--- title: "Personalized Color Choices in Data Visualization" authors: "Yujie Zhao" output: rmarkdown::html_document: self_contained: no number_sections: yes code_folding: hide vignette: | %\VignetteIndexEntry{Personalized Color Choices in Data Visualization} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE, warning = FALSE ) ``` ```{r} library(forestly) library(metalite) ``` The interactive AE forest plots include AE-specific tables that visualize AE proportions, differences, and confidence intervals (CI). In this vignette, we introduce how to customize the plotting colors. # Step 1: build your metadata Building interactive AE forest plots starts with constructing the metadata. The detailed procedure for building metadata is covered in the vignette [Generate Interactive AE Forest Plots with Drill Down to AE Listing](https://merck.github.io/forestly/articles/forestly.html). Therefore, in this vignette, we will skip those details and directly use the metadata created there. ```{r} adsl <- forestly_adsl adae <- forestly_adae adsl$TRTA <- factor(forestly_adsl$TRT01A, levels = c("Xanomeline Low Dose", "Placebo"), labels = c("Low Dose", "Placebo") ) adae$TRTA <- factor(forestly_adae$TRTA, levels = c("Xanomeline Low Dose", "Placebo"), labels = c("Low Dose", "Placebo") ) meta <- meta_adam(population = adsl, observation = adae) |> define_plan(plan = plan( analysis = "ae_forestly", population = "apat", observation = "apat", parameter = "any;drug-related" )) |> define_analysis(name = "ae_forestly", label = "Interactive Forest Plot") |> define_population( name = "apat", group = "TRTA", id = "USUBJID", subset = SAFFL == "Y", label = "All Patient as Treated" ) |> define_observation( name = "apat", group = "TRTA", subset = SAFFL == "Y", label = "All Patient as Treated" ) |> define_parameter( name = "any", subset = NULL, label = "Any AEs", var = "AEDECOD", soc = "AEBODSYS" ) |> define_parameter( name = "drug-related", subset = toupper(AREL) == "RELATED", label = "Drug-related AEs", var = "AEDECOD", soc = "AEBODSYS" ) |> meta_build() ``` # Step 2: personalized color choices Users can specify custom colors by using the `color = ...` argument within the `format_ae_forestly()` function. By default, the color scheme is based on the branding of Merck & Co., Inc., Rahway, NJ, USA. In the example below, we modify the colors to `c("black", "grey60", "grey40")` to represent the three arms in the plot. The default color palette supports up to 4 arms; for studies with more than 4 arms, we recommend users define their own color settings to ensure clear visualization. ```{r} meta |> prepare_ae_forestly() |> format_ae_forestly(color = c("black", "grey60", "grey40")) |> ae_forestly() ```