
gamselBayes: Bayesian generalized additive model

selection including a fast variational option

Virginia X. He and Matt P. Wand

University of Technology Sydney

1st September, 2023

1 Introduction

The R package gamselBayes implements algorithms for Bayesian generalized additive model
selection developed by and described in He & Wand (2022). The underlying model is similar
to, and based on, that developed by Chouldechova & Hastie (2015), and implemented in the
R package gamsel (Chouldechova & Hastie, 2018).

The default fitting and inference algorithm in gamselBayes is a Markov chain Monte Carlo
scheme. For problems of moderate size, the run time with this default approach is likely to be
acceptable. However, it is well-known that Markov chain Monte Carlo approaches do not scale
well to very large problems. With such circumstances in mind, the gamselBayes package also
provides the option of using a faster mean field variational Bayes algorithm for generalized
additive model selection.

In Sections 2–7 of this vignette we work through some illustrative examples involving
simulated and actual data. Section 8 describes limitations of the gamselBayes and contains
some trouble-shooting advice.

2 Ilustrations with Simulated Data

We start with two data sets simulated from Gaussian response additive models. Such examples
have the advantage of explaining the use of gamselBayes in simple terms, and also allowing
comparison with true functions from which the data are simulated.

2.1 All Candidate Predictors Continuous

The following code generates data corresponding to the additive model

yi
ind.

∼ N
(6∑

j=1

fj(xji), σ
2

)
, 1 f i f n, (1)

with n = 500 and σ = 0.15:

> sigmaTrue <- 0.15

> f1True <- function(x) return(0.96*x)

> f2True <- function(x) return(0.5*(pnorm(6*x - 3) + 1))

> f3True <- function(x) return(0.5*(sin(3*pi*x) + 1))

> f4True <- function(x) return(0.5*(0.04*cosh(x^3 - 9*x^2 + 4) + 1))

> set.seed(1) ; n <- 500

> x1 <- runif(n) ; x2 <- runif(n) ; x3 <- runif(n)

> x4 <- runif(n) ; x5 <- runif(n) ; x6 <- runif(n)

> y <- rnorm(n,f1True(x1) + f2True(x2) + f3True(x3) + f4True(x4),sigmaTrue)

> Xgeneral <- data.frame(x1,x2,x3,x4,x5,x6)

The data for all 6 candidate predictors x1, . . . , x6 are stored in the data frame Xgeneral. The
response data are stored in the vector y.

1

These data are simulated from fj functions such that:

f1 is linear; f2, f3, and f4 are non-linear; f5 and f6 are zero.

2.1.1 Analysis Using the Default Method: Markov Chain Monte Carlo

The main function in the gamselBayes package is gamselBayes(). The default gamselBayes()
fit object, labeled fit1, is obtained via:

> library(gamselBayes) ; fit1 <- gamselBayes(y = y,Xgeneral = Xgeneral)

A quick look at the estimated effect types is achieved via:

> effectTypesVector(fit1)

x1 x2 x3 x4 x5 x6

"linear" "nonlinear" "nonlinear" "nonlinear" "zero" "zero"

To obtain a tabulated version of the same information, issue:

> effectTypes(fit1)

Predictor selected as having a linear effect:

x1

Predictors selected as having non-linear effects:

x2 x3 x4

This output shows that, for this example, gamselBayes() correctly estimates the effect of x1
to be linear, the effects of x2, x3 and x4 to be non-linear and the effects of x5 and x6 to be
zero.

A Bayesian inferential summary of the linear effect coefficient is achieved using:

> summary(fit1)

posterior mean 95% credible interval

x1 0.97612 0.93155 1.026

and is in keeping with the true value of the coefficient, 0.96, that generated the data.
Visualisation of the non-linear estimated effects is obtained using:

> plot(fit1)

and is shown in Figure 1. Issuing code such as the following can be used to compare the
estimates shown in Figure 1 with the true functions:

> par(mfrow=c(2,2)) ; xg <- seq(0,1,length = 1001)

> f2g <- f2True(xg) ; f3g <- f3True(xg) ; f4g <- f4True(xg)

> plot(xg,f2g,type = "l") ; plot(xg,f3g,type = "l") ; plot(xg,f4g,type = "l")

2

0.0 0.2 0.4 0.6 0.8 1.0
1.

6
2.

0
2.

4
2.

8
x2

0.0 0.2 0.4 0.6 0.8 1.0

1.
6

2.
0

2.
4

2.
8

x3

0.0 0.2 0.4 0.6 0.8 1.0

1.
6

2.
0

2.
4

2.
8

x4

Figure 1: The plots produced by the command plot(fit1) for the first gamselBayes() fit, stored
as fit1, to the data simulated according to (1). The curves are estimates of f2, f3 and f4. The
convention of plot() for gamselBayes() is to display relevant slices of the additive model fit,
for which each of the other functions are evaluated at the median value of their predictor. The
shaded regions correspond to pointwise 95% credible intervals. The rugs at the base of each
plot show values of each predictor.

Whenever the default Bayesian inference method is used then it is important to keep in
mind that the results depend on behaviour of the Markov chain Monte Carlo samples, also
known as chains. The function checkChains() facilitates a cursory graphical check of the
particular chains and the command:

> checkChains(fit1)

leads to the graphic shown in Figure 2. This graphic shows that key chains for each predictor
are well-behaved and that the resultant Bayesian inference is quite trustworthy.

Details on the graphics produced by the checkChains() function are provided by the
command:

> help(checkChains)

2.1.2 Analysis Using a Faster Alternative Method: Mean Field Variational Bayes

The default method for Bayesian inference is Markov chain Monte Carlo. For large sample
sizes and dimensions, this approach can be slow to compute. To help mitigate this problem
gamselBayes() offers an alternative faster approach based on mean field variational Bayesian
approximate inference. The relevant argument specification is method = ”MFVB”and is illus-
trated for this section’s example via:

> fit2 <- gamselBayes(y = y,Xgeneral = Xgeneral,method = "MFVB")

The estimated effect types are obtained using:

> effectTypes(fit2)

3

Figure 2: The graphic produced by the command checkChains(fit1) for the gamselBayes() fit
object fit1. For the predictor, x1, selected as having a linear effect the chain is the coefficient
of this predictor. For the predictors, x2, x3, x4, selected as having non-linear effects the chains
corresponds to vertical slices of the non-linear fits at the median of each predictor. The second
column is a time series (trace) plot of the chain. The third column is a scatterplot of the chain
values against their previous (lag 1) values. The fourth column is the sample autocorrelation
function (acf), based on the R function acf().

Predictor selected as having a linear effect:

x1

Predictors selected as having non-linear effects:

x2 x3 x4 x6

This output shows that, for this example, gamselBayes() with method = ”MFVB” correctly
estimates the effect of x1 to be linear, the effects of x2, x3 and x4 to be non-linear and the
effect of x5 to be zero. The effect of x6 is incorrectly estimated to be non-linear.

A Bayesian inferential summary of the linear effect coefficient is achieved using:

> summary(fit2)

posterior mean 95% credible interval

x1 0.98076 0.93034 1.0314

Visualisation of the non-linear estimated effects is obtained using:

> plot(fit2)

and is shown in Figure 3.

4

0.0 0.2 0.4 0.6 0.8 1.0
1.

6
2.

0
2.

4
2.

8
x2

0.0 0.2 0.4 0.6 0.8 1.0

1.
6

2.
0

2.
4

2.
8

x3

0.0 0.2 0.4 0.6 0.8 1.0

1.
6

2.
0

2.
4

2.
8

x4
0.0 0.2 0.4 0.6 0.8 1.0

1.
6

2.
0

2.
4

2.
8

x6

Figure 3: The plots produced from the command plot(fit2) for the gamselBayes() fit with
method = ”MFVB”, stored as fit2, to the data simulated according to (1). The curves are
vertically centred estimates of f2, f3, f4 and f6. The shaded regions correspond to pointwise
95% credible intervals. The rugs at the base of each plot show values of each predictor.

2.2 Candidate Predictors Continuous Both Continuous and Binary

We now consider a simulated data example where not all of the predictors are continuous.
Three binary predictors, x7, x8 and x9, are added so that the model becomes:

yi
ind.

∼ N
(9∑

j=1

fj(xji), σ
2

)
, 1 f i f n, (2)

Data from model (2) are generated according to:

> f7True <- function(x) return(-0.78*x)

> f8True <- function(x) return(0.53*x)

> set.seed(1) ; n <- 500

> x7 <- rbinom(n,1,0.5) ; x8 <- rbinom(n,1,0.5) ; x9 <- rbinom(n,1,0.5)

> y <- rnorm(n,f1True(x1) + f2True(x2) + f3True(x3) + f4True(x4)

+ + f7True(x7) + f8True(x8),sigmaTrue)

> Xgeneral <- data.frame(x1,x2,x3,x4,x5,x6)

> Xlinear <- data.frame(x7,x8,x9)

where the data frame Xlinear corresponds to a design matrix that contains predictors that can
only have a zero or linear effect.

The functions f1, . . . , f6 are the same as in the previous example and the code for
f1True(),. . .,f4True()

still applies. The functions f7 and f8 are linear and non-zero. The function f9 is zero.
The call to gamselBayes() should now use the Xlinear argument as follows:

> fit3 <- gamselBayes(y = y,Xlinear = Xlinear,Xgeneral = Xgeneral)

The estimated effect types are tabulated using:

> effectTypes(fit3)

5

Predictors selected as having linear effects:

x1 x7 x8

Predictors selected as having non-linear effects:

x2 x3 x4

A Bayesian inferential summary of the linear effect coefficients is achieved using:

> summary(fit3)

posterior mean 95% credible interval

x1 0.97223 0.92644 1.01820

x7 -0.76559 -0.79171 -0.73932

x8 0.54234 0.51673 0.57052

These are in keeping with the true value of the coefficients, 0.96, −0.78, 0.53 that generated
the data.

The command:

> checkChains(fit3)

leads to the graphic shown in Figure 4. The Figure 4 graphic shows good behaviour of the

Figure 4: The graphic produced by the command checkChains(fit3) for the gamselBayes() fit
object fit3. The Figure 2 caption provides full details on checkChain() graphics.

chains.

6

3 Analysis of California Schools Data

The R package Ecdat (Crossaint, 2020) contains a data frame named Caschool. The data
frame contains data on 14 variables for 420 school districts in the state of California, U.S.A.
The following code loads in the data and produces descriptions of each of the variables:

> library(Ecdat) ; data(Caschool) ; help(Caschool)

Two outcome variables are

mathscr average mathematics score for the district,

readscr average reading score for the district.

We will use the first of these as a response variable. Ten of the remaining 11 variables in
Caschool are continuous. These are:

enrltot total enrolment,

teachers number of teachers,

calwpct percentage of students qualifying for the CalWORKS welfare programme,

mealpct percentage of students qualifying for reduced-price lunches,

computer number of computers,

compstu number of computers per student,

expnstu expenditure per student,

str student teacher ratio,

avginc average income of the district,

elpct percentage of English learners.

The other variable, Caschool[,”grspan”] is categorical and codes whether the school has grades
spanning from kindergarten to year 6 or from kindergarten to year 8. The following binary
variable is obtained for use in gamselBayes():

> upToYear8 <- as.numeric(Caschool[,"grspan"]=="KK-08")

3.1 Analysis for Raw Data

We are ready to set up the response vector y and the Xlinear and Xgeneral predictor variable
data frames, with the following commands:

> y <- Caschool[,c("mathscr")]

> Xlinear <- data.frame(upToYear8)

> Xgeneral <- Caschool[,c("enrltot","calwpct","mealpct","compstu",

+ "expnstu","str","elpct","avginc")]

Note that Xgeneral contains each of the available continuous predictors except for Caschool[,”teachers”]
and Caschool[,”computer”], since they are simple functions of other predictors. The following
default call to gamselBayes() fit command:

> fit4 <- gamselBayes(y = y,Xlinear = Xlinear,Xgeneral = Xgeneral)

leads to the fit object being stored in fit4. Then:

7

> effectTypes(fit4)

leads to

Predictors selected as having linear effects:

avginc elpct mealpct upToYear8

We see that, out of the 9 candidate predictors, 4 are chosen and each of them are found to
have linear effects. The selected model is a linear combination of mealpct, elpct, avginc and
upToYear8. The command

> summary(fit4)

leads to the following inferential summary of the coefficients:

posterior mean 95% credible interval

avginc 0.71579 0.52503 0.89461

elpct -0.13910 -0.22407 0.00000

mealpct -0.35041 -0.43218 -0.25332

upToYear8 -3.08800 -6.57070 0.00000

It shows, for example, a significant elevation in mean mathematics scores for districts with
higher average incomes.

Since these results are dependent on Markov chain Monte Carlo sampling, it is prudent to
perform a check of the chains using:

> checkChains(fit4)

This leads to the chain visual summary shown in Figure 5. The chains are reasonably well-

Figure 5: The graphic produced by the command checkChains(fit4) for the gamselBayes() fit
object fit4. The Figure 2 caption provides full details on checkChain() graphics.

behaved, but it may be worth considering larger warm-up and kept chain sizes. The following
command leads to a new fit with a two-fold increase in the chain sizes compared to their default
values:

> fit5 <- gamselBayes(y = y,Xlinear = Xlinear,Xgeneral = Xgeneral,

+ control = gamselBayes.control(nWarm = 2000,nKept = 2000))

8

Figure 6: The graphic produced by the command checkChains(fit5) for the gamselBayes() fit
object fit5. The Figure 2 caption provides full details on checkChain() graphics.

The longer chains are visualised using:

> checkChains(fit5)

and the result is shown in Figure 6. The coefficient summary for this longer chain fit is obtained
using:

> summary(fit5)

posterior mean 95% credible interval

avginc 0.71893 0.52842 0.912240

elpct -0.13870 -0.21967 -0.031572

mealpct -0.35160 -0.43830 -0.251910

upToYear8 -3.02580 -6.55260 0.000000

The coefficient summary shows that the variables percentage of students qualifying for reduced-
price lunches, percentage of English learners and school going up to Year 8 have statistically
significant negative effect on mean mathematics score. The average income of the district has
a significant positive effect.

3.2 Analysis with Some Logarithmically Transformed Predictors

Three of the continuous predictors used in the previous analysis are quite skewed. It may be
worthwhile to see what happens if skewness-reducing logarithmic transformations are used.
The following code achieves this:

> Caschool$log.enrltot <- log(Caschool$enrltot)

> Caschool$log.avginc <- log(Caschool$avginc)

> Caschool$log.elpct <- log(Caschool$elpct + 1)

> Xgeneral <- Caschool[,c("log.enrltot","calwpct","mealpct","compstu",

+ "expnstu","str","log.elpct","log.avginc")]

> fit6 <- gamselBayes(y = y,Xlinear = Xlinear,Xgeneral = Xgeneral)

> effectTypes(fit6)

Predictors selected as having linear effects:

9

calwpct log.elpct mealpct upToYear8

Predictor selected as having a non-linear effect:

log.avginc

The main change is the presence of a non-linear effect for the logarithm of the district average
income. This effect can be viewed using:

> plot(fit6,xlab = "log(average income of school district)")

and is shown in Figure 7. The linear effects summary is:

2.0 2.5 3.0 3.5 4.0

64
0

65
0

66
0

67
0

68
0

69
0

log(average income of school district)

m
ea

n
re

sp
on

se

Figure 7: The plots produced from the command plot(fit6,xlab = ”log(average income of school
district)”) for the first gamselBayes() fit, stored as fit6. The shaded regions correspond to
pointwise 95% credible intervals. The rugs at the base of each plot show values of each predictor.

> summary(fit6)

posterior mean 95% credible interval

calwpct -0.087453 -0.25997 0.00000

log.elpct -1.848300 -2.92950 -0.71768

mealpct -0.388840 -0.48439 -0.29326

upToYear8 -4.584100 -7.58210 0.00000

The gamselBayes chain check for fit6 involves:

> checkChains(fit6)

and leads to the chain visual summary shown in Figure 8.
This final gamselBayes() fit to the California schools data has the following aspects:

• 5 of the 9 candidate predictors are selected,

10

Figure 8: The graphic produced by the command checkChains(fit6) for the gamselBayes() fit
object fit6. The Figure 2 caption provides full details on checkChain() graphics.

• 4 of them, calwpct, log(elpct+1) , mealpct and upToYear8 have linear effects on the mean
response,

• 1 of them, log(avginc) impacts the response in a non-linear fashion, with two ramps and
a plateau, as shown in Figure 7.

4 Analysis of Boston Mortgage Applications Data

The data frame BostonMortgages within the HRW package (Harezlak, Ruppert & Wand, 2021)
contains data on 13 variables for 2, 380 mortgage applications in Boston, U.S.A., during the
years 1998–1999. The data are loaded using:

> library(HRW) ; data(BostonMortgages)

Descriptions of the variables are provided by:

> help(BostonMortgages)

A key variable is BostonMortgages[,”deny”], and codes whether or not the mortgage appli-
cation was denied. A numerical version of this variable, for which 1 codes the application
being denied and 0 codes the application being approved, is used as a response variable in this
illustration. The code for setting up the response data vector is:

> y <- as.numeric(BostonMortgages[,"deny"] == "yes")

Next we set up the data frame of vectors which enter the model linearly. The first phase
involves conversion of five factor variables with yes/no coding to binary forms:

> Xlinear <- BostonMortgages[,c("pbcr","dmi","self","single","black")]

> for (j in 1:ncol(Xlinear))

+ Xlinear[,j] <- as.numeric(Xlinear[,j] == "yes")

The indicator of whether or not the mortgage application pertains to a condominium is added
on using:

> Xlinear$condominium <- BostonMortgages[,"condominium"]

11

The BostonMortgages data frame includes a 6-level ordinal variable that represents credit
risk. The following code creates and adds to Xlinear five indicator variables for each of the
credit scores equalling 1, 2, 3, 4 and 5:

> Xlinear$CCSeq1 <- as.numeric(BostonMortgages$ccs==1)

> Xlinear$CCSeq2 <- as.numeric(BostonMortgages$ccs==2)

> Xlinear$CCSeq3 <- as.numeric(BostonMortgages$ccs==3)

> Xlinear$CCSeq4 <- as.numeric(BostonMortgages$ccs==4)

> Xlinear$CCSeq5 <- as.numeric(BostonMortgages$ccs==5)

The next set of commands are similar to the credit score processing, but are for a 4-level
ordinal mortgage credit score variable:

> Xlinear$MCSeq1 <- as.numeric(BostonMortgages$mcs==1)

> Xlinear$MCSeq2 <- as.numeric(BostonMortgages$mcs==2)

> Xlinear$MCSeq3 <- as.numeric(BostonMortgages$mcs==3)

The variable BostonMortgages[,”uria”] is quantitative and represents the unemployment rate
in the applicant’s industry. However, it only has 10 unique values and is not conducive to
spline-based estimation of non-linear effects. Therefore, it is included in the linear effects-only
data frame using:

> Xlinear$uria <- BostonMortgages[,"uria"]

The three remaining predictors are quantitive ratio variables with hundreds of unique values.
These are definitely worth considering for possible non-linear effects and make up the Xgeneral
data frame:

> Xgeneral <- BostonMortgages[,c("dir","hir","lvr")]

In the call to gamselBayes() it is important to specify family = ”binomial”due to the binary
nature of y for this example:

> fit7 <- gamselBayes(y = y,Xlinear = Xlinear,Xgeneral = Xgeneral,

+ family = "binomial")

The last command leads to the fit object being stored in fit7. Then:

> effectTypes(fit7)

leads to

Predictors selected as having linear effects:

CCSeq1 CCSeq2 black dmi pbcr self single

Predictors selected as having non-linear effects:

dir lvr

This output shows that

• 7 of the candidate predictors are selected as having linear effects,

12

• 2 of the candidate predictors are selected as having non-linear effects.

To assess the effects of the variables chosen as having linear effects, we issue:

> summary(fit7)

which leads to the following inferential summary of the coefficients:

posterior mean 95% credible interval

CCSeq1 -0.69062 -0.898040 -0.45129

CCSeq2 -0.32384 -0.586870 0.00000

black 0.34609 0.084246 0.54041

dmi 2.76200 2.142600 3.51720

pbcr 0.73498 0.492610 0.98477

self 0.17026 0.000000 0.43627

single 0.13679 0.000000 0.34169

It shows, for example, that being self-employed, single or African-American each have positive
impacts on the probability of mortgage denial.

The two predictors having non-linear effects in fit7 are ratio of the debt payments to the
total income and ratio of the loan size to the assessed value of the property. Figure 9 shows
these effects.

> plot(fit7,xlim = rbind(c(0,1),c(0,1)),ylim = rbind(c(0,0.8),c(0,0.8)),

+ xlab = c("debt payment to income ratio",

+ "loan size to property value ratio"))

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

debt payment to income ratio

pr
ob

ab
ili

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

loan size to property value ratio

pr
ob

ab
ili

ty

Figure 9: The plots produced from the command plot(fit7,xlim = rbind(c(0,1),c(0,1)),ylim =
rbind(c(0,0.8),c(0,0.8)), xlab = c(”debt payment to income ratio”,”loan size to property value ra-
tio”)) for the first gamselBayes() fit, stored as fit7. The curves are vertically centred estimates
of the effects of ratio of the debt payments to the total income (left panel) and ratio of the loan
size to the assessed value of the property (right panel) on the probability of mortgage applica-
tion denial. The shaded regions correspond to pointwise 95% credible intervals. The rugs at
the base of each plot show values of each predictor.

Lastly, we carry out a check of the chains on which the fitting and inference of fit7 is based.
Since there are 9 selected predictors in fit7, the checkChains() graphics are divided into two
graphics with a maximum of 6 predictors per graphic.

13

Figure 10: The graphic produced by the command checkChains(fit7) for the gamselBayes() fit
object fit7. The Figure 2 caption provides full details on checkChain() graphics.

> checkChains(fit7)

The result is shown in Figure 10. All chains are seen to be reasonably well-behaved and the
approximate Bayesian inference is sound.

5 Analysis of Data on House Sales in Sydney, Australia

This example depends upon the R package HRW, which accompanies the Harezlak, Ruppert &
Wand (2018) book. After making sure that HRW is installed, load the data using:

> library(HRW) ; data(SydneyRealEstate)

The command:

> help(SydneyRealEstate)

leads to a detailed description of the SydneyRealEstate data frame. It has 39 variables
corresponding to 37, 676 house sales in Sydney, Australia, during the year 2001.

The following code determines the indices of important parts of the SydneyRealEstate

data frame:

14

> indResponse <- 1 ; indsContinEarly <- c(2:4,7)

> indSaleDate <- 5 ; indSaleQtr <- 6

> indPostCode <- 8 ; indCrimeRate <- 10

> indAirNoise <- 24 ; indsContLater <- c(11:23,25:26,33:39)

Next, we obtain indicator variables for the sale quarter variable and presence of aircraft noise:

> saleQtrEq2 <- as.numeric(SydneyRealEstate[,indSaleQtr] == 2)

> saleQtrEq3 <- as.numeric(SydneyRealEstate[,indSaleQtr] == 3)

> saleQtrEq4 <- as.numeric(SydneyRealEstate[,indSaleQtr] == 4)

> aircraftNoise <- as.numeric(SydneyRealEstate[,indAirNoise] > 0)

Most of the other potential predictor variables are well-behaved. However, running the
commands:

> par(mfrow = c(1,1))

> hist(SydneyRealEstate[,"crimeRate"],breaks = 100,col = "plum")

shows that SydneyRealEstate[,”crimeRate”], which is a measure of the crime rate of each house’s
suburb, is highly skewed and with a small fraction of the houses having a large outlying value
(the histogram is not shown here). Application of the the log(x + 1) transformation makes
the data more amenable to the gamsel() methodology. From now on we work with this
transformation of SydneyRealEstate[,”crimeRate”].

Three other potential predictors, SydneyRealEstate[,c(”neph”,”PM10”,”SO2”)], are quantita-
tive but have low numbers of unique values. To avoid problems with spline fitting, these
predictors are considered as having only a linear effect, and not permitted to have possible
non-linear effects.

We are now ready to set up the the response vector and predictor data frames:

> y <- SydneyRealEstate$logSalePrice

> Xlinear <- data.frame(saleQtrEq2,saleQtrEq3,saleQtrEq4,aircraftNoise,

+ SydneyRealEstate[,c("NO","NO2","ozone","neph",

+ "PM10","SO2")])

> Xgeneral <- data.frame(SydneyRealEstate[,indsContinEarly],

+ log(SydneyRealEstate[,indCrimeRate] + 1),

+ SydneyRealEstate[,indsContLater])

> names(Xgeneral)[5] <- "log(crimeRate + 1)"

> print(dim(Xlinear))

[1] 37676 10

> print(dim(Xgeneral))

[1] 37676 27

Given the high sample size of 37, 676 and the fact that the numbers of potential predictors
in Xlinear and Xgeneral are, respectively, 10 and 27 we use the faster mean field variational
Bayes approach.

> fit8 <- gamselBayes(y = y,Xlinear = Xlinear,Xgeneral = Xgeneral,

+ method = "MFVB")

The effect types of the selected predictors are tabulated using:

> effectTypes(fit8)

are as follows:

15

Predictors selected as having linear effects:

NO PM10 SO2 distToHighway distToMedical

distToTunnel longitude neph ozone saleQtrEq2

saleQtrEq3 saleQtrEq4

Predictors selected as having non-linear effects:

distToAmbulance distToBusStop distToFactory

distToHospital distToMainRoad distToPark

distToSchool distToSealedRoad distToUnsealedRoad

foreignerRatio income infRate latitude

log(crimeRate + 1) lotSize

For the 12 selected linear effects the command:

> summary(fit8)

leads to

posterior mean 95% credible interval

NO 0.0121340 0.01075700 0.0135130

PM10 0.0138840 0.01109700 0.0166670

SO2 -1.5262000 -1.71840000 -1.3287000

distToHighway 0.0017178 0.00057697 0.0028439

distToMedical -0.0036716 -0.00629090 -0.0010810

distToTunnel 0.0089135 0.00775600 0.0100650

longitude 2.5793000 2.49920000 2.6576000

neph -0.4298800 -0.51935000 -0.3396100

ozone 0.3396200 0.31465000 0.3658200

saleQtrEq2 0.0190840 0.00893360 0.0291840

saleQtrEq3 0.0641250 0.05470700 0.0733930

saleQtrEq4 0.1311400 0.12168000 0.1402800

This output shows, for example, that houses sold later in the calendar year, such as the 4th
quarter period of October–December, tend to have higher sales prices.

The commands:

> xlabDetailed <- c("lot size","degrees latitude","inflation rate",

+ "log(crime rate +1)","average income of suburb",

+ "distance to bus stop","distance to park",

+ "distance to main road","distance to sealed road",

+ "distance to unsealed road","foreigner ratio in suburb",

+ "distance to ambulance","distance to factories",

+ "distance to hospital","distance to school")

> plot(fit8,xlab = xlabDetailed,rugSampSize = 1000)

lead to the plot of the estimated non-linear effects, shown in Figure 11. In all, there are 15
estimated non-linear effects shown in Figure 11. The first panel shows that the effect of lot
size is mainly monotonically increasing, but with some ramps and a plateau.

16

500 1000 1500 2000

12
.5

13
.5

lot size

−34.2 −33.9 −33.6

12
.5

13
.5

degrees latitude

−0.05 0.05 0.15

12
.5

13
.5

inflation rate

0.1 0.3 0.5 0.7

12
.5

13
.5

log(crime rate +1)

500 1000 2000

12
.5

13
.5

average income of suburb

0.0 1.0 2.0
12

.5
13

.5
distance to bus stop

0 1 2 3 4 5 6

12
.5

13
.5

distance to park

0 1 2 3 4 5 6 7

12
.5

13
.5

distance to main road

0.0 0.2 0.4 0.6

12
.5

13
.5

distance to sealed road

0 2 4 6 8 10

12
.5

13
.5

distance to unsealed road

0.2 0.4 0.6 0.8

12
.5

13
.5

foreigner ratio in suburb

0 5 10 15

12
.5

13
.5

distance to ambulance

0 5 10 15 20

12
.5

13
.5

distance to factories

0 5 10 15

12
.5

13
.5

distance to hospital

0 2 4 6 8 12

12
.5

13
.5

distance to school

Figure 11: The graphic produced by the command plot(fit8,xlab = xlabDetailed) for the gam-

selBayes() fit object fit8. The curves are vertically centred estimates of the effects of each
predictor selected as having a non-linear effect. The shaded regions correspond to pointwise
95% credible intervals. The rugs at the base of each plot show values of each predictor. Due
to the very large sample size, random subsets of size 1, 000 are used in the rugs.

6 Analysis of Car Auction Data

This example also depends upon the R package HRW. Assuming that HRW is installed, load the
data via:

> library(HRW) ; data(carAuction)

Then issue:

> help(carAuction)

to obtain a detailed description of the carAuction data frame. This data frame has 51 variables
corresponding to 72, 983 cars purchased at auctions by automobile dealerships in the United
States of America and originates from the competition titled “Don’t Get Kicked!” that ran on
the kaggle platform (www.kaggle.com) during 2011-2012.

In this illustration we hold back data on 2, 983 of the cars for testing. The remaining
70, 000 will be used as a training set for fitting a probit additive model via gamselBayes():

> namesNonPred <- c("RefId","IsBadBuy")

> namesGeneral <- c("odomRead","price","costAtPurch","warrantyCost")

> namesLinear <- setdiff(names(carAuction),union(namesNonPred,namesGeneral))

17

> nTotal <- nrow(carAuction)

> nTest <- 2983 ; nTrain <- nTotal - nTest

> testInds <- sample(1:nTotal,nTest,replace = FALSE)

> trainInds <- setdiff(1:nTotal,testInds)

Now set up the response data vector and predictor data frames:

> yTrain <- carAuction$IsBadBuy[trainInds]

> XlinearTrain <- carAuction[trainInds,namesLinear]

> XgeneralTrain <- carAuction[trainInds,namesGeneral]

The number of candidate predictors in XlinearTrain is 45, whilst the number of candidate
predictors in XgeneralTrain is 4. In the call to gamselBayes() it is important to specify family
= ”binomial”due to yTrain being binary:

> fit9 <- gamselBayes(y = yTrain,Xlinear = XlinearTrain,

+ Xgeneral = XgeneralTrain,family = "binomial")

The last command leads to the fit object being stored in fit9. Then:

> effectTypes(fit9)

leads to the following estimated effects types:

Predictors selected as having linear effects:

AmericanMade ageAtSale aucEqAdesa

aucEqManheim colourEqRed makeEqChevrolet

makeEqChrysler odomRead purchIn2010

purchInFlorida purchInNorthCarolina

purchInTexas sizeEqMedium sizeEqSUV

transEqManual trimEqBas wheelEqAlloy

wheelEqCovers

Predictor selected as having a non-linear effect:

costAtPurch

We see from this output that, out of the 49 candidate parameters, 18 are selected as having a
linear effect and 1 is selected as having a non-linear effect.

A Bayesian inferential summary of the linear effect coefficients is achieved using:

> summary(fit9)

and leads to

posterior mean 95% credible interval

AmericanMade -4.8501e-02 -1.2929e-01 0.0000e+00

ageAtSale 9.5052e-02 8.3936e-02 1.0454e-01

aucEqAdesa 5.1162e-02 0.0000e+00 9.8698e-02

aucEqManheim 5.2225e-02 0.0000e+00 9.3681e-02

colourEqRed 2.8276e-02 0.0000e+00 9.1637e-02

makeEqChevrolet -1.1959e-01 -1.7515e-01 -6.0241e-02

18

makeEqChrysler 5.7094e-02 0.0000e+00 1.2664e-01

odomRead 3.4378e-06 2.4554e-06 4.4517e-06

purchIn2010 1.0056e-01 7.1407e-02 1.2898e-01

purchInFlorida -1.2609e-01 -1.7060e-01 -8.3081e-02

purchInNorthCarolina -1.1550e-01 -1.6167e-01 -6.7014e-02

purchInTexas 8.4710e-02 4.6216e-02 1.1783e-01

sizeEqMedium -5.7743e-02 -9.5144e-02 0.0000e+00

sizeEqSUV 1.7890e-01 1.3341e-01 2.2379e-01

transEqManual -1.5971e-01 -2.3401e-01 -8.9339e-02

trimEqBas 6.0669e-02 0.0000e+00 1.0840e-01

wheelEqAlloy -1.5245e+00 -1.5703e+00 -1.4796e+00

wheelEqCovers -1.5935e+00 -1.6354e+00 -1.5480e+00

Some of the effects match intuition, such as older cars having a higher probability of being a
bad buy at auction. Less intuitive is the fact that the same is true for cars that were purchased
in Texas.

The command:

> plot(fit9,xlim = rbind(c(0,20000)),xlab = "cost at purchase (U.S. dollars)",

+ rugSampSize = 1000)

leads to the figure shown in Figure 12, which shows the effect of

the acquisition cost paid for the car at the time of purchase in U.S. dollars

which has an interesting U-shaped effect.

0 5000 10000 15000 20000

0.
2

0.
4

0.
6

0.
8

1.
0

cost at purchase (U.S. dollars)

pr
ob

ab
ili

ty

Figure 12: The plots produced from the command plot(fit9,xlim = rbind(c(0,20000)),xlab =”cost
at purchase (U.S. dollars)”) for the gamselBayes() fit, stored as fit9. The shaded region corre-
spond to pointwise 95% credible intervals. The rug at the base of the plot shows values of the
predictor. Due to the very large sample size, a random subset of size 1, 000 are used in the rug.

Next we assess how well cars in the test data set are classified according to the fit in fit9,
starting with setting up test versions of the y, Xlinear and Xgeneral inputs:

> yTest <- carAuction$IsBadBuy[testInds]

> XlinearTest <- carAuction[testInds,namesLinear]

> XgeneralTest <- carAuction[testInds,namesGeneral]

19

The vector of predictions on the probit (Standard Normal quantile function) scale is obtained
using:

> probVecTest <- predict(fit9,newdata = list(XlinearTest,XgeneralTest))

The following code then obtains and prints the confusion matrix:

> yTestHat <- as.numeric(probVecTest>0.5)

> confusionMatrix <- table(yTestHat,yTest)

> dimnames(confusionMatrix)[[1]] <- c("classified good buy",

+ "classified bad buy")

> dimnames(confusionMatrix)[[2]] <- c("actually good buy",

+ "actually bad buy")

> cat("The confusion matrix is:\n")

The confusion matrix is:

> print(confusionMatrix)

yTest

yTestHat actually good buy actually bad buy

classified good buy 2570 284

classified bad buy 57 72

Lastly, we obtain an estimate of the misclassification rate via:

> estMisClassRate <- 100*sum(yTestHat != yTest)/nTest

> cat("The estimated misclassification rate is ",

+ signif(estMisClassRate,4),"%.\n",sep = "")

The estimated misclassification rate is 11.43%.

The classifier based on fit9 classifies about 88.57% of cars correctly in terms of their bad buy
versus good buy status.

7 Fitting and Plotting Options

Whenever gamselBayes() is applied to a particular data set there are numerous options con-
cerning, for example, the size of the spline basis and hyperparameter choices. In this section we
illustrate the tweaking of such values. Similar comments apply to plotting a gamselBayes()

object.
Throughout this section, we work with the California schools data set that was described

and analysed in Section 3. The following commands from that section load the required
packages and set up the input data objects:

> library(gamselBayes) ; library(Ecdat) ; data(Caschool)

> y <- Caschool$mathscr

> upToYear8 <- as.numeric(Caschool[,"grspan"] == "KK-08")

> Xlinear <- data.frame(upToYear8)

> Caschool$log.enrltot <- log(Caschool$enrltot)

> Caschool$log.avginc <- log(Caschool$avginc)

> Caschool$log.elpct <- log(Caschool$elpct + 1)

> Xgeneral <- Caschool[,c("log.enrltot","calwpct","mealpct","compstu",

+ "expnstu","str","log.elpct","log.avginc")]

20

7.1 Sparsity Imposition Options

Let β be a generic regression coefficient attached to one of the linear predictors. In models
used by gamselBayes(), β = γβ β̃ where γβ is binary and β̃ is continuous. Therefore

P (β = 0|y) = P (γβ = 0|y) = 1− E(γβ|y),

and the posterior distribution of γβ can be used to decide between hypotheses H0 : β = 0 and
H1 : β ̸= 0. A natural rule is to acceptH0 if and only if E(γβ|y) f

1

2
. However, with parsimony

in mind, gamselBayes() also supports less stringent rules. Rather than thresholding E(γβy)
at 1

2
, consider a family of rules indexed by a threshold parameter τ ∈ (0, 1). After fixing τ ,

our strategy for deciding between an effect being zero or linear is

the effect is zero if E(γβ|y) f 1− τ, otherwise the effect is linear.

Analogous rules are used for deciding between an effect being linear or non-linear.
Lower values of τ lead to sparser fits, so in the gamselBayes() function we use the identifier

lowerMakesSparser for the τ parameter. The default value of lowerMakesSparser is 0.5 when
method=”MCMC” and 0.1 when method=”MFVB”. The following command stipulates that
lowerMakesSparser be set to the lower value of 0.3:

> fit10 <- gamselBayes(y = y,Xlinear = Xlinear,Xgeneral = Xgeneral,

+ lowerMakesSparser = 0.3)

For this choice of thresholding, the command:

> effectTypes(fit10)

shows that the estimated effect types become:

Predictors selected as having linear effects:

log.elpct mealpct upToYear8

Predictor selected as having a non-linear effect:

log.avginc

which is sparser than the default fit. The command:

> summary(fit10)

then leads to the following inferential summary for the linear coefficients:

posterior mean 95% credible interval

log.elpct -1.80050 -3.02940 0.00000

mealpct -0.39045 -0.49982 -0.28695

upToYear8 -4.36920 -7.42400 0.00000

The function gamselBayesUpdate() allows one to change the value of lowerMakesSparser
without having to re-do the fitting phase. If, for example, a change of from τ from 0.3 to 0.1
is of interest then the command:

> fit11 <- gamselBayesUpdate(fit10,lowerMakesSparser = 0.1)

quickly provides the new fit object with the newer thresholding.

21

7.2 Control Options

The control argument of the gamselBayes() function can be used to specify various aspects
of the Bayesian model and the strategy for achieving approximate inference. Suppose, for
example, that the following departures from the default settings are desired:

• the number of interior knots in the spline basis functions is 15,

• the prior Normal distribution standard deviation of the linear coefficients parameters is
σβ = 150,

• the prior Normal distribution standard deviation of the spline basis coefficients parame-
ters is σu = 2, 000,

• the number of warm-up Markov chain Monte Carlo samples is 3, 000,

• the number of kept Markov chain Monte Carlo samples is 10, 000,

• the thinning factor of the kept Markov chain Monte Carlo samples is 2.

Then the following call to gamselBayes() achieves this:

> fit12 <- gamselBayes(y = y,Xlinear = Xlinear,Xgeneral = Xgeneral,

+ control = gamselBayes.control(numIntKnots = 15,

+ sbeta = 150,su = 2000,nWarm = 3000,

+ nKept = 10000,nThin = 2))

For fit12, the estimated effect types are found by issuing

> effectTypes(fit12)

are:

Predictors selected as having linear effects:

calwpct log.elpct mealpct upToYear8

Predictor selected as having a non-linear effect:

log.avginc

and the linear coefficients summary from

> summary(fit12)

is

posterior mean 95% credible interval

calwpct -0.085515 -0.26558 0.00000

log.elpct -1.819100 -2.95960 -0.51544

mealpct -0.389900 -0.48417 -0.28941

upToYear8 -4.412100 -7.48330 0.00000

Access to the full set of control options is provided by:

> help(gamselBayes.control)

22

7.3 Plotting Options

Lastly, we demonstrate some of the options available for display of non-linear effects via the
plot() function for gamselBayes() fit objects. These illustrations are for the fit object fit12
from the previous subsection.

The command:

> plot(fit12,estCol = "darkmagenta",varBandCol = "gold",rugCol = "seagreen",

+ xlab = "log(average income of school district)",cex.lab = 1.75)

modifies the colours of the function estimates, variability bands and predictor data rug-plot
displays and leads to the result shown in Figure 13. Our plotting options are use of dashed

2.0 2.5 3.0 3.5 4.0

64
0

65
0

66
0

67
0

68
0

69
0

log(average income of school district)

m
ea

n
re

sp
on

se

Figure 13: The plots produced from the command plot(fit12,estCol = ”darkmagenta”,varBandCol
= ”gold”,rugCol = ”seagreen”, xlab = ”log(average income of school district)”,cex.lab = 1.75) for
the gamselBayes() fit, stored as fit12. The shaded regions correspond to pointwise 95% credible
intervals. The rug at the base of the plot show values of each predictor.

curves, rather than shaded polygons, to display variability bands and specification of the
vertical frame limits using the ylim argument. These are illustrated by the command:

> plot(fit12,shade = FALSE,estCol = "steelblue",varBandCol = "darkred",

+ rugCol = "limegreen",xlab = "log(average income of school district)",

+ cex.lab = 1.75)

and leads to Figure 14. Further details on plotting options can be obtained by issuing:

> help(plot.gamselBayes)

23

2.0 2.5 3.0 3.5 4.0

64
0

65
0

66
0

67
0

68
0

69
0

log(average income of school district)

m
ea

n
re

sp
on

se

Figure 14: The plots produced from the command plot(fit12,shade = FALSE,estCol = ”steel-
blue”,varBandCol = ”darkred”, rugCol = ”limegreen”,xlab = ”log(average income of school district)”,
cex.lab = 1.75) for the gamselBayes() fit, stored as fit12. The shaded regions correspond to
pointwise 95% credible intervals. The rug at the base of the plot show values of each predictor.

8 Limitations and Trouble-Shooting

The gamselBayes package was written and is maintained, solely, by the authors of this vignette.
A reasonable amount of effort has been made to safeguard against breakdown for arbitrary
inputs. However, since gamselBayes is a two-person and non-industrial software package it
has limitations in this regard. In this final section we list some trouble-shooting tips that may
aid successful use of gamselBayes:

1. Ensure that the input data are free of missing values and non-numerical objects. In other
words, the input data in y, Xlinear and Xgeneral should contain only numbers.

2. Predictors containing gross outliers can lead to problems with penalized spline fitting,
so checks and pre-processing to avoid such an issue may be worthwhile.

3. If a predictor is strongly skewed then problems with penalized spline fitting are also
more likely. Hence, depending on the strength of the skewness, pre-transformation of
such predictors may be beneficial.

4. Each of the predictors in the Xgeneral input are treated as continuous variables. In theory,
such variables have a large number of unique values. However, if its measurements have
been discretized to the point that the number of unique values is smaller than around
15− 25 then this can lead to problems with penalized spline fitting. One simple remedy
is to move the predictor to the Xlinear input and live with its effect being restricted to
zero or linear, but not non-linear.

5. In a similar vein to the last point, if the sample size is smaller than around 15− 25 then
all candidate predictors have the limitation described there and it may not be feasible
to include them in the Xgeneral input.

24

Feedback concerning your experiences with gamselBayes may be sent to the package main-
tainer at the e-mail address provided by the command help(package = ”gamselBayes”).

References

Chouldechova, A., and Hastie, T. (2015). Generalized additive model selection. Unpublished
manuscript. https://arxiv.org/pdf/1506.03850

Chouldechova, A., and Hastie, T. (2022). gamsel 1.8: Fit regularisation path for generalized
additive models. R package. http://cran.r-project.org.

Croissant, Y. (2022). Ecdat 0.4: Data sets for econometrics. R package. http://cran.r-

project.org.

Harezlak, J., Ruppert, D. and Wand, M.P. (2018). Semiparametric Regression with R. New
York: Springer.

Harezlak, J., Ruppert, D. and Wand, M.P. (2021). HRW 1.0: Datasets, functions and scripts
for semiparametric regression supporting Harezlak, Ruppert & Wand (2018). R package.
http://cran.r-project.org.

He, V.X. and Wand, M.P. (2023). Bayesian generalized additive model selection including a
fast variational option. http://arxiv.org/abs/2201.00412.

25

