Introduction to genBaRcode

2025-03-10

Table of Contents
1. genBaRcode Package

2. Barcode Extraction

2.1 Parallelization
2.2 Manipulating the BCdat data type

2.3 Reading and Converting other data formats

3. Error Correction

3.1 Error Correction Approaches
3.1.1 Standard

3.1.2 Graph based

3.1.3 Connectivity based

3.1.4 Clustering

4. Visualizations

4.1 Fastq Quality Plots

4.2 Plotting Barcode Frequencies

4.3 Plotting Barcode Relations

4.4 Plotting Error Correction Results

5. Generating and plotting Time Series Data
6. genBaRcode Shiny-App

7. Miscellaneous Functions

1. genBaRcode Package

The genBaRcode package is intended to be a comprehensive toolbox for the analysis of genetic barcode
data after next generation sequencing (NGS). It combines the necessary functionalities needed for data
extraction, analysis and error-correction, in combination with a variety of visualizations. Furthermore, there
is an ancillary shiny-app available which provides a graphical user interface for all the basic functions in
order to also make the package usable for less programming experienced users.

Since the CRAN installation routine does not support the automatic installation of Bioconductor packages
and if you have not installed the necessary Bioconductor packages already, you have to install the packages
Biostrings, ShortRead, S4 Vectors and ggtree manually.

if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")

3

BiocManager: :install(c("Biostrings", "ShortRead", "S4Vectors", "ggtree"))

After loading the package with the require("genBaRcode") (or library("genBaRcode")) command, the
entire functionality of the package can be accessed.

http://bioconductor.org
http://bioconductor.org
https://www.bioconductor.org/install/

2. Barcode Extraction

Normally, every analysis starts with an NGS file, in our case a fasta or a fastq file. In order to extract
the genetic barcodes present in the respective file, you have to start with the processingRawData() function.

require("genBaRcode")

bb <- "ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN"
source_dir <- system.file("extdata", package = '"genBaRcode")

BC_data <- processingRawData(file_name "test_data.fastq.gz",
source_dir = source_dir,
results_dir = "/my/results/directory/",
mismatch = O,

label = "test",

bc_backbone = bb,
bc_backbone_label = "BC_1",
min_score = 30,

min _reads = 2,

save_it = FALSE,

seqLogo = FALSE,

cpus = 1,

strategy = "sequential",
full_output = FALSE,
wobble_extraction = TRUE,
dist_measure = "hamming")

First, you have to choose a NGS file (in our case, as already mentioned, a fasta or fastq file) and assign
the name to the parameter file_name of the processingRawData() function. Two other essential input
parameters are called source_dir and results_dir, here you have to assign a character string describing
the path to the chosen file and the path to the directory where you wish to store your results. To make the
vignette examples replicable for everybody, we chose the system-specific path to the installation-directory of
the package and the included example file, called test data.fastq.gz.

Optionally, you can assign a sample specific label to the parameter named label. This character string will
internally be used as data-object label, as directory name for all the result-files created and furthermore as
discriminator within the generated file names. Depending on the specific parameter choices, the function
will first of all read the declared data file. If the min_score parameter was assigned a numeric value greater
than 0, all NGS-reads with an average score smaller than this value will be dismissed. The next step is the
extraction of all barcode-carrying sequences. In order to do so you have to either provide one or several
barcode-backbone structures or the character string "none" which will lead to a simple clustering of every
sequence present in the respective NGS file. The mismatch parameter offers the possibility to define the
number of allowed mismatches between the backbone and the matching nucleotides. No atter if only the
clustering should be performed or a barcode-backbone was provided, you can also choose between different
distance measures (dist_measure) on which the clustering or the backbone matching shall be based on
and the mismatch parameter will then be interpreted as the maximal allowed difference between either
two sequences in order to be clustered together or between a sequence and the respective backbone. The
default method is the Hamming distance (dist_measure = "hamming"), another common choice would
be the Levenshtein distance (dist_measure = "1v") but there are also further methods available (type
?'stringdist-metrics' in the R-console for further details).

Since the package is closely related to several different established genetic barcode constructs, there is also
a function which offers all those backbone sequences, it’s called getBackboneSelection().

getBackboneSelection()
#> name

#> 1 BC32-GFP

#> 2 BC32-Venus

#> 3 BC32-eBFP

#> 4 BC32-T-Sapphire
#> 5 BC16-GFP

#> 6 BCl16-Venus

#> 77 BC16-mCherry

#> 8 BC16-Cerulean

#> sequences

#> 1 ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN
#> 2 CGANNAGANNCTTNNCGANNCTANNGGANNCTTNNCGANNAGANNCTTNNCGANNCTANNGGANNCTTNNCGANNAGANN
#> 3 CTANNCAGNNCTTNNCGANNCTANNCTTNNGGANNCTANNCAGNNCTTNNCGANNCTANNCTTNNGGANNCTANNCAGNN
#> 4 CAGNNATCNNCTTNNCGANNGGANNCTANNCTTNNCAGNNATCNNCTTNNCGANNGGANNCTANNCTTNNCAGNNATCNN
#> 5 ATCNNTAGNNTCCNNAAGNNTCGNNAAGNNTCGNNAGTNNTAG
#> 6 CTANNCTANNCAGNNCTTNNCGANNCTANNCTTNNGGANNGAT
#> 7 CTANNCAGNNATCNNCTTNNCGANNGGANNCTANNCTTNNGAT
#> 8 CTANNCACNNAGANNCTTNNCGANNCTANNGGANNCTTNNGAT

bb <- getBackboneSelection(1)
show (bb)
#> [1] "ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN"

bb <- getBackboneSelection("BC32-eBFP")
show (bb)
#> [1] "CTANNCAGNNCTTNNCGANNCTANNCTTNNGGANNCTANNCAGNNCTTNNCGANNCTANNCTTNNGGANNCTANNCAGNN"

The shown example backbones consist of 16 and 32 wobble bases (coded by Ns) interspersed by fixed triplets
in a defined order (Cornils et al., Thielecke et al. 2017).

As mentioned above, it is also possible to provide more than one backbone at once, therefore we would
recommend to also define backbone-specific labels (bc_backbone_label), since those labels will also be part
of almost everything related to the analysis of those particular backbones, e.g. the names for the created
directories and file (if you provide no label at all a numericlabel will be created automatically). After a
barcode-extraction based on the hamming distance, the resulting sequences will have exactly the same length
as the corresponding backbone pattern(s), since all flanking sequences will be dismissed. Additionally, if you
just want to end up only with the so-called wobble bases (coded by Ns), you have to set the parameter
wobble_extraction to TRUE. Furthermore, if you are only interested in barcodes with a certain minimum
number of read-counts, you can define such a threshold utilizing the min_reads parameter and all barcodes
with less reads will be dismissed.

Within R, the resulting data object will be a S4 data-object of type BCdat which consists of the extracted
barcode sequences, their corresponding read counts, the assigned results directory, the used barcode backbone
and the assigned label.

Here you can see the resulting data structure, if only one backbone was provided and the wobble_extraction
parameter was set to TRUE.

https://academic.oup.com/nar/article/42/7/e56/2437431
https://www.nature.com/articles/srep43249

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

bb <- "ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN"
source_dir <- system.file("extdata", package = '"genBaRcode")

1f nmo results_dir is provided the source_dir automatically also becomes the results_dir
BC_data <- processingRawData(file_name = "test_data.fastq.gz",
source_dir = source_dir,
mismatch = 0,
label = "test",
bc_backbone = bb,
bc_backbone_label = "BC_1",
min_score = 30,
min_reads = 2,
save_it = FALSE,
seqlogo = FALSE,
cpus =1,
strategy = "sequential",
full_output = FALSE,
wobble_extraction = TRUE,
dist_measure = "hamming")

show (BC_data)
class: BCdat

number of barcode sequences: 81
read count distribution: min 3 mean 110.36 median 4 max 2405
barcode sequence length: 32

barcode read counts:
read_count barcode
2405 CACGATCCGCTTCTATCGCGTGCACTACATGT
1504 GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT
1296 GCTAAGGGCGATCACATCCACAAGCTTICTTTIG
1274 CAGAATCGAATGATGTCTTCATCTCAACGCCG
1058 AGTATTCCGACAGTGACATGTCTTCCCGCGTT
968 GGCCTAGAGTAGTTGTCGCGAAAGTCGGCCTC
45 AGTATTCCGACCGTGACATGTCTTCCCGCGTT
37 CAGAATCGCATGATGTCTTCATCTCAACGCCG
22 GGCCTAGCGTAGTTGTCGCGAAAGTCGGCCTC
19 GCCATCTATATTTGTTCCAAGACTCTACTATT

results dir:
/my/results/dir/
barcode backbone:
ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN
label:
test

Here, two backbones are provided and wobble_extraction was set to FALSE. Besides the longer sequences
you can see that it will result in a list of BCdat objects.

#>
#>
#>
#>

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

1f mo results_dir is provided the source_dir automatically also becomes the

BC_data_multiple <- processingRawData(file_name = "test_data.fastq.gz",

source_dir = source_dir,

mismatch = O,

label = "test",

bc_backbone = getBackboneSelection(1:2),
bc_backbone_label = c("BC_1", "BC_2"),
min_score = 30,

min_reads = 2,

save_it = FALSE,

seqlLogo = FALSE,

cpus = 1,

strategy = "sequential",

full_output = FALSE,

wobble_extraction = FALSE,
dist_measure = "hamming")

Warning in prepareDatObject(dat[[b]], results_dir, label = paste(label, : #
There were barcodes detected for backbone

results_dir

'CGANNAGANNCTTNNCGANNCTANNGGANNCTTNNCGANNAGANNCTTNNCGANNCTANNGGANNCTTNNCGANNAGANN '
but all of them with less than 2 reads.

show(BC_data_multiple)

[[1]]
class: BCdat

number of barcode sequences: 81

read count distribution: min 3 mean 110.36 median 4 max 2405

barcode sequence length: 80

barcode read counts:
read_count

2405 ACTCACGACGCTTATCGACCCT. .
1504 ACTGGCGATCCTTGACGAAGCT. .
1296 ACTGCCGATACTTAGCGAGGCT. .
1274 ACTCACGAGACTTATCGACGCT. .
1058 ACTAGCGATACTTTTCGACCCT. .
968 ACTGGCGACCCTTTACGAGACT. .
45 ACTAGCGATACTTTTCGACCCT. .
37 ACTCACGAGACTTATCGACGCT. .
22 ACTGGCGACCCTTTACGAGCCT. .
19 ACTGCCGACACTTTCCGATACT. .

results dir:
/my/results/dir/
barcode backbone:

barcode

. TTCAGGACTCTAACACTATCGAGT
. TTCAGGACGCTAGCACTTGCGACT
. TTAGGGACTCTATCACTTTCGATG
. TTCTGGACACTAACACTGCCGACG
. TTTTGGACCCTACGACTCGCGATT
. TTAGGGATCCTAGGACTCCCGATC
. TTTTGGACCCTACGACTCGCGATT
. TTCTGGACACTAACACTGCCGACG
. TTAGGGATCCTAGGACTCCCGATC
. TTCTGGACTCTAACACTTACGATT

ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN

label:
test_BC_ 1

[[2]]
class: BCdat

#> number of barcode sequences: 1

#> read count distribution: min NA mean NA median NA maxz NA
#>

#> barcode read counts:

#> read_count barcode

#> NA <NA>

#>

#> results dir:

#> /my/results/dir/

#> barcode backbone:

#> CGANNAGANNCTTNNCGANNCTANNGGANNCTTNNCGANNAGANNCTTNNCGANNCTANNGGANNCTTNNCGANNAGANN
#> label:

#> test_BC 2

Now, you can see that if no backbone but the phrase "none" is provided the wobble_extraction parameter
will have no effect. And the mismatch parameter was increased to 4, since this will now define the maximal
number of nucleotide differences for the clustering of the raw sequencing reads.

1f mo results_dir is provided the source_dir automatically also becomes the results_dir
BC_data_2 <- processingRawData(file_name = "test_data.fastq.gz",
source_dir = source_dir,
mismatch = 4,
label = "test",
bc_backbone = "none",
min_score = 30,
min_reads = 2,
save_it = FALSE,
seqlogo = FALSE,
cpus = 1,
strategy = "sequential",
full_output = FALSE,
wobble_extraction = FALSE,
dist_measure = "hamming")

show (BC_data_2)
#> class: BCdat
#>
#> number of barcode sequences: 191
#> read count distridbution: min 3 mean 104.06 median 18 max 2821
#> barcode sequence length: 90

#>

#> barcode read counts:

#> read_count barcode
#> 2821 TCCACTCACGACGCTTATCGAC. ..CTCTAACACTATCGAGTCTCGAGA
#> 1726 ATAACTGGCGATCCTTGACGAA. . .CGCTAGCACTTGCGACTCTCGAGA
#> 1539 CCCACTGCCGATACTTAGCGAG. . .CTCTATCACTTTCGATGCTCGAGA
#> 1539 GACACTCACGAGACTTATCGAC. . .CACTAACACTGCCGACGCTCGAGA
#> 1416 ACCACTTGCGACGCTTACCGAA. . .AAACTAGAACTACCGATCCTCGAG
#> 1306 TGCACTAGCGATACTTTTCGAC. ..CCCTACGACTCGCGATTCTCGAGA
#> 1163 CCTACTGGCGACCCTTTACGAG. .. TCCTAGGACTCCCGATCCTCGAGA

#> 396 CAAGGAATCGGAACTCCAGTCA. ..CTCTAACACTATCGAGTCTCGAGA

#> 304 CAAGGAATCGGAACTCCAGTCA. ..AAACTAGAACTACCGATCCTCGAG
#> 300 TATACGACGGAACTCCAGTCAC. ..CTCTAACACTATCGAGTCTCGAGA
#>

#> results dir:

#> /my/results/dir/

#> barcode backbone:

#> none

#> label:

#> test

If you assign a TRUE to the save_it parameter, the barcode-list will be saved as a csv-file within the stated
results directory (results_dir). Additionally, by setting the seqlogo parameter to TRUE, a sequence logo
of the entire input file will be generated and also stored in the provided results directory.

2.1 Parallelization

Finally, the function offers a possibility to make the necessary calculations in a parallel fashion. The entire
process is based on the R-package future, therefore you have to state the number of available CPUs (cpus)
and the appropriate strategy (strategy). The default strategy will be sequential (meaning only one
cpu will be used) but also multisession can be chosen (meaning more than one cpu will be used). You
can either follow the link or consult the package internal help pages of the future package (by just type
7future: :plan() into the R-console) for more detailed informations.

2.2 Manipulating the BCdat data type

In order to allow for an easy workflow and to reduce the likelihood for ambiguity errors, the data type
contains all important sample-specific data. The specifically adjusted show () function will provide you with
a quick overview of the data set including metadata (number of barcode reads, read count distribution and
sequence lengths, an excerpt of the most abundant barcodes, the path to the results directory, the used
barcode backbone and the associated label).

show (BC_data)
#> class: BCdat
#>
#> number of barcode sequences: 81
#> read count distribution: min 3 mean 110.36 median 4 max 2405
#> barcode sequence length: 32

#>

#> barcode read counts:

#> read_count barcode
#> 2405 CACGATCCGCTTCTATCGCGTGCACTACATGT
#> 1504 GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT
#> 1296 GCTAAGGGCGATCACATCCACAAGCTTICTTTG
#> 1274 CAGAATCGAATGATGTCTTCATCTCAACGCCG
#> 1058 AGTATTCCGACAGTGACATGTCTTCCCGCGTT
#> 968 GGCCTAGAGTAGTTGTCGCGAAAGTCGGCCTC
#> 45 AGTATTCCGACCGTGACATGTCTTCCCGCGTT
#> 37 CAGAATCGCATGATGTCTTCATCTCAACGCCG
#> 22 GGCCTAGCGTAGTTGTCGCGAAAGTCGGCCTC

https://academic.oup.com/bioinformatics/article/33/22/3645/3980251
https://cran.r-project.org/web/packages/future/vignettes/future-1-overview.html
https://cran.r-project.org/web/packages/future/vignettes/future-1-overview.html

#>
#>
#>
#>
#>
#>
#>
#>

19 GCCATCTATATTTGTTCCAAGACTCTACTATT

results dir:

/my/results/dir/

barcode backbone:

label:

ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN

test

10

The different elements of the data format can easily be accessed via the names of the particular slots.

head (getReads (BC_data))
#> read_count barcode

#> 1 2405 CACGATCCGCTTCTATCGCGTGCACTACATGT
#> 2 1504 GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT
#> 3 1296 GCTAAGGGCGATCACATCCACAAGCTTCTTTG
#> 4 1274 CAGAATCGAATGATGTCTTCATCTCAACGCCG
#> 5 1058 AGTATTCCGACAGTGACATGTCTTCCCGCGTT
#> 6 968 GGCCTAGAGTAGTTGTCGCGAAAGTCGGCCTC

show(getResultsDir (BC_data))
#> [1] "/my/results/dir/"

show (getBackbone (BC_data))
#> [1] "ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN"

show(getLabel (BC_data))
#> [1] "test"

Also modifying or swapping the slot-specific data is easily possible.

BC_data <- setReads(BC_data, data.frame(read_count = c(1:5), barcode = letters[1:5]))
BC_data <- setResultsDir(BC_data, "/my/test/folder/")

BC_data <- setBackbone(BC_data, "AAANNNNGGG")

BC_data <- setLabel(BC_data, "new label")

2.3 Reading and Converting other data formats

There is also the possibility to re-analyze already stored barcode-lists via the function readBCdat (). You
just have to define the path to the particular file of interest and the corresponding file name. And of course
you can also provide a label and a barcode-backbone to complete the stored metadata. And if, for some
reason, the stored data file is no standard csv-file with a semi-colon as separator, there is another parameter
s which allows to specify the actual field separator.

BC_data <- readBCdat(path = "/my/test/folder/",
label = "test",
BC_backbone = "AAANNNNCCCC",
file_name = "test.csv",
s = Il;ll)

11

3. Error Correction

After extracting the barcode-carrying sequences, you can apply the list of detected barcodes to one of the
available error-correction approaches. Since all the necessary analysis steps beforehand (like PCR and NGS)
are naturally error-prone and therefore susceptible to small changes within the original nucleotide sequences,
we recommend to cluster highly similar sequences together. Conveniently, you can use the BCdat object
which was already created by the processingRawData() function as input for the errorCorrection()
function.

BC_data_EC <- errorCorrection(BC_dat BC_data,
maxDist = 4,
save_it = FALSE,
cpus = 1,
strategy = "sequential",
m = "hamming",
type = "standard",
only_EC_BCs = TRUE,
EC_analysis = FALSE,
start_small = TRUE)

Therefore, you have to provide a BCdat data-object (BC_data) and a numeric value (maxDist) specifying
the amount of differences tolerated in order to cluster two barcode sequences together. Depending on the
choice for m, which defines the distance measure (per default it’s the Hamming distance), the maxDist
value defines the maximum number of deviating nucleotides allowed. After we did a sensitivity analysis of
the effect of the chosen Hamming-distance threshold and given the initial Hamming distance differences
of the type of barcodes we are working with, we decided to use one fourth of the total barcode-length
as a conservative Hamming-distance limit. The definition of such a threshold accounts for a successively
increasing amount of single-nucleotide mutations due to several applied PCR-cycles, a potential loss of
sequences due to the fact that only a part of the PCR-material will finally be sequenced and errors finally
introduced by NGS. The exact value of this threshold should be adapted according to the used barcode
construct, the number of initially marked cells and the particular complexity of the used barcode-library.

Another reasonable choice could be the Levenstein distance (m = "1v") in which case the maxDist value
will be interpreted as the maximum number of allowed edit operations. There are also further methods
available, since this piece of the function is based on the stringdist R-package. A documentation can easily
be found via ?'stringdist-metrics'. All of the available error-correction approaches are based on an
interative algorithm, therefore they are hardly parallelizable. Parallel computations are only feasible, if a list
of BCdat objects is supplied. The function will then automatically initiate a parallel execution depending
on the number of data-dobjects and the cpus available. The resulting data-object will then be a list of
BCdat objects (in the same order as the backbone-sequences). Optionally, the final list of corrected barcode
sequences can also be saved as a common csv-file (save_it = TRUE) in the previously specified results
directory. The parameter type identifies the chosen error-correction approach (see the following section).

3.1 Error Correction Approaches

3.1.1 Standard The standard error correction refers to, per default, a Hamming-distance based ap-
proach. Starting with the least abundant barcode BC' _small, the Hamming distances to all other barcodes,
in an increasing order of read counts, are calculated. If there is a highly-similar barcode (BC _similar,
according to the chosen threshold maxDist and the distance measure m) the read counts of BC small
are added to those of BC' _similar and the sequence of BC small is dismissed. The list of barcodes will
be sorted again for read counts after every “merging-event”. The error-correction will always be applied
starting from the least to the most abundant barcode. If there is more than one highly similar barcode

12

https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Hamming_distance

present, the one with the smallest amount of read counts will always be selected first.

BC_data_EC <- errorCorrection(BC_dat

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

If,

BC_data,
maxDist = 4,

save_it = FALSE,

cpus = 1,

strategy = "sequential",
m = "hamming",

type = "standard",
only_EC_BCs TRUE,
EC_analysis = FALSE,
start_small = TRUE)

show (BC_data_EC)
class: BCdat

number of barcode sequences: 9
read count distribution: min 3 mean 993.22 median 1138 maxz 2503
barcode sequence length: 32

barcode read counts:
read_count barcode
2503 CACGATCCGCTTCTATCGCGTGCACTACATGT
1555 GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT
1353 GCTAAGGGCGATCACATCCACAAGCTTICTTTG
1352 CAGAATCGAATGATGTCTTCATCTCAACGCCG
1138 AGTATTCCGACAGTGACATGTCTTCCCGCGTT
1011 GGCCTAGAGTAGTTGTCGCGAAAGTCGGCCTC
19 GCCATCTATATTTGTTCCAAGACTCTACTATT
5 ATTGGGTCCGTCTGAGGGCGTTTCTGCGCCTT
3 CCGCATCTTCTTATCCTGTAGTTCACTATCTC

results dir:
/my/results/dir/
barcode backbone:
ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN
label:
test_EC

in combination with type = "standard" also the parameter start small was set to FALSE, the algorithm

will now in case of more than one highly similar barcode, select the most abundant one first.

BC_data_EC <- errorCorrection(BC_dat

BC_data,
maxDist = 4,

save_it = FALSE,

cpus = 1,

strategy = "sequential",
m = "hamming",

type = "standard",

only EC_BCs = TRUE,

13

EC_analysis = FALSE,
start_small = FALSE)

show(BC_data_EC)
#> class: BCdat
#>
#> number of barcode sequences: 9
#> read count distribution: min 3 mean 993.22 median 1138 max 2503
#> barcode sequence length: 32

#>

#> barcode read counts:

#> read_count barcode
#> 2503 CACGATCCGCTTCTATCGCGTGCACTACATGT
#> 1555 GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT
#> 1353 GCTAAGGGCGATCACATCCACAAGCTTICTTTG
#> 1352 CAGAATCGAATGATGTCTTCATCTCAACGCCG
#> 1138 AGTATTCCGACAGTGACATGTCTTCCCGCGTT
#> 1011 GGCCTAGAGTAGTTGTCGCGAAAGTCGGCCTC
#> 19 GCCATCTATATTTGTTCCAAGACTCTACTATT
#> 5 ATTGGGTCCGTCTGAGGGCGTTTCTGCGCCTT
#> 3 CCGCATCTTCTTATCCTGTAGTTCACTATCTC
#>

#> results dir:

#> /my/results/dir/

#> barcode backbone:

#> ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN
#> label:

#> test_EC

3.1.2 Graph based The graph based error-correction is based on a graph-theoretic approach. Firstly,
for each and every barcode the distances to all the other barcodes will be calculated, all distances > maxDist
will then be set to zero and all distances =< maxDist will be set to one. Secondly, the resulting matrix
serves as an adjacency matrix for which existing connected components can be identified. And finally, all of
the member-barcodes of each of those components will then be clustered together, with the most abundant
barcode as the respective cluster-label.

BC_data_EC <- errorCorrection(BC_dat = BC_data,
maxDist 4,
save_it = FALSE,
cpus = 1,
strategy = '"sequential",
m = "hamming",
type = "graph based",
only_EC_BCs = TRUE,
EC_analysis = FALSE,
start_small = FALSE)

show(BC_data_EC)
#> class: BCdat
#>

14

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

number of barcode sequences: 9
read count distribution: min 3 mean 993.22 median 1138 maz 2503
barcode sequence length: 32

barcode read counts:
read_count barcode
2503 CACGATCCGCTTCTATCGCGTGCACTACATGT
1555 GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT
1353 GCTAAGGGCGATCACATCCACAAGCTTICTTTG
1352 CAGAATCGAATGATGTCTTCATCTCAACGCCG
1138 AGTATTCCGACAGTGACATGTCTTCCCGCGTT
1011 GGCCTAGAGTAGTTGTCGCGAAAGTCGGCCTC
19 GCCATCTATATTTGTTCCAAGACTCTACTATT
5 ATTGGGTCCGTCTGAGGGCGTTTCTGCGCCTT
3 CCGCATCTTCTTATCCTGTAGTTCACTATCTC

results dir:
/my/results/dir/
barcode backbone:
ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN
label:
test_EC

3.1.3 Connectivity based The connectivity based error-correction is very similar to the standard
approach but instead of ordering the available barcodes by their read count values and starting the clustering
with the least frequent one, it now will be ordered by the amount of highly-similar analogues for each
barcode (again depending on the chosen distance measure m and the threshold maxDist). Consequently, the
clustering will now start with the barcode possessing the lowest number of highly-similar counterparts.

BC_data_EC <- errorCorrection(BC_dat

BC_data,

maxDist = 4,

save_it = FALSE,

cpus = 1,

strategy = "sequential",

m = "hamming",

type = '"connectivity based",
only EC_BCs = TRUE,
EC_analysis = FALSE,
start_small = FALSE)

show(BC_data_EC)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

class: BCdat

number of barcode sequences: 9
read count distribution: min 3 mean 993.22 median 1138 maz 2503
barcode sequence length: 32

barcode read counts:

read_count barcode
2503 CACGATCCGCTTCTATCGCGTGCACTACATGT
1555 GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT

15

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

1353 GCTAAGGGCGATCACATCCACAAGCTTCTTTG
1352 CAGAATCGAATGATGTCTTCATCTCAACGCCG
1138 AGTATTCCGACAGTGACATGTCTTCCCGCGTT
1011 GGCCTAGAGTAGTTGTCGCGAAAGTCGGCCTC
19 GCCATCTATATTTGTTCCAAGACTCTACTATT
5 ATTGGGTCCGTCTGAGGGCGTTTCTGCGCCTT
3 CCGCATCTTCTTATCCTGTAGTTCACTATCTC

results dir:
/my/results/dir/
barcode backbone:
ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN
label:
test_EC

3.1.4 Clustering The error-correction type called clustering takes the most abundant barcode, then
identifies all highly-similar counterparts (again based on the method m and the threshold maxDist), adds up
all corresponding read-counts to the most-abundant one and finally dismisses all of those added up barcode
sequences. Then, the procedure continues with the second most-abundant barcode until all barcodes are
processed.

BC_data_EC <- errorCorrection(BC_dat = BC_data,
maxDist = 4,
save_it = FALSE,
cpus = 1,
strategy = "sequential",
m = "hamming",
type = "clustering",

only_EC_BCs = TRUE,
EC_analysis = FALSE,
start_small = FALSE)

show(BC_data_EC)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

class: BCdat

number of barcode sequences: 9
read count distribution: min 3 mean 993.22 median 1138 maxz 2503
barcode sequence length: 32

barcode read counts:
read_count barcode
2503 CACGATCCGCTTCTATCGCGTGCACTACATGT
1555 GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT
1353 GCTAAGGGCGATCACATCCACAAGCTTCTTTG
1352 CAGAATCGAATGATGTCTTCATCTCAACGCCG
1138 AGTATTCCGACAGTGACATGTCTTCCCGCGTT
1011 GGCCTAGAGTAGTTGTCGCGAAAGTCGGCCTC
19 GCCATCTATATTTGTTCCAAGACTCTACTATT
5 ATTGGGTCCGTCTGAGGGCGTTTCTGCGCCTT
3 CCGCATCTTCTTATCCTGTAGTTCACTATCTC

16

#>
#>
#>
#>
#>
#>

results dir:

/my/results/dir/

barcode backbone:

label:

ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN

test_EC

17

4. Visualizations

After extracting and preprocessing the barcode sequences, there are a variety of visualizations available.

4.1 Fastq Quality Plots

Besides visualizing the extracted barcodes, their frequencies and sequence similarities, there are also
plot-functions for checking the quality of the initial fastq-file. The function plotNucFrequency() allows an
overview of the nucleotide frequencies over the entire raw data file.

s_dir <- system.file("extdata", package = "genBaRcode")

plotNucFrequency(source_dir = s_dir, file_name = "test_data.fastq.gz")
0.3
%)
202
Q
>
o
g) I
0.0
A C G T N

It is also possible to create a histogram of the mean or median quality-score distribution over all reads
within the fastg-file, using the function plotQualityScoreDis().

plotQualityScoreDis(source_dir = s_dir, file_name = "test_data.fastq.gz", type = "mean"
8000
+ 6000
S
o 4000
o
2000
0
20 25 30 35
mean score per sequence
plotQualityScoreDis(source_dir = s_dir, file_name = "test_data.fastq.gz", type = "median")

18

count

15000
10000

5000

10

20 30
median score per sequence

19

Furthermore, the function plotQualityScorePerCycle() allows for a read-position specific visualization of
the mean or median sequence quality.

plotQualityScorePerCycle(source_dir = s_dir, file_name = "test_data.fastq.gz")

; \7 VT (VAR
1
i
30
o
§ — mean
> 25% quantile
g — median
o -) il
20 75% quantile
10
0 25 50 75

cycle

Additionally, there is a sequence logo function available providing the opportunity to visually inspect all
NGS reads at once.

show(BC_data)
#> class: BCdat
#>
#> number of barcode sequences: 81
#> read count distribution: min 3 mean 110.36 median 4 max 2405
#> barcode sequence length: 32

#>

#> barcode read counts:

#> read_count barcode
#> 2405 CACGATCCGCTTCTATCGCGTGCACTACATGT
#> 1504 GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT
#> 1296 GCTAAGGGCGATCACATCCACAAGCTTCTTTG
#> 1274 CAGAATCGAATGATGTCTTCATCTCAACGCCG
#> 1058 AGTATTCCGACAGTGACATGTCTTCCCGCGTT
#> 968 GGCCTAGAGTAGTTGTCGCGAAAGTCGGCCTC
#> 45 AGTATTCCGACCGTGACATGTCTTCCCGCGTT
#> 37 CAGAATCGCATGATGTCTTCATCTCAACGCCG

20

#> 22 GGCCTAGCGTAGTTGTCGCGAAAGTCGGCCTC

#> 19 GCCATCTATATTTGTTCCAAGACTCTACTATT

#>

#> results dir:

#> /my/results/dir/

#> barcode backbone:

#> ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN
#> label:

#> test

plotSeqlogo(BC_dat = BC_data, colrs = NULL)

1.001 A
2 0.75 1 T
(0]
© 0.50 C
()

Q. 0.25 - G

000- T T T T N

0 10 20 30
position

It is also possible to adjust the color selection for each nucleotide.

color order correlates to the following nucleotide order A, T, C, G, N
col_vec <- c("#000000",
"#000000",
RColorBrewer: :brewer.pal(6, "Paired")[c(5, 6)],
"#000000")
show(col_vec)
#> [1] "#000000" "#000000" "#FB9A99" "#E31A1C" "#000000"

plotSeqlogo(BC_dat = BC_data, colrs = col_vec)

1.00 4 = - B -
el | | | HH A AHTH —
5 g A H IIII HT
el -0 | O H A HE T
o IR ik | =

oo e e HIE 0O

. ! ' T T N

0 10 20 30

position

4.2 Plotting Barcode Frequencies

The function generateKirchenplot() offers the possibility to explore the barcode frequencies of the
analyzed sample.

21

show(BC_data)
#> class: BCdat
#>
#> number of barcode sequences: 81
#> read count distribution: min 3 mean 110.36 median 4 maxz 2405
#> barcode sequence length: 32

#>

#> barcode read counts:

#> read_count barcode
#> 2405 CACGATCCGCTTCTATCGCGTGCACTACATGT
#> 1504 GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT
#> 1296 GCTAAGGGCGATCACATCCACAAGCTTCTTTG
#> 1274 CAGAATCGAATGATGTCTTCATCTCAACGCCG
#> 1058 AGTATTCCGACAGTGACATGTCTTCCCGCGTT
#> 968 GGCCTAGAGTAGTTGTCGCGAAAGTCGGCCTC
#> 45 AGTATTCCGACCGTGACATGTCTTCCCGCGTT
#> 37 CAGAATCGCATGATGTCTTCATCTCAACGCCG
#> 22 GGCCTAGCGTAGTTGTCGCGAAAGTCGGCCTC
#> 19 GCCATCTATATTTGTTCCAAGACTCTACTATT
#>

#> results dir:

#> /my/results/dir/

#> barcode backbone:

#> ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN
#> label:

#> test

generateKirchenplot (BC_dat = BC_data)

& 2048

©

®

g 256 -

3

S 32 ‘

®

2

N 4 -

5 “|||||||||||||||IIIIIIIIIIIIIIIIIIIII||||||||||||||||||||||||||||||||||||
6 2‘0 4‘0 Gb 8‘0

barcodes

In certain cases, if you are particularly interested in previously known barcode sequences, you can provide
those sequences woth the function call and therefore introducing an additional color-coding visualizing
sequence (dis-)similarities.

known_BCs <- c("GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT",
"CACGATCCGCTTCTATCGCGTGCACTACATGT",
"ATTGGGTCCGTCTGAGGGCGTTTCTGCGCCTT")

generateKirchenplot (BC_dat = BC_data, ori_BCs = known_BCs)

22

log2(barcode reads)

2048 -

256 -

32

‘ |||||| TRERE (0 0 o e
20 40 60 80

barcodes

23

HDs

Furthermore, if you have two different barcode sets, e.g. a barcode white-list and known contaminations,
both of those sets can be provided and will then automatically lead to separate plots.

known_BCs <- c("GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT",
"CACGATCCGCTTCTATCGCGTGCACTACATGT",
"ATTGGGTCCGTCTGAGGGCGTTTCTGCGCCTT")
contaminations <- c("CACGATCCGCTTCTATCGCGTGCACTACATGC",
"ATTGGGTCCGTCTGAGGGCGTCTCTGCGCCTT",
"CACGATCCGCTTCTATCGCGTGCGCTACATGT",
"TACGATCCGCTTCTATCGCGTGCACTACATGT")

generateKirchenplot (BC_dat = BC_data, ori_BCs = known_BCs, ori_BCs2 = contaminations)

2048
256
32 HDs
4 I = 0
™ 1
g 2048 . 18
% 256 19
% 32 20
SO 00wy om oo s o o ”
ks
2048 . ”3
256 . 24
32
: I |
0 20 40 60 80
barcodes

This function also offers the possibilities to change the scale of the y-axis (Loga), the distance measure (m),
the color palettes (col_type) and of course the corresponding labels (setLabels).

known_BCs <- c("GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT",
"CACGATCCGCTTCTATCGCGTGCACTACATGT",
"ATTGGGTCCGTCTGAGGGCGTTTCTGCGCCTT")
contaminations <- c("CACGATCCGCTTCTATCGCGTGCACTACATGC",
"ATTGGGTCCGTCTGAGGGCGTCTCTGCGCCTT",
"CACGATCCGCTTCTATCGCGTGCGCTACATGT",
"TACGATCCGCTTCTATCGCGTGCACTACATGT")

generateKirchenplot (BC_dat = BC_data,
ori_BCs = known_BCs, ori_BCs2 = contaminations,
setLabels = c("known BCs", "stuff", "contaminations"),
loga = TRUE, col_type = "wild", m = "1lv")

24

Another interesting feature of a data set concerns the read-count frequencies. The following function offers
the possibility to plot read-counts as absolute numbers.

plotReadFrequencies(BC_dat = BC_data)

60

40

20

number of barcodes

0 500 1000 1500 2000 250C
read count

...or as log-values or the corresponding density.

BC_data, log = TRUE)
BC_data, dens = TRUE)

plotReadFrequencies(BC_dat
plotReadFrequencies(BC_dat

Also the width of the bins (bw) or the number of the bins (b) are adjustable.

BC_data, bw = 30)
BC_data, b = 30)

plotReadFrequencies(BC_dat
plotReadFrequencies(BC_dat

4.3 Plotting Barcode Relations

You can also have a look at the sequence (dis-)similarities of the detected barcode sequences in a graph-like
plot. Those plots can be used to identify false-positive barcodes and also to help visualizing the actions of
the chosen error-correction approach. The underlying idea is again based on some kind of similarity /distance
measure. Therefore, every barcode sequence will be compared to all other sequences and based on the chosen
similarity measure the distances will be calculated, per default the Hamming distance will be predefined.
The nodes within those network-plots represent the detected barcode sequences and (per default) every
edge symbolizes a distance between two barcodes of exactly one nucleotide difference (adjustable via the
parameter minDist). There are different functions available, which basically do the same but are based on
different R-packages. The plotDistanceIgraph() function is based on the igraph package and therefore
will also return an igraph-object whereas the ggplotDistanceGraph() function offers the possibility to
create an ggplot2-object which than can be further customized. The plotDistanceVisNetwork() function
is based in the visNetwork package and will consequently return a wvisNetwork-object which allows for
an interactive exploration of the resulting plot. For instance, you can adjust the layout by clicking and
dragging specific network nodes or by hovering the mouse-arrow over a node it is also possible to retrieve
the underlying barcode metadata. Additionally, it is also possible to zoom-in and out and see all the
corresponding barcode sequences at once.

25

https://en.wikipedia.org/wiki/Hamming_distance

plotDistanceVisNetwork(BC_dat = BC_data, minDist = 1, loga = TRUE, m = "hamming")
plotDistanceIgraph(BC_dat = BC_data, minDist = 1, loga = TRUE, m = "hamming")

26

ggplotDistanceGraph(BC_dat = BC_data, minDist = 1, loga = TRUE, m = "hamming")

&
38

i

Also, there are additional parameters available. You can provide a list of particular interesting barcodes
(ori_BCs) which will introduce a similarity based color-coding. The parameter called lay allows for the
selection of different layout algorithms or, instead of providing a name of the layout algorithm, you can
provide a two-column matrix with as many rows as there are nodes in the network, in which case the matrix
is used as layout node-coordinates. Default value for lay is fruchtermanreingold, but possible are also circle,
eigen, kamadakawai, spring and many more. Additionally, you can choose a custom color palette (rainbow,
heat.colors, topo.colors, greens, wild - see package grDevices). And finally, the parameter legend_size
allows for an adjustment of legend size.

known_BCs <- c("GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT",
"CACGATCCGCTTCTATCGCGTGCACTACATGT",
"ATTGGGTCCGTCTGAGGGCGTTTCTGCGCCTT")

ggplotDistanceGraph(BC_dat = BC_data,
minDist = 1, loga = TRUE, m = "hamming",
ori_BCs = known_BCs, lay = "circle", complete = FALSE,
col_type = "topo.colors", legend_size = 2)

27

18
19
20
21
22
23
24

For further customization possibilities the function createGDF() will create a gdf-file which then can be
used as input for an open-source and free software called Gephi.

createGDF (BC_dat = BC_data, minDist = 1, loga = TRUE, m = "hamming")

There is also the possibility to use the same conceptual approach but not visualizing the barcodes as nodes
in a network but as branches in a tree.

plotClusterTree(BC_dat = BC_data, tree_est = "UPGMA",
type = "fan", tipLabel = FALSE, m = "hamming")

28

https://gephi.org

plotClusterGgTree(BC_dat = BC_data, tree_est = "NJ",

type = "rectangular", m = "hamming")
#> Registered S3 method owverwritten by 'ggtree':
#> method from

#> fortify.igraph ggnetwork

£
£
£
E

£

4.4 Plotting Error Correction Results

Furthermore, the package comes with a variety of functions solely designed to inspect the “insides” ” of the
error-correction approaches. Each error-correction basically clusters the input sequences based on slightly
different “assumptions”. To retrospectively inspect the resulting cluster compositions, e.g. the function
error_correction_clustered_HDs() will visualize the sequences similarities in the respective clusters. In
order to do so, you have to set the EC_analysis paramter of the errorCorrection()-function to TRUE.

BC_data_EC <- errorCorrection(BC_dat = BC_data,
maxDist = 4,
save_it = FALSE,
cpus = 1,
strategy = "sequential",
m = "hamming",
type = "standard",
only_EC_BCs = FALSE,
EC_analysis = TRUE,
FALSE)

start_small

error_correction_clustered_HDs(datEC = BC_data_EC, size = 0.75)

3-
S,
2-
0 ©c ¢
[a]
T
X
©
IS
1-
0-

clustered BC distances (6 clusters)

You can also visualize the cluster composition in a more graph-like plot and if you are only interested in the
final outcome of the error-correction procedure, it is possible to set the only_EC_BCs parameter to TRUE.
Otherwise, all initial barcodes and the iterative nature of the error-correction procedure will be part of the
additional metadata.

error_correction_circlePlot(edges = BC_data_EC$edges, vertices = BC_data_EC$vertices)

30

#>
#>
#>
#>
#>
#>
#>

error_correction_treePlot(edges = BC_data_EC$edges, vertices = BC_data_EC$vertices)
Warning: The “<scale>' argument of “guides() cannot be ‘FALSE . Use "none" instead as

of ggplot2 3.3.4.

Read Counts

1 The deprecated feature was likely used in the genBaRcode package.

Please report the issue to the authors.

Thts warning ts displayed once every 8 hours.
Call “lifecycle::last_lifecycle_warnings() to see where this warning was

generated.

31

But you can also choose the already presented ggplot2 and visNetwork based plots to have a look at the

subsumed barcode sequences during error-correction.

ggplotDistanceGraph_EC(BC_dat = BC_data, BC_dat_EC = BC_data_EC,
minDist = 1, loga = TRUE, m = "hamming")

W
NS

—_—

~\/
N

/TN L

2iS

\/
—/

Vs
N

= BC_data_EC,
"hamming")

plotDistanceVisNetwork_EC(BC_dat = BC_data, BC_dat_EC
minDist = 1, loga = TRUE, m

And here again, you can define a barcode list of interest to limit the amount of color-coding.

known_BCs <- c("GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT",
"CACGATCCGCTTCTATCGCGTGCACTACATGT",
"ATTGGGTCCGTCTGAGGGCGTTTCTGCGCCTT")

= BC_data_EC,

ggplotDistanceGraph_EC(BC_dat = BC_data, BC_dat_EC
"hamming", ori_BCs = known_BCs)

minDist = 1, loga = TRUE, m

32

plotDistanceVisNetwork_EC(BC_dat = BC_data, BC_dat_EC = BC_data_EC,
minDist = 1, loga = TRUE, m "hamming", ori_BCs = known_BCs)

33

Or you can just limit the number of regarded barcodes by defining how many of the most abundant barcodes
you would like to inspect (in this example, we limited it to the two most-abundant once, BC_threshold = 2).

known_BCs <- c("GGTCGAAGCTTCTTTCGGGCCGCACGGCTGCT",
"CACGATCCGCTTCTATCGCGTGCACTACATGT",
"ATTGGGTCCGTCTGAGGGCGTTTCTGCGCCTT")

ggplotDistanceGraph_EC(BC_dat = BC_data, BC_dat_EC
minDist = 1, loga = TRUE, m

BC_data_EC,
"hamming", BC_threshold = 2)

Te,
® '.7/ Li:

° %
(:0
*? .

.’_

o

e

N

34

5. Generating and plotting Time Series Data

The package also provides the possibility to analyze time series data. Let’s assume there are different
fastg-files for different points in time, you have to start with the analysis of each file separately. After
that, all the separately generated BCdat objects have to be arranged in a list in the time-correct order.
If you already provided all of the fastq-files to the processingRawData() function at once, the resulting
BCdat-objects will already be arranged in a list. Now, you just have to use that list with the function
generateTimeSeriesData(). The resulting output can then be visualized utilizing the plotTimeSeries ()
and the plotVennDiagram() function.

path to the package internal data file
source_dir <- system.file("extdata", package = '"genBaRcode")

BC_data_tpl <- processingRawData(file_name = "test_data.fastq.gz",
source_dir,
mismatch = 10,
label = "tpl",
bc_backbone = getBackboneSelection(1),
bc_backbone_label = "BC_ 1",
min_score = 10,
save_it = FALSE)
BC_data_tpl <- errorCorrection(BC_data_tpl, maxDist = 2)

BC_data_tp2 <- processingRawData(file_name = "test_data.fastq.gz",
source_dir,
mismatch = 1,
label = "tp2",
bc_backbone = getBackboneSelection(1),
bc_backbone_label = "BC_1",
min_score = 30,
min_reads = 1000,
save_it = FALSE)
BC_data_tp2 <- errorCorrection(BC_data_tp2, maxDist = 4, type = "clustering")

BC_data_tp3 <- processingRawData(file_name = "test_data.fastq.gz",
source_dir,
mismatch = 0,
label = "tp3",
bc_backbone = getBackboneSelection(1),
bc_backbone_label = "BC_1",
min_score = 37,
save_it = FALSE)
BC_data_tp3 <- errorCorrection(BC_data_tp3, maxDist = 8, type = '"graph based")

BC_list <- 1list(BC_data_tpl, BC_data_tp2, BC_data_tp3)
BC_matrix <- generateTimeSeriesData(BC_dat_list = BC_list)
plotTimeSeries(ov_dat = BC_matrix)

#> # normalization of read count data
plotVennDiagram(BC_dat = BC_list)

35

1.00 -

o

~N

o1
1

contribution
o
(6]
o

3

o

N

5
1

0.00- ——,

1 2 3
time

As usual, also those two visualization functions come with a variety of layout options.

choose colors
test_colors <- RColorBrewer: :brewer.pal(12, "Set3")

plotTimeSeries(ov_dat = BC_matrix[1:12,],
colr = test_colors, tp = c(1,3,4),
x_label = "test data", y_label = "test freqgs")

plotVennDiagram(BC_dat = BC_list, alpha_value = 0.25,
colrs = c("green", "red", "blue"), border_color = "orange",
plot_title = "this is the title",
legend_sort = c("tp2_EC", "tp3_EC", "tpl_EC"),
annotationSize = 2.5)

36

tpl_EC
tp2_EC
tp3_EC

6. genBaRcode Shiny-App

There is also a shiny-app included within the package, allowing the user to use all main functionality of the
package without typing any line of code at all. Or if you are well capable of programming you can also use
it as a convenient method to learn about the possibilities of the package. There is an app-internal help and
also an option to inspect the source-code necessary to redo all in-app done analysis. You can start the app
with the genBaRcode_app() command and if you already have a data file which you are dying to analyze
you just need to provide the path to the directory (dat_dir) of this particular file in order to choose it
from within the app. If you have none and no path is provided the package‘s internal example file will be
available for exemplary analysis.

start Shiny app with the package internal test data file
genBaRcode_app ()

start Shiny app with access to a predefined directory
genBaRcode_app(dat_dir = "/my/test/directory/")

For more detailed information’s please consult the app-specific vignette.

37

7. Miscellaneous Functions

Since the package is closely related to several different and already established genetic barcodes, there
is also a function which offers all established barcode-backbones, its called getBackboneSelection().
This is a convenient way to directly input those, sometimes lengthy, barcode backbones directly into the
processingRawData() function.

getBackboneSelection()
#> name

#> 1 BC32-GFP

#> 2 BC32-Venus

#> 3 BC32-eBFP

#> 4 BC32-T-Sapphire
#> 5 BC16-GFP

#> 6 BC16-Venus

#> 7 BC16-mCherry

#> 8 BC16-Cerulean

#> sequences

#> 1 ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN
#> 2 CGANNAGANNCTTNNCGANNCTANNGGANNCTTNNCGANNAGANNCTTNNCGANNCTANNGGANNCTTNNCGANNAGANN
#> 3 CTANNCAGNNCTTNNCGANNCTANNCTTNNGGANNCTANNCAGNNCTTNNCGANNCTANNCTTNNGGANNCTANNCAGNN
#> 4 CAGNNATCNNCTTNNCGANNGGANNCTANNCTTNNCAGNNATCNNCTTNNCGANNGGANNCTANNCTTNNCAGNNATCNN
#> 5 ATCNNTAGNNTCCNNAAGNNTCGNNAAGNNTCGNNAGTNNTAG
#> 6 CTANNCTANNCAGNNCTTNNCGANNCTANNCTTNNGGANNGAT
#> 77 CTANNCAGNNATCNNCTTNNCGANNGGANNCTANNCTTNNGAT
8

#> CTANNCACNNAGANNCTTNNCGANNCTANNGGANNCTTNNGAT

bb <- getBackboneSelection(1)

show (bb)

#> [1] "ACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANNCTTNNCGANNCTTNNGGANNCTANNACTNNCGANN"

bb <- getBackboneSelection("BC32-eBFP")
show (bb)
#> [1] "CTANNCAGNNCTTNNCGANNCTANNCTTNNGGANNCTANNCAGNNCTTNNCGANNCTANNCTTNNGGANNCTANNCAGNN"

If you would like to revisit some already analysed data-files you can just read the already stored csv-files
via the readBCdat () function. The function will read the file and return a BCdat-object. And since there
are different csv-like file formats out there, it is also possible to state the file-specific separator symbol via
the parameter s.

BC_data <- readBCdat(path = "/my/test/firectory", label = "test_label", s = ";",
BC_backbone = "ACTNNGGCNNTGANN", file_name = "test_file.csv")

But you can also just transform a data.frame() into a valid BCdat-object.

test_data_frame <- data.frame(read_count = seq(100, 400, 100),
barcode = c("AAAAAAAA", "GGGGGGGG",
U THNSSISS L ¢ CCCCCCCRDY)

BC_data <- asBCdat(dat = test_data_frame,

38

label = "test_label",
BC_backbone = "CCCNNAAANNTTTNNGGGNN",
resDir = "/my/results/directory/")

Furthermore, in case there is a need for a direct comparison of two BCdat-objects and you have no clue how
to do that you can try the com_pair() function.

test_data_frame <- data.frame(read_count = seq(100, 400, 100),
barcode = c("AAAAAAAA", "GGGGGGGG",
"TTTTTTTT", "CCCCCCCC"))

show(test_data_frame)
#> read_count barcode

#> 1 100 AAAAAAAA
2 200 GGGGGGGG
3 300 TTTTTTTT
400 ceccecece

BC_data_1 <- asBCdat(dat = test_data_frame,
label = "test_label 1",
BC_backbone = "CCCNNAAANNTTTNNGGGNN",
resDir = getwd())

test_data_frame <- data.frame(read_count = ¢(300, 99, 150, 400),
barcode = c("TTTTTTTT", "AATTTAAA",
"GGGGGGGG", "Cccceeee"))

show(test_data_frame)
#> read_count barcode

1 300 TTTTTTTT
w2 99 AATTTAAA
3 158) EEeEEEe
® 4 400 cceeeece

BC_data_2 <- asBCdat(dat = test_data_frame,
label = "test_label 2",
BC_backbone = "CCCNNAAANNTTTNNGGGNN",
resDir = getwd())

test <- genBaRcode:::com_pair(BC_datl = BC_data_1, BC_dat2 = BC_data_2)

show (test)
#> $shared
#> barcode read_count_1 read_count_2 read_count_diff
#> 1 ccccceec 400 400 0
#> 2 TTTTTTTT 300 300 0
#> 3 GGGGGGGG 200 150 50
#>

39

#> $unique_samplel

#> read_count barcode
#> 4 100 AAAAAAAA
#>

#> $unique_sample2

#> read_count barcode
#> 4 99 AATTTAAA

40

	Table of Contents
	1. genBaRcode Package
	2. Barcode Extraction
	3. Error Correction
	4. Visualizations
	5. Generating and plotting Time Series Data
	6. genBaRcode Shiny-App
	7. Miscellaneous Functions

	1. genBaRcode Package
	2. Barcode Extraction
	2.1 Parallelization
	2.2 Manipulating the BCdat data type
	2.3 Reading and Converting other data formats

	3. Error Correction
	3.1 Error Correction Approaches

	4. Visualizations
	4.1 Fastq Quality Plots
	4.2 Plotting Barcode Frequencies
	4.3 Plotting Barcode Relations
	4.4 Plotting Error Correction Results

	5. Generating and plotting Time Series Data
	6. genBaRcode Shiny-App
	7. Miscellaneous Functions

