
The free group in R: introducing the freegroup

package

Robin K. S. Hankin

University of Stirling

Abstract

Here I present the freegroup package for working with the free group on a finite
set of symbols. The package is vectorised; internally it uses an efficient matrix-based
representation for free group objects but uses a configurable print method. A range of R-
centric functionality is provided. It is available on CRAN at https://CRAN.R-project.

org/package=freegroup. To cite the freegroup package, use Hankin (2022).

Keywords: Free group, Tietze form.

1. Introduction

The free group is an interesting and instructive mathematical object
with a rich structure that illustrates many concepts of elementary group
theory. The freegroup package provides some functionality for manip-
ulating the free group on a finite list of symbols. Informally, the free
group (X, ◦) on a set S = {a, b, c, . . . , z} is the set X of words that
are objects like W = c−4bb2aa−1ca, with a group operation of string
juxtaposition. Usually one works only with words that are in “reduced
form”, which has successive powers of the same symbol combined, so
W would be equal to c−4b3ca; see how b appears to the third power
and the a term in the middle has vanished. The group operation of juxtaposition is for-
mally indicated by ◦, but this is often omitted in algebraic notation; thus, for example
a2b−3c2 ◦ c−2ba = a2b−3c2c−2ba = a2b−2ba.

1.1. Formal definition

If X is a set, then a group F is called the free group on X if there is a set map Ψ: X −→ F ,
and for any group G and set map Φ: X −→ G, there is a unique homomorphism α: F −→ G

such that α ◦ Ψ = Φ, that is, the diagram below commutes:

X F

G

Ψ

Φ
α

It can be shown that F is unique up to group isomorphism; every group is a quotient of a
free group.

https://CRAN.R-project.org/package=freegroup
https://CRAN.R-project.org/package=freegroup


2 The freegroup package

1.2. Existing work

Computational support for working with the free group is provided as part of a number of
algebra systems including GAP, Sage (The Sage Developers 2019), and sympy (Meurer et al.
2017) although in those systems the emphasis is on finitely presented groups, not in scope for
the freegroup package. There are also a number of closed-source proprietary systems which
are of no value here.

2. The package in use

In the freegroup package, a word is represented by a two-row integer matrix; the top row is
the integer representation of the symbol and the second row is the corresponding power. For
example, to represent a2b−3ac2a−2 we would identify a as 1, b as 2, etc and write

> (M <- rbind(c(1,2,3,3,1),c(2,-3,2,3,-2)))

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 3 1

[2,] 2 -3 2 3 -2

(see how negative entries in the second row correspond to negative powers). Then to convert
to a more useful form we would have

> library("freegroup")

> (x <- free(M))

[1] a^2.b^-3.c^5.a^-2

The representation for R object x is still a two-row matrix, but the print method is active
and uses a more visually appealing scheme. The default alphabet used is letters. We can
coerce strings to free objects:

> (y <- as.free("aabbbcccc"))

[1] a^2.b^3.c^4

The free group operation is simply juxtaposition, represented here by the plus symbol:

> x + y

[1] a^2.b^-3.c^5.b^3.c^4

(see how the a “cancels out” in the juxtaposition).

2.1. Notation

The package generally uses additive notation but also, as an experimental feature, supports
multipicative notation. Thus x+y == x*y. One motivation for the use of “+” rather than “*”
is that Python uses “+” for appending strings:



Robin K. S. Hankin 3

>>> "a" + "abc"

'aabc'

>>>

However, note that the “+” symbol is usually reserved for commutative and associative oper-
ations; string juxtaposition is associative.

Multiplication by integers—denoted in freegroup idiom by “*”—is also defined. Suppose we
want to concatenate 5 copies of x:

> x*5

[1] a^2.b^-3.c^5.b^-3.c^5.b^-3.c^5.b^-3.c^5.b^-3.c^5.a^-2

This operation is vectorized:

> x*(0:3)

[1] 0 a^2.b^-3.c^5.a^-2

[3] a^2.b^-3.c^5.b^-3.c^5.a^-2 a^2.b^-3.c^5.b^-3.c^5.b^-3.c^5.a^-2

There are a few methods for creating free objects, for example:

> abc(1:9)

[1] a a.b a.b.c a.b.c.d

[5] a.b.c.d.e a.b.c.d.e.f a.b.c.d.e.f.g a.b.c.d.e.f.g.h

[9] a.b.c.d.e.f.g.h.i

And we can also generate random free objects:

> rfree(10,4)

[1] a^4.d^3.b^-8 d^-3.a^6 b^-4.c^-4.a^4.c^3 c^3.d^2.b^4.a^-4

[5] 0 d^-4.a^4.d^6 a^-1.b^8 d^-3.c^2.b^-2

[9] a^3.d^3.c^-1.b^4 c.d^-2.b

Inverses are calculated using unary or binary minus:

> (p <- rfree(10,4))

[1] 0 c^-3.d^2.c^3.a^-3 a^-7.c^2 b^3.a^2.c^3.a^-1

[5] c^3.b^2.d^-2 c^-1.b^-2.a^-1 b^5 c.a^-2.b.c^-4

[9] d^2.b.d^3 b^-4.d^4

> -p



4 The freegroup package

[1] 0 a^3.c^-3.d^-2.c^3 c^-2.a^7 a.c^-3.a^-2.b^-3

[5] d^2.b^-2.c^-3 a.b^2.c b^-5 c^4.b^-1.a^2.c^-1

[9] d^-3.b^-1.d^-2 d^-4.b^4

> p-p

[1] 0 0 0 0 0 0 0 0 0 0

We can take the “sum” of a vector of free objects simply by juxtaposing the elements:

> sum(p)

[1] c^-3.d^2.c^3.a^-10.c^2.b^3.a^2.c^3.a^-1.c^3.b^2.d^-2.c^-1.b^-2.a^-1.b^5.c.a^-2.b.c^-4.d^2.b.d^3.b^-4.d^4

Powers are defined as per group conjugation: x^y == y^{-1}xy (or, written in additive
notation, -y+x+y):

> p

[1] 0 c^-3.d^2.c^3.a^-3 a^-7.c^2 b^3.a^2.c^3.a^-1

[5] c^3.b^2.d^-2 c^-1.b^-2.a^-1 b^5 c.a^-2.b.c^-4

[9] d^2.b.d^3 b^-4.d^4

> a <- alpha(26)

> p^a

[1] 0 z^-1.c^-3.d^2.c^3.a^-3.z z^-1.a^-7.c^2.z

[4] z^-1.b^3.a^2.c^3.a^-1.z z^-1.c^3.b^2.d^-2.z z^-1.c^-1.b^-2.a^-1.z

[7] z^-1.b^5.z z^-1.c.a^-2.b.c^-4.z z^-1.d^2.b.d^3.z

[10] z^-1.b^-4.d^4.z

Thus:

> sum(p^a) == sum(p)^a

[1] TRUE

The experimental multiplicative notation allows us to have the equivalent of (xy)z = xzyz

and x(yz) = (xy)z:

> x <- rfree()

> y <- rfree()

> z <- rfree()

> (x*y)^z == x^z * y^z

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE



Robin K. S. Hankin 5

> x^(y*z) == (x^y)^z

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

In additive notation these manifest, somewhat unappealingly, as (x+y)^z == x^z + y^z and
x^(y+z) = (x^y)^z. Further, note that the distributive law x ∗ (y + z) = x ∗ y + x ∗ z is now
incorrect [we have, again somewhat unappealingly, x ∗ (y + z) = x ∗ y ∗ z = x + y + z] but it
can be resurrected if we reinterpret addition as (vector) juxtaposition:

> x * c(y, z) == c(x*y, x*z)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

> c(x, y) * z == c(x*z, y*z)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

There is also a commutator bracket, defined as [x, y] = x−1y−1xy or in package idiom
.[x,y]=-x-y+x+y:

> .[p,a]

[1] 0

[2] a^3.c^-3.d^-2.c^3.z^-1.c^-3.d^2.c^3.a^-3.z

[3] c^-2.a^7.z^-1.a^-7.c^2.z

[4] a.c^-3.a^-2.b^-3.z^-1.b^3.a^2.c^3.a^-1.z

[5] d^2.b^-2.c^-3.z^-1.c^3.b^2.d^-2.z

[6] a.b^2.c.z^-1.c^-1.b^-2.a^-1.z

[7] b^-5.z^-1.b^5.z

[8] c^4.b^-1.a^2.c^-1.z^-1.c.a^-2.b.c^-4.z

[9] d^-3.b^-1.d^-2.z^-1.d^2.b.d^3.z

[10] d^-4.b^4.z^-1.b^-4.d^4.z

If we have more than 26 symbols the print method runs out of letters:

> alpha(1:30)

[1] a b c d e f g h i j k l m n o p q r s t u v w x y

[26] z NA NA NA NA

If this is a problem (it might not be: the print method might not be important) it is possible
to override the default symbol set:

> options(freegroup_symbols = state.abb)

> alpha(1:30)



6 The freegroup package

[1] AL AK AZ AR CA CO CT DE FL GA HI ID IL IN IA KS KY LA ME MD MA MI MN MS MO

[26] MT NE NV NH NJ

3. Conclusions and further work

The freegroup package furnishes a consistent and documented suite of reasonably efficient
R-centric functionality. Further work might include the finitely presented groups but it is not
clear whether this would be consistent with the precepts of R.

References

GAP (2018). GAP – Groups, Algorithms, and Programming, Version 4.10.0. The
GAP Group. URL https://www.gap-system.org.

Hankin RKS (2022). “The free group in R.” doi:10.48550/ARXIV.2212.05883.

Meurer A, et al. (2017). “SymPy: symbolic computing in Python.” PeerJ Computer Science,
3, e103. ISSN 2376-5992. doi:10.7717/peerj-cs.103. URL https://doi.org/10.7717/

peerj-cs.103.

The Sage Developers (2019). SageMath, the Sage Mathematics Software System (Version
8.6). URL https://www.sagemath.org.

Affiliation:

Robin K. S. Hankin
University of Stirling
E-mail: hankin.robin@gmail.com

https://www.gap-system.org
https://doi.org/10.48550/ARXIV.2212.05883
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://www.sagemath.org
mailto:hankin.robin@gmail.com

	Introduction
	Formal definition
	Existing work

	The package in use
	Notation

	Conclusions and further work

