Package ‘fst’

October 13, 2022

Type Package
Title Lightning Fast Serialization of Data Frames

Description Multithreaded serialization of compressed data frames using the 'fst' format. The
'fst' format allows for full random access of stored data and a wide range of compression
settings using the LZ4 and ZSTD compressors.

Version 0.9.8

Date 2022-02-07

Depends R (>=3.0.0)

Imports fstcore, Rcpp

LinkingTo Rcpp, fstcore

SystemRequirements little-endian platform
RoxygenNote 7.1.2

Suggests testthat, bit64, data.table, lintr, nanotime, crayon
License AGPL-3 | file LICENSE

Encoding UTF-8

URL http://www. fstpackage.org

BugReports https://github.com/fstpackage/fst/issues
NeedsCompilation yes

Author Mark Klik [aut, cre, cph]

Maintainer Mark Klik <markklik@gmail.com>

Repository CRAN

Date/Publication 2022-02-08 07:40:02 UTC

R topics documented:

fst-package L e
compress_fSt
decompress_fSt e
ISt e

http://www.fstpackage.org
https://github.com/fstpackage/fst/issues

2 compress_fst

hash_fst e 4
metadata_fSt L e e 5
threads_fst L e 6
WIItE_fSt e 7
Index 9
fst-package Lightning Fast Serialization of Data Frames for R.
Description

Multithreaded serialization of compressed data frames using the fst’ format. The *fst” format allows
for random access of stored data which can be compressed with the LZ4 and ZSTD compressors.

Details

The fst package is based on three C++ libraries:
* fstlib: library containing code to write, read and compute on files stored in the fs¢ format.
Written and owned by Mark Klik.

* LZ4: library containing code to compress data with the LZ4 compressor. Written and owned
by Yann Collet.

e ZSTD: library containing code to compress data with the ZSTD compressor. Written by Yann
Collet and owned by Facebook, Inc.

As of version 0.9.8, these libraries are included in the fstcore package, on which fst depends. The
copyright notices of the above libraries can be found in the fstcore package.

compress_fst Compress a raw vector using the LZ4 or ZSTD compressor.

Description

Compress a raw vector using the LZ4 or ZSTD compressor.

Usage

compress_fst(x, compressor = "ZSTD", compression = @, hash = FALSE)

decompress_fst

Arguments

X

compressor

compression

hash

raw vector.

compressor to use for compressing x. Valid options are "LZ4" and "ZSTD"
(default).

compression factor used. Must be in the range 0 (lowest compression) to 100
(maximum compression).

Compute hash of compressed data. This hash is stored in the resulting raw vector
and can be used during decompression to check the validity of the compressed
vector. Hash computation is done with the very fast xxHash algorithm and im-
plemented as a parallel operation, so the performance hit will be very small.

decompress_fst

Decompress a raw vector with compressed data.

Description

Decompress a raw vector with compressed data.

Usage

decompress_fst(x)

Arguments

X

Value

raw vector with data previously compressed with compress_fst.

araw vector with previously compressed data.

fst

Access a fst file like a regular data frame

Description

Create a fst_table object that can be accessed like a regular data frame. This object is just a reference
to the actual data and requires only a small amount of memory. When data is accessed, only a subset
is read from file, depending on the minimum and maximum requested row number. This is possible
because the fst file format allows full random access (in columns and rows) to the stored dataset.

Usage

fst(path, old_format = FALSE)

4 hash_fst

Arguments
path path to fst file
old_format must be FALSE, the old fst file format is deprecated and can only be read and
converted with fst package versions 0.8.0 to 0.8.10.
Value

An object of class fst_table

Examples

Not run:

generate a sample fst file

path <- pasteo@(tempfile(), ".fst")
write_fst(iris, path)

create a fst_table object that can be used as a data frame
ft <- fst(path)

print head and tail
print(ft)

select columns and rows
x <- ft[10:14, c("Petal.Width”, "Species”)]

use the common list interface
ft[TRUE]

ftLc(TRUE, FALSE)]
ft[["Sepal.Length"]]
ft$Petal.Length

use data frame generics
nrow(ft)

ncol (ft)

dim(ft)

dimnames(ft)

colnames(ft)

rownames(ft)

names(ft)

End(Not run)

hash_fst Parallel calculation of the hash of a raw vector

Description

Parallel calculation of the hash of a raw vector

metadata_fst 5

Usage
hash_fst(x, seed = NULL, block_hash = TRUE)

Arguments
X raw vector that you want to hash
seed The seed value for the hashing algorithm. If NULL, a default seed will be used.
block_hash If TRUE, a multi-threaded implementation of the 64-bit xxHash algorithm will
be used. Note that block_hash = TRUE or block_hash = FALSE will result in
different hash values.
Value
hash value
metadata_fst Read metadata from a fst file
Description

Method for checking basic properties of the dataset stored in path.

Usage

metadata_fst(path, old_format

FALSE)

fst.metadata(path, old_format = FALSE)

Arguments
path path to fst file
old_format must be FALSE, the old fst file format is deprecated and can only be read and
converted with fst package versions 0.8.0 to 0.8.10.
Value

Returns a list with meta information on the stored dataset in path. Has class fstmetadata.

Examples

Sample dataset

x <- data.frame(
First = 1:10,
Second = sample(c(TRUE, FALSE, NA), 10, replace = TRUE),
Last = sample(LETTERS, 10))

Write to fst file

6 threads_fst

fst_file <- tempfile(fileext = ".fst")
write_fst(x, fst_file)

Display meta information
metadata_fst(fst_file)

threads_fst Get or set the number of threads used in parallel operations

Description

For parallel operations, the performance is determined to a great extend by the number of threads
used. More threads will allow the CPU to perform more computational intensive tasks simultane-
ously, speeding up the operation. Using more threads also introduces some overhead that will scale
with the number of threads used. Therefore, using the maximum number of available threads is not
always the fastest solution. With threads_f'st the number of threads can be adjusted to the users
specific requirements. As a default, fst uses a number of threads equal to the number of logical
cores in the system.

Usage

threads_fst(nr_of_threads = NULL, reset_after_fork = NULL)

Arguments

nr_of_threads number of threads to use or NULL to get the current number of threads used in
multithreaded operations.

reset_after_fork
when f'st is running in a forked process, the usage of OpenMP can create prob-
lems. To prevent these, fst switches back to single core usage when it detects
a fork. After the fork, the number of threads is reset to it’s initial setting. How-
ever, on some compilers (e.g. Intel), switching back to multi-threaded mode
can lead to issues. When reset_after_fork is set to FALSE, fst is left in
single-threaded mode after the fork ends. After the fork, multithreading can
be activated again manually by calling threads_fst with an appropriate value
for nr_of_threads. The default (reset_after_fork =NULL) leaves the fork
behavior unchanged.

Details

The number of threads can also be set with options(fst_threads = N). NOTE: This option is only
read when the package’s namespace is first loaded, with commands like library, require, or : :.
If you have already used one of these, you must use threads_fst to set the number of threads.

Value

the number of threads (previously) used

write_fst 7

write_fst Read and write fst files.

Description

Read and write data frames from and to a fast-storage (‘fst‘) file. Allows for compression and (file
level) random access of stored data, even for compressed datasets. Multiple threads are used to
obtain high (de-)serialization speeds but all background threads are re-joined before ‘write_fst‘ and
‘read_fst‘ return (reads and writes are stable). When using a ‘data.table‘ object for ‘x*, the key (if
any) is preserved, allowing storage of sorted data. Methods ‘read_fst* and ‘write_fst‘ are equivalent
to ‘read.fst® and ‘write.fst‘ (but the former syntax is preferred).

Usage

write_fst(x, path, compress = 50, uniform_encoding = TRUE)
write.fst(x, path, compress = 50, uniform_encoding = TRUE)

read_fst(
path,
columns = NULL,
from = 1,
to = NULL,
as.data.table = FALSE,
old_format = FALSE

)

read.fst(
path,
columns = NULL,
from = 1,
to = NULL,
as.data.table = FALSE,
old_format = FALSE

)
Arguments
X a data frame to write to disk
path path to fst file
compress value in the range 0 to 100, indicating the amount of compression to use. Lower

values mean larger file sizes. The default compression is set to 50.
uniform_encoding

If “‘TRUE®, all character vectors will be assumed to have elements with equal

encoding. The encoding (latinl, UTFS8 or native) of the first non-NA element

will used as encoding for the whole column. This will be a correct assumption

8 write_fst

for most use cases. If ‘uniform.encoding‘ is set to ‘FALSE*, no such assumption
will be made and all elements will be converted to the same encoding. The
latter is a relatively expensive operation and will reduce write performance for
character columns.

columns Column names to read. The default is to read all columns.
from Read data starting from this row number.
to Read data up until this row number. The default is to read to the last row of the

stored dataset.

as.data.table If TRUE, the result will be returned as a data.table object. Any keys set
on dataset x before writing will be retained. This allows for storage of sorted
datasets. This option requires data. table package to be installed.

old_format must be FALSE, the old fst file format is deprecated and can only be read and
converted with fst package versions 0.8.0 to 0.8.10.

Value

‘read_fst‘ returns a data frame with the selected columns and rows. ‘write_fst* writes ‘x‘ to a ‘fst°
file and invisibly returns ‘x* (so you can use this function in a pipeline).

Examples

Sample dataset
x <- data.frame(A = 1:10000, B = sample(c(TRUE, FALSE, NA), 10000, replace = TRUE))

Default compression

fst_file <- tempfile(fileext = ".fst")
write_fst(x, fst_file) # filesize: 17 KB

y <- read_fst(fst_file) # read fst file

Maximum compression

write_fst(x, fst_file, 100) # fileSize: 4 KB
y <- read_fst(fst_file) # read fst file

Random access
y <- read_fst(fst_file, "B") # read selection of columns
y <- read_fst(fst_file, "A", 100, 200) # read selection of columns and rows

Index

compress_fst, 2
decompress_fst, 3

fst, 3

fst-package, 2

fst.metadata (metadata_fst), 5
hash_fst, 4

metadata_fst, 5

read.fst (write_fst), 7
read_fst (write_fst), 7

threads_fst, 6

write.fst (write_fst),7
write_fst,7

	fst-package
	compress_fst
	decompress_fst
	fst
	hash_fst
	metadata_fst
	threads_fst
	write_fst
	Index

