability of strength index? The bootstrap in-
ference is computer time intensive. It requires the R function pcause as
illustrated in the following code.

p=NCOL(mtx)

ou2=matrix(NA,nrow=p-1,ncol=2)

for (i in 2:p){

pp=pcause(mtx[,1],mtx[,i],n999=999)

ou2[i-1,1]=colnames(mtx)[i]

ou2[i-1,2]=round(pp,6) }

print(ou2)

colnames(ou2)=c("variable", "P(-1,0,1)")

xtable(ou2)

The printed output of the above code is suppressed for brevity. Instead,
our Table 4 shows that sampling distribution results provide a distinct piece
of information not covered by the results about the strength or p-value in
Table 3.

Table 4: Bootstrap success rates for causal direction using 999 resamples
variable P(�1)

1 UnemR 0.801802
2 CrCrea 0.927928
3 CrDstr 0.626627
4 Yld10 0.947948
5 EffFFR 0.600601
6 M2 1

Graphics on Pair-wise Relations

Pretty scatterplots with locally best fitting lines for each pair of data have
now become possible with a nice R package called ‘PerformanceAnalytics’
by Carl and Peterson (2010) with the function chart.Correlation modified
for our purposes in the following code.
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require(PerformanceAnalytics)

chartCorr2=function(mtx,temp="temp",nam=colnames(mtx)){

p=NCOL(mtx)

#print(c("colnames=",nam))

if (p<2) stop("chartCorr2 has input mtx with <2 columns")

nameoplot=nam[2:p]

print(nameoplot)

for (i in 2:p) {

mypath<-file.path("C:",temp,paste(nameoplot[i-1],".pdf",sep=""))

pdf(file=mypath,width=9,height=7)

chart.Correlation(mtx[,c(1,i)])

dev.off()

}# end i loop

}#end function

chartCorr2(mtx)

All figures are analogous. Histograms of the two variables is seen in the
diagonal panels. The South West panel has a scatter diagram and locally
best fitting free hand curve. The number in the North East panel is the
ordinary correlation coefficient whose font size suggests its statistical signif-
icance, with stars increasing with 10%, 5% and 1% level. Figures provide
visual impressions while the exact correlation coefficients and their p-values
are also found in Table 3 with more decimal points.

Our evidence including Figure 2 suggests that the variation in UnemR is
endogenous, caused by EBP with a scatterplot having a mildly up-down-up
pattern.

Our evidence including Figure 3 suggests that the variation in credit cre-
ation is exogenous. Its scatterplot is mostly flat and lots of noise.

Our analysis and Figure 4 suggests that the variation in credit destruction
is exogenous. This scatterplot is also mostly flat with lots of noise, similar
to credit creation.

Our evidence including Figure 5 suggests that the variation in the yield
on 10-year notes is endogenous, caused by EBP with a scatterplot having a
mildly up-down pattern.

Our analysis and Figure 6 suggests that the variation in the effective
federal funds rate is endogenous, caused by EBP with a scatterplot having a
mildly up-down pattern. The non-deterministic variation in Effective Federal
Funds rate (EffFFR) is less “original or independent” than the correspond-
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Figure 2: Scatterplot with nonlinear curve: EBP-UnemR
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Figure 3: Scatterplot with nonlinear curve: EBP-CrCrea

30



x

D
en

si
ty

EBP

0 1 2 3 4 5 6

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.20 *

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4
5

6

●
●

●
●● ●

●

●
●

●

●
●

●●●
●●●●●●●

●●

●

●
●

● ●

●

●

●

● ●●

● ●

●●

●

●

●
●

●

●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●●
●

●
●

●●

●
●

●

●

●
●●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●
●

x

D
en

si
ty

CrDstr

Figure 4: Scatterplot with nonlinear curve: EBP-CrDstr
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Figure 5: Scatterplot with nonlinear curve: EBP-Yld10
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Figure 6: Scatterplot with nonlinear curve: EBP-EffFFR

ing variation in EBP. When EBP is negative and rises toward zero EffFFR
increases, but beyond zero it decreases with increase in EBP. It would be
interesting to consider the “surprise” component of the effective FFR and its
relationship with the EBP

Our evidence including Figure 7 suggests that the variation in money
stock M2 is exogenous with a scatterplot having a mildly down-up pattern.
The non-deterministic variation in EBP is less“original or independent” than
the corresponding variation in money stock M2. ). The graphics reveals that
when EBP is negative and rises toward zero as M2 decreases, but beyond the
zero EBP M2 increases with increase in EBP.

6.3 Airquality data

Our next example shows how the causeSummary function of the package pro-
vides reasonable results showing that all meteorological variables are exoge-
nous for Ozone (ppb) air pollution in New York in 1973, using some famous
data always available in R.
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Figure 7: Scatterplot with nonlinear curve: EBP-M2

library(generalCorr)

c1=causeSummary(as.matrix(airquality))

library(xtable)

xtable(c1)

Table 5: Ozone pollution and its various known causes using newer Cr1
cause response strength corr. p-value

1 Solar.R Ozone 31.496 0.3483 0.00018
2 Wind Ozone 100 -0.6015 0
3 Temp Ozone 31.496 0.6984 0
4 Month Ozone 100 0.1645 0.0776
5 Day Ozone 100 -0.0132 0.88794

The results in Table 5 show that solar radiation (Langleys) and tem-
perature (degrees F) have strongly independent variation, influencing Ozone
pollution levels with high strength of 100 for both, suggesting unanimity
of Cr1 and Cr2 criteria at all four stochastic dominance levels and further
confirmed by Cr3. The results in Table 6 using older Cr1 are almost identical.
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Table 6: Ozone pollution and its various known causes using older Cr1
cause response strength corr. p-value

1 Solar.R Ozone 100 0.3483 2e-04
2 Wind Ozone 31.496 -0.6015 0
3 Temp Ozone 100 0.6984 0
4 Month Ozone 31.496 0.1645 0.0776
5 Day Ozone 31.496 -0.0132 0.8879

Other variables: Wind (mph), month number (1:12) and Day number
(1:31) also affect Ozone, but the causal direction is not unanimous. Hence the
strength index is only 31.496 for them. Not surprisingly, high wind reduces
Ozone pollution is indicated by the significantly negative (–0.6015) Pearson
correlation coefficient with a near zero p-value. Additional comments about
Tables 5 and 6 are omitted for brevity.

We use following code to generate a table of bootstrap results.

options(np.messages=FALSE)

bb=bootPairs(airquality, n999=999)

as=bootSummary(bb, per100=FALSE)

ap=bootSign(bb)

ap2=rbind(as,ap)#P(sign) at the bottom of summary table

xtable(ap2,digits=3)

The results are summarized in Table 7, where the ‘sum’ index is in the
range ��3.175,3.175�. We can focus of the means to obtain the overall effect.
The bottom row of Table 7 reports the relative frequency of negative values
according to the definition (27) implying a success probability in obtaining
a negative sign after removing from the denominator all bootstrap estimates
m lying in the bidirectional range ��τ �, τ ��. For our example, m � 0 for all
columns. The bottom line shows that the negative signs in all columns are
very reliably estimated. It may be convenient to simply set m � 0 in the
denominator �N �m�, leading to conservative estimates of success rates.

6.4 ‘silentMtx’ illustrated with ‘mtcars’ automobile data

In some engineering applications the causal direction is up to the engineer in
the sense that she can change engineered settings for one variable to study
its effect on some other variable. We use well known ‘mtcars’ data always
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Table 7: Variability of ‘sum’ over 999 bootstrap resamples using airquality
data

Solar.R Wind Temp Month Day
Min. -3.175 -3.175 -3.175 -3.175 -3.175

1st Qu. -3.175 -2.575 -1.500 -1.600 -1.000
Median -3.175 -1.000 -1.175 -1.000 -1.000

Mean -2.347 -1.539 -1.520 -1.531 -0.957
3rd Qu. -1.175 -1.000 -1.175 -1.000 -1.000

Max. 1.975 1.175 1.000 -0.500 2.025
P ���1� 0.9459 0.9299 0.9710 1.0000 0.9760

available in R to describe the function ‘silentMtx’ which prints a signed ma-
trix of unanimity indexes in the range [–100, 100] for each pair of variables
allowing for some variables to be treated as control. Let us use the sixth
variable ‘wt’ or weight of the car as the control.

require(np);require(generalCorr);options(np.messages=FALSE)

silentMtx(mtcars[,1:4],ctrl=mtcars[,6]) #newer Cr1

silentMtx0(mtcars[,1:4],ctrl=mtcars[,6]) #older Cr1

The interpretation of signed unanimity indexes is self-explanatory in the
following R outpout.

[1] "Negative index means the column named variable

kernel-causes row named"

[1] "Positive index means the row named variable

kernel-causes column named"

[1] "abs(index)=sign unanimity by weighted sum of

3 signs from Cr1 to Cr3"

#using silentMtx command for newer Cr1 version

mpg cyl disp hp

mpg 100.000 37.008 -31.496 -100.000

cyl -37.008 100.000 37.008 18.110

disp 31.496 -37.008 100.000 37.008

hp 100.000 -18.110 -37.008 100.000

#using silentMtx0 command for older Cr1

mpg 100.000 -31.496 -31.496 -100.000
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cyl 31.496 100.000 -31.496 -31.496

disp 31.496 31.496 100.000 -31.496

hp 100.000 31.496 31.496 100.000

For example, the negative elements [1,4] =(–100, –100) in the upper and
lower parts of the above output matrix suggest that the column 4 ‘horse
power variable’ kernel causes the ‘miles per gallon’ or the row 1 variable,
or: ‘hp’�‘mpg’. The absolute values of the unanimity index (=100) suggests
that the path direction is unanimously supported by Cr1 to Cr3 under both
definitions of Cr1.

The elements at the diagonally opposite locations [4,1] in the output
matrix have the opposite positive sign, meaning reverse causal path with
the same meaning: Column 1 variable is kernel caused by the row 4 variable
or ‘mpg’�‘hp’. Both paths are exactly the same even though the signs are
opposite, as they should be. Of course, the signs and magnitudes of all pairs
do not match for the two distinct definitions of Cr1.

If the argument matrix ‘mtx’ has p rows, ‘silentPairs’ provides a useful
summary vector with (p � 1) elements, focused on the first column paired
with all other columns in the range [–3.175, 3.175]. By contrast, ‘silentMtx’
provides a useful summary matrix of all causal path pairs converted to the
intuitive range [–100, 100].

6.5 ‘parcorMany’ illustrated with ‘mtcars’ data

The R function parcorMany creates a matrix of generalized partial correla-
tion coefficients between all pairs of variables after removing the effect of
remaining variables and also after removing the effect of control variables if
any, when the dependencies are computed from kernel regressions.

parcorMany(mtcars[,1:4],ctrl=mtcars[,6])

Since we have four basic variables and one control variable, we have choose(4,2)
or six pairs or three flipped pairs. In the following output column entitled
nami and namj provide names ofXi andXj while partij and partji provide the
partial correlations. The column entitled ‘rijMrji’ reports the difference be-
tween their absolute values useful for our third criterion Cr3: (abs(partij)
- abs(partji)).
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> parcorMany(mtcars[,1:4],ctrl=mtcars[,6])

nami namj partij partji rijMrji

[1,] "mpg" "cyl" "-0.0033" "-0.3428" "-0.3395"

[2,] "mpg" "disp" "0.0634" "0.0421" "0.0213"

[3,] "mpg" "hp" "-0.0845" "-0.0883" "-0.0037"

This function is included at the request of a package user.
If the reader wishes to check additional bootstrap functions on automobile

data, we provide the following code.

bb=bootPairs(mtx=mtcars[,1:4],ctrl=mtcars[,6],n999=999)

# Make n999=9 for quick check

bootQuantile(bb)

bootSummary(bb)

bootSign(bb)

bootQuantile(bb, per100=FALSE)

bootSummary(bb, per100=FALSE)

The output is mostly omitted for brevity. The option ‘per100=FALSE’
gives results for the ‘sum’ statistic in the range [–3.175, 3.175] instead of ui.
We include the short output for quantiles with n999=9 for illustration.

bootQuantile(bb)

cyl disp hp

2.5% -37.00787 31.49606 -87.40157

97.5% 31.49606 100.00000 31.49606

7 Summary and Final Remarks

We show that Engle et al. (1983) or EHR’s “weak exogeneity” is not di-
rectly testable as it involves arbitrarily defined parameters of interest (ψ)
and nuisance parameters (λ2). Hausman-Wu indirect exogeneity tests use IV
estimators which can“do more harm than good” (Bound et al., 1995, p. 449),
and are criticized as being “very inefficient” by Kiviet and Niemczyk (2007),
Dufour, and others. Medicine has long rejected medieval-style diagnoses of
diseases by simply showing that a cure works. Hence there is a long-standing
need for a practical exogeneity test which avoids IV. A joke in subsection
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2.1.1 on IV is for comic relief, since there are many valid applications of IV
in the literature.

The definition of statistical independence leads to our Lemmata for study-
ing asymmetry of a flipped pair of variables in a model. Our Theorem helps
define “Kernel exogeneity” of a variable when it has independently gener-
ated DGP with self-driven innovations. Modern computing tools allow us
to use newly defined asymmetric generalized partial correlation coefficients
from Vinod (2014) and stochastic dominance of four orders (SD1 to SD4)
first suggested in Finance for comparing portfolios to quantify the asymme-
try of flipped model variables (Y and Xi) using three criteria, Cr1 to Cr3.
Their unanimity index (ui > ��100,100�) measures the preponderant sign to
identify the Kernel exogenous variable and its strength. If, for example, Xi

is Kernel exogenous, we say that the Kernel cause is Xi with the causal path:
Xi � Y .

Our decision rules based on ui are simulated in section 4 with high success
rate. Our new bootstrap test for exogeneity in section 5 can do statistical
inference for ui using about a thousand estimates. Descriptive statistics of
these estimates, illustrated in Table 2, provide a view of the sampling distri-
bution of ui to assess the preponderant sign and hence the causal direction,
as well as, unanimity strength. We include tools for bootstrap confidence
interval construction.

Our Kernel causality is not true philosophical causality and literature
dealing with extractions of causal relations with careful studies of relations
with and without certain conditions are outside the scope of this paper. If
Xi is relatively more exogenous than Y , based on preponderance of evidence
using ui, we have the Kernel causal path Xi � Y . If the causal path is
reversed or bidirectional, researchers may well need an extra equation in a
simultaneous equations model.

We illustrate the new bootstrap exogeneity test and causal path determi-
nation with several examples. Illustrative data sets from various R packages
studied here include Klein I simultaneous equations model, Ozone pollution,
European crime and automobile design. Our Section 6.2 considers a novel
macroeconomic model explaining the ‘excess bond premium’ (EBP) known
to be a good predictor of US recessions. We study detailed relation between
EBP and six variables including various criteria and graphics, providing soft-
ware tools for implementation based on the R package ‘generalCorr.’ Our
evidence in Table 3 suggests that US investors worried about an impending
recession should pay attention to innovations in three key variables: credit
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creation (CrCrea), credit destruction (CrDstr) and money stock (M2), which
are found to be Kernel exogenous.

Clearly, practitioners can use our unanimity index implemented with very
few lines of code. The ability to treat potentially confounding variables as
control may be particularly valuable. There are several potential applications
in all scientific areas including exploratory hypothesis formulation, Big Data
and artificial intelligence. It is straightforward to extend and modify our
tools, if indicated by future research, since they are open source.
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