
Weighted parametric tests defined by graphs

Florian Klinglmueller

March 24, 2024

Contents

1 Introduction 1

2 Creating Graphs 2

2.1 Creating Graphs using the Command Line . 2

2.2 Creating Graphs using the gMCP GUI . 3

3 Testing 4

3.1 Testing using the gMCP interface . 7

1 Introduction

This document describes how to use gMCP to construct, conduct and evaluate multiple comparison
procedures based on weighted parametric tests which are defined by directed graphs. In addition
to sequentially rejective Bonferroni procedures gMCP provides functionality to construct tests that
take advantage of (partial) knowledge of the the joint distribution of the p-values associated with
multiple hypotheses. For the time being gMCP implements the case of multiple inferences based on
one-sided z-tests.

If the joint distribution of the p-values is known the sequentially rejective tests described in [1] may
be performed using corresponding closed test procedures based on weighted min-p tests for each in-
tersection hypotheses. It is assumed that under the global null hypothesis (Φ−1(1−p1), . . . ,Φ

−1(1−
pm)) follow a multivariate normal distribution with correlation matrix Σ where Φ−1 denotes the
inverse of the standard normal distribution function. For example, this is the case if p1, . . . , pm
are the raw p-values from one-sided z-tests for each of the elementary hypotheses where the cor-
relation between z-test statistics is generated by an overlap in the observations (e.g. comparison
with a common control, group-sequential analyses etc.). An application of the transformation
Φ−1(1− pi) to raw p-values from a two-sided test will not in general lead to a multivariate normal
distribution. Partial knowledge of the correlation matrix is supported. If the correlation matrix of
a given subset of test statistics is known tests for intersection hypotheses containing the associated
elementary hypotheses are computed using the multivariate distribution under the respective null.
Hence, the consonance condition necessary for the shortcut that yields sequentially rejective tests
can no longer be guaranteed using this approach. Hence, the whole closed test is performed. For
an exhaustive theoretical specification of the general statistical principle please see [2, Section 3.2].

As an example we will use graph based procedures introduced in Example 1 and Example 2 of [2,
Sections 2 and 3.2].

1

2 Creating Graphs

Examples 1 and 2 of [2] are based on the same weighting scheme. Inferences on two primary and
two secondary hypotheses are to be made. For example consider the comparison of two treatments
to a control using a primary and secondary endpoint. Only if the the null hypotheses can be
rejected for the primary hypotheses are the secondary hypotheses to be tested. If both primary
and secondary hypotheses can be rejected for one treatment, then the portions of the global α-
level reserved for this treatment is passed to the other treatment. The graph corresponding to this
procedures is depicted in figure 1. We assume that all four hypotheses are tested by use of normally
distributed test statistics with known variances. In Example 1 no further assumptions on the joint
distribution of test statistics is made. Example 2 assumes that both the statistics associated with
the primary hypotheses as well as statistics associated with the secondary hypotheses have pairwise
correlations of 1

2
. This would be the case if the two treatments were compared to the same control

group using balanced sample sizes.

The main inputs needed for the construction of weighted parametric tests are a directed graph,
initial weights for the elementary hypotheses in the global intersection hypothesis as well as a
correlation matrix. The graph for both Example 1 and 2 is depicted in Figure 1. As in the article
we will distribute the overall α-level equally between the two primary hyptheses. Initially the
secondary hypotheses will be given no weight. The corresponding initial weights are therefore
(1
2
, 1
2
, 0, 0).

We show in Section 2.1 how these parameters can be defined using R. In Section 2.2 we demonstrate
how to acchiev the same using the graphical user interface provided by gMCP.

2.1 Creating Graphs using the Command Line

The most basic way of defining an MTP in gMCP is by way of numeric matrices where each element
defines the proportion of the local α-level of the elementary hypotheses corresponding to the row
index that is passed to the elementary hypotheses associated with the column index. Since no
hypotheses reallocates parts of its local α-level to itself the diagonal elements of this matrix are
zero. The simple graph from our examples is defined by the matrix:











0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0











Gm <- matrix(0,nr=4,nc=4)

Gm[1,3] <- 1

Gm[2,4] <- 1

Gm[3,2] <- 1

Gm[4,1] <- 1

Gm

[,1] [,2] [,3] [,4]

[1,] 0 0 1 0

[2,] 0 0 0 1

[3,] 0 1 0 0

[4,] 1 0 0 0

Initial weights are set by means of a numeric vector ω1, ..., ωm where m denotes the number of test
statistics. For the example graph of Figure 1 the corresponding weights vector is (1

2
, 1
2
, 0, 0)1.

1Note that this is different to the approach taken in gMCP where the local α-level are specified for each elementary

2

w <- c(1/2,1/2,0,0)

w

[1] 0.5 0.5 0.0 0.0

Finally a correlation matrix has to be specified providing information on the pairwise correlations
between test statistics. All known pairwise correlations of this matrix are set to numeric values
whereas the unknown coefficients are set to NA. Example 1 assumes no knowledge of the correlation
structure. The corresponding 4×4 matrix would therefore have all elements set to NA except for the
diagonal elements. Example 2 assumes pairwise correlations of 1

2
between the statistics associated

with both treatments using either the primary or the secondary endpoint. The corresponding
correlation matrix has to be specified as:











1 1

2
NA NA

1

2
1 NA NA

NA NA 1 1

2

NA NA 1

2
1











We construct the correlation matrix corresponding to Example 1 in R as Cm1 and the one corre-
sponding to Example 2 as Cm2.

Cm <- matrix(NA,nr=4,nc=4)

diag(Cm) <- 1

Cm1 <- Cm

Cm[1,2] <- 1/2

Cm[2,1] <- 1/2

Cm[3,4] <- 1/2

Cm[4,3] <- 1/2

Cm2 <- Cm

Cm1

[,1] [,2] [,3] [,4]

[1,] 1 NA NA NA

[2,] NA 1 NA NA

[3,] NA NA 1 NA

[4,] NA NA NA 1

Cm2

[,1] [,2] [,3] [,4]

[1,] 1.0 0.5 NA NA

[2,] 0.5 1.0 NA NA

[3,] NA NA 1.0 0.5

[4,] NA NA 0.5 1.0

Note that the diagonal elements have to be set to one. If it is known that some test statistics are
uncorrelated then the corresponding elements have to be set to zero.

2.2 Creating Graphs using the gMCP GUI

Alternatively one can specify graphs using the graphical user interface provided by gMCP.

hypotheses instead of weights

3

H1
1

2

H2
1

2

H3

0

H4

0

1 1

1 1

Figure 1: Graph corresponding to Examples 1 and 2 in [2]

library(gMCP)

graphGUI()

These commands will load the the gMCP library and open the GUI interface a screenshot of which
is presented in Figure 2. Graphs defined using this tool can be saved to an R object the name
of which can be specified in the line above the graph manipulation window the graph is exported
by setting the cursor into this line (optionally editing the variable name) and pressing enter. By
default the variable name is set to createdGraph. This creates an object of class graphMCP.

After switching back to R’s interpreter the created graph can be converted to a matrix using the
command graph2matrix from package gMCP. The weights set for the graph can be extracted using
the function getWeights.

Gm <- graph2matrix(createdGraph)

w <- getWeights(createdGraph)

Conversely graphs defined as matrices can also be converted to graphMCP objects.

G <- matrix2graph(Gm,weights=w)

graphGUI(G)

3 Testing

Performing tests using gMCP can be done in several ways. gMCP provides functions covering every
step in the test procedure which can be done seperately or all together. The first step is the com-
putation of all intersection hypotheses in the closure of the test problem together with conventional
weights for the graphical approach without knowledge of any correlations. This can be done using
the function generateWeights. For both of our examples this looks like:

library(gMCP, quietly=TRUE)

generateWeights(Gm,w)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0 0 1 0.0 0.0 0.0 1.0

[2,] 0 0 1 0 0.0 0.0 1.0 0.0

[3,] 0 0 1 1 0.0 0.0 0.5 0.5

[4,] 0 1 0 0 0.0 1.0 0.0 0.0

4

Figure 2: Screenshot of gMCP GUI

[5,] 0 1 0 1 0.0 1.0 0.0 0.0

[6,] 0 1 1 0 0.0 0.5 0.5 0.0

[7,] 0 1 1 1 0.0 0.5 0.5 0.0

[8,] 1 0 0 0 1.0 0.0 0.0 0.0

[9,] 1 0 0 1 0.5 0.0 0.0 0.5

[10,] 1 0 1 0 1.0 0.0 0.0 0.0

[11,] 1 0 1 1 0.5 0.0 0.0 0.5

[12,] 1 1 0 0 0.5 0.5 0.0 0.0

[13,] 1 1 0 1 0.5 0.5 0.0 0.0

[14,] 1 1 1 0 0.5 0.5 0.0 0.0

[15,] 1 1 1 1 0.5 0.5 0.0 0.0

generateWeights takes the graph defined as a matrix and the vector of initial weights and returns a
matrix where each row corresponds to an intersection hypotheses in the closure of the test problem.
The first half of each line indicates the intersection hypotheses. Hypotheses in the intersection are
indicated by a 1, hypotheses not in the intersection are indicated by a 0. For example (1, 1, 0, 0)
would stand for the intersection between H1 and H2. The second half of the elements then provides
weights for each hypothesis in the corresponding intersection.

In a next step critical values for all elementary hypotheses in each intersection hypothesis are
computed. This can be done using the function generateBounds. Here for the first time the
different assumptions on the correlation structure of Examples 1 and 2 are essential:

generateBounds(Gm,w,Cm1,al=.025)

[,1] [,2] [,3] [,4]

[1,] NA NA NA 1.960

[2,] NA NA 1.960 NA

[3,] NA NA 2.241 2.241

[4,] NA 1.960 NA NA

[5,] NA 1.960 NA Inf

5

[6,] NA 2.241 2.241 NA

[7,] NA 2.241 2.241 Inf

[8,] 1.960 NA NA NA

[9,] 2.241 NA NA 2.241

[10,] 1.960 NA Inf NA

[11,] 2.241 NA Inf 2.241

[12,] 2.241 2.241 NA NA

[13,] 2.241 2.241 NA Inf

[14,] 2.241 2.241 Inf NA

[15,] 2.241 2.241 Inf Inf

generateBounds(Gm,w,Cm2,al=.025)

[,1] [,2] [,3] [,4]

[1,] NA NA NA 1.960

[2,] NA NA 1.960 NA

[3,] NA NA 2.212 2.212

[4,] NA 1.960 NA NA

[5,] NA 1.960 NA Inf

[6,] NA 2.241 2.241 NA

[7,] NA 2.241 2.241 Inf

[8,] 1.960 NA NA NA

[9,] 2.241 NA NA 2.241

[10,] 1.960 NA Inf NA

[11,] 2.241 NA Inf 2.241

[12,] 2.212 2.212 NA NA

[13,] 2.212 2.212 NA Inf

[14,] 2.212 2.212 Inf NA

[15,] 2.212 2.212 Inf Inf

Alternatively we could transform these error bounds into p-values to recreate Table 2 of [2]

(1-pnorm(generateBounds(Gm,w,Cm2,al=.025)))*100

[,1] [,2] [,3] [,4]

[1,] NA NA NA 2.500

[2,] NA NA 2.500 NA

[3,] NA NA 1.348 1.348

[4,] NA 2.500 NA NA

[5,] NA 2.500 NA 0.000

[6,] NA 1.250 1.250 NA

[7,] NA 1.250 1.250 0.000

[8,] 2.500 NA NA NA

[9,] 1.250 NA NA 1.250

[10,] 2.500 NA 0.000 NA

[11,] 1.250 NA 0.000 1.250

[12,] 1.348 1.348 NA NA

[13,] 1.348 1.348 NA 0.000

[14,] 1.348 1.348 0.000 NA

[15,] 1.348 1.348 0.000 0.000

this function takes the graph in matrix form, the weights, the correlation matrix and the overall

6

α-level as inputs in order to compute rejection bounds for all elementary hypotheses in each inter-
section. Bounds are computed using the multivariate distribution of test statistics whenever the
whole correlation matrix is known for more than one test statistic associated with the elementary
hypotheses within the intersection. For a concise explanation of the involved algorithm see [2,
Section 3.2].

Once rejection bounds have been computed overall rejection of elementary hypotheses, based on
actual data, needs to be determined using the closed testing principle. This means that all hy-
potheses which are rejected in all intersection hypotheses, of which they are a part of, are rejected
at the overall α-level.

Since the bounds of a testing procedure is independent of the observed data gMCP provides a test
function for that particular MTP:

Example1 <- generateTest(Gm,w,Cm1,al=.025)

Example2 <- generateTest(Gm,w,Cm2,al=.025)

The definition of a test function is efficient if a test is applied several times, for example in simu-
lations.

The myTest function in the example above takes a vector of three z-scores and returns results
in the form of a boolean vector wher TRUE stands for rejection of the null hypothesis and FALSE

signifies that the null has to be retained.

Example1(c(2.24,2.24,2.24,2.3))

[1] FALSE FALSE FALSE FALSE

Example2(c(2.24,2.24,2.24,2.3))

[1] TRUE FALSE FALSE FALSE

We see that above z-score scenario leads to an effective gain in power of the procedure when
knowledge about the correlation structure is used.

Attention: Not all scenarios of partial knowledge of the correlation matrix can currently be handled
by gMCP. The correlation matrix must have a block structure: We assume that the set of hypothesis
can be partitioned into subsets such that the pairwise correlations in each subset are either known
or are set to NA. For example assume that in the example given above not only correlations
between the statistics for H1 and H2 are known but also the correlation between the statistics for
H1 and H3 but not between those associated with H2 and H3. In this case it is unclear when
testing the intersection hypotheses H1 ∩ H2 ∩ H3 wether the bounds for the statistics associated
with H1 and H2 or alternatively for those associated with H2 and H3 should be searched using
their multivariate distribution. The current implementation would try to find bounds using the
multivariate normal distribution of all three statistics which is not fully known and hence break
and return an exception.

3.1 Testing using the gMCP interface

The function gMCP provides a common interface to both sequentially rejective Bonferroni procedures
as well as parametric tests. gMCP takes objects of the type graphMCP as its input together with a
vector of p-values and computes whether the according test procedure rejects. For Example 1 this
amounts to the call:

7

p <- 1-pnorm(c(2.24,2.24,2.24,2.3))

G <- matrix2graph(Gm,w)

gMCP(G,p)

gMCP-Result

##

Initial graph:

A graphMCP graph

H1 (weight=0.5)

H2 (weight=0.5)

H3 (weight=0)

H4 (weight=0)

Edges:

H1 -(1)-> H3

H2 -(1)-> H4

H3 -(1)-> H2

H4 -(1)-> H1

##

##

P-values:

H1 H2 H3 H4

0.01255 0.01255 0.01255 0.01072

##

Adjusted p-values:

H1 H2 H3 H4

0.02509 0.02509 0.02509 0.02509

##

Alpha: 0.05

##

Hypothesis rejected:

H1 H2 H3 H4

TRUE TRUE TRUE TRUE

##

Final graph after 4 steps:

A graphMCP graph

Sum of weight: 0

H1 (rejected, weight=0)

H2 (rejected, weight=0)

H3 (rejected, weight=0)

H4 (rejected, weight=0)

No edges.

In the case of a sequentially rejective Bonferroni type procedure gMCP returns an object of class
graphMCP-Result which holds information on the specific sequence the test procedure has taken
through the graph and also provides adjusted p-values.

For Example 2 we use the same graph and assume normally distributed test statistics with known
variances and a correlation matrix of the form:











1 1

2
NA NA

1

2
1 NA NA

NA NA 1 1

2

NA NA 1

2
1











.

8

This can be implemented in gMCP by additionally passing the correlation matrix to gMCP:

gMCP(G,p,corr=Cm2,test="parametric")

gMCP-Result

##

Initial graph:

A graphMCP graph

H1 (weight=0.5)

H2 (weight=0.5)

H3 (weight=0)

H4 (weight=0)

Edges:

H1 -(1)-> H3

H2 -(1)-> H4

H3 -(1)-> H2

H4 -(1)-> H1

##

##

P-values:

H1 H2 H3 H4

0.01255 0.01255 0.01255 0.01072

##

Adjusted p-values:

H1 H2 H3 H4

0.02332 0.02509 0.02509 0.02509

##

Alpha: 0.05

##

Hypothesis rejected:

H1 H2 H3 H4

TRUE TRUE TRUE TRUE

which returns a similar result however without the graphs representing the rejection sequence,
since the whole closed test is done in this example. A vector specifying which of the elementary
hypotheses can be rejected at the overall α-level. The reported p-values are the unadjusted p-values
passed to gMCP.

9

References

[1] F. Bretz, W. Maurer, W. Brannath, and M. Posch. A graphical approach to sequentially
rejective multiple test procedures. Statistics in medicine, 28(4):586–604, 2009. URL http:

//www.meduniwien.ac.at/fwf_adaptive/papers/bretz_2009_22.pdf.

[2] F. Bretz, M. Posch, E. Glimm, F. Klinglmueller, W. Maurer, and K. Rohmeyer. Graphical
approaches for multiple comparison problems using weighted bonferroni, simes or parametric
tests. Biometrical Journal, 53(6):894–913, 2011. URL http://onlinelibrary.wiley.com/

doi/10.1002/bimj.201000239/full.

10

http://www.meduniwien.ac.at/fwf_adaptive/papers/bretz_2009_22.pdf
http://www.meduniwien.ac.at/fwf_adaptive/papers/bretz_2009_22.pdf
http://onlinelibrary.wiley.com/doi/10.1002/bimj.201000239/full
http://onlinelibrary.wiley.com/doi/10.1002/bimj.201000239/full

	Introduction
	Creating Graphs
	Creating Graphs using the Command Line
	Creating Graphs using the gMCP GUI

	Testing
	Testing using the gMCP interface

