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biomarkers Example biomarker data
Description

A dataset inspired by data collected by the Early Detection Research Network (EDRN). Biomarkers
developed at six "labs" are validated at at least one of four "validation sites" on 306 cysts. The data
also include two binary outcome variables: whether or not the cyst was classified as mucinous, and
whether or not the cyst was determined to have high malignant potential.

Usage

biomarkers

Format

biomarkers: a tibble with 306 rows and 24 columns, where the first column is the validation site,
the next two columns are the possible outcomes, and the remaining columns are the biomarkers:

institution the validation site

mucinous a binary indicator of whether the cyst was classified as mucinous
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high_malignancy a binary indicator of whether the cyst was classified as having high malignant
potential

lab1_actb a biomarker

lab1_molecules_score a biomarker

lab1_telomerase_score a biomarker

lab2_fluorescence_score a biomarker

lab3_muc3ac_score a biomarker

lab3_mucSac_score a biomarker

lab4_areg_score a biomarker

lab4_glucose_score a biomarker

lab5_mucinous_call a biomarker (binary)

lab5_neoplasia_v1_call a biomarker (binary)

lab5_neoplasia_v2_call a biomarker (binary)

lab6_ab_score a biomarker

cea a biomarker

lab1_molecules_neoplasia_call binary indicator of whether 1ab1_molecules_score > 25
lab1_telomerase_neoplasia_call binary indicator of whether 1ab1_telomerase_score > 730
lab2_fluorescence_mucinous_call binary indicator of whether 1ab2_fluorescence_score >1.23
lab4_areg mucinous_call binary indicator of whether 1ab4_areg_score > 112
lab4_glucose_mucinous_call binary indicator of whether 1lab4_glucose_score < 50

lab4_combined_mucinous_call binary indicator of whether 1ab4_areg_score > 112 and 1ab4_glucose_score
<50

lab6_ab_neoplasia_call binary indicator of whether 1ab6_ab_score > 0.104

cea_call binary indicator of whether cea > 192

Source

Inspired by data collected by the EDRN https://edrn.nci.nih.gov/.

extract_importance_glm
Extract the learner-specific importance from a glm object

Description
Extract the individual-algorithm extrinsic importance from a glm object, along with the importance
rank.

Usage

extract_importance_glm(fit = NULL, feature_names = "", coef = 0)


https://edrn.nci.nih.gov/
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Arguments

fit the glm object.

feature_names the feature names

coef the Super Learner coefficient associated with the learner.
Value

a tibble, with columns algorithm (the fitted algorithm), feature (the feature), importance (the
algorithm-specific extrinsic importance of the feature), rank (the feature importance rank, with 1
indicating the most important feature), and weight (the algorithm’s weight in the Super Learner)

Examples

data("biomarkers")

# subset to complete cases for illustration

cc <- complete.cases(biomarkers)

dat_cc <- biomarkers[cc, ]

# use only the mucinous outcome, not the high-malignancy outcome

y <- dat_cc$mucinous

x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy"))]
feature_nms <- names(x)

# get the fit

fit <- stats::glm(y ~ ., family = "binomial”, data = data.frame(y =y, x))
# extract importance

importance <- extract_importance_glm(fit = fit, feature_names = feature_nms)
importance

extract_importance_glmnet
Extract the learner-specific importance from a glmnet object

Description

Extract the individual-algorithm extrinsic importance from a glmnet object, along with the impor-

tance rank.
Usage

extract_importance_glmnet(fit = NULL, feature_names = "", coef = Q)
Arguments

fit the glmnet or cv.glmnet object

feature_names the feature names

coef the Super Learner coefficient associated with the learner.
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Value

a tibble, with columns algorithm (the fitted algorithm), feature (the feature), importance (the
algorithm-specific extrinsic importance of the feature), rank (the feature importance rank, with 1
indicating the most important feature), and weight (the algorithm’s weight in the Super Learner)

Examples

data("biomarkers")
# subset to complete cases for illustration
cc <- complete.cases(biomarkers)
dat_cc <- biomarkers[cc, ]
# use only the mucinous outcome, not the high-malignancy outcome
y <- dat_cc$mucinous
x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy"))]
feature_nms <- names(x)
# get the fit (using only 3 CV folds for illustration only)
set.seed(20231129)
fit <- glmnet::cv.glmnet(x = as.matrix(x), y =y,
family = "binomial”, nfolds = 3)
# extract importance
importance <- extract_importance_glmnet(fit = fit, feature_names = feature_nms)
importance

extract_importance_mean
Extract the learner-specific importance from a mean object

Description

Extract the individual-algorithm extrinsic importance from a mean object, along with the impor-

tance rank.
Usage

extract_importance_mean(fit = NULL, feature_names = "", coef = 0)
Arguments

fit the mean object.

feature_names the feature names

coef the Super Learner coefficient associated with the learner.

Value

a tibble, with columns algorithm (the fitted algorithm), feature (the feature), importance (the
algorithm-specific extrinsic importance of the feature), rank (the feature importance rank, with 1
indicating the most important feature), and weight (the algorithm’s weight in the Super Learner)
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Examples

data("biomarkers")

# subset to complete cases for illustration

cc <- complete.cases(biomarkers)

dat_cc <- biomarkers[cc, ]

# use only the mucinous outcome, not the high-malignancy outcome

y <- dat_cc$mucinous

x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy"))]
feature_nms <- names(x)

# get the mean outcome

fit <- mean(y)

# extract importance

importance <- extract_importance_mean(fit = fit, feature_names = feature_nms)
importance

extract_importance_polymars
Extract the learner-specific importance from a polymars object

Description

Extract the individual-algorithm extrinsic importance from a polymars object, along with the im-
portance rank.

Usage

extract_importance_polymars(fit = NULL, feature_names = "", coef = 0)
Arguments

fit the polymars object.

feature_names the feature names

coef the Super Learner coefficient associated with the learner.
Value

a tibble, with columns algorithm (the fitted algorithm), feature (the feature), importance (the
algorithm-specific extrinsic importance of the feature), rank (the feature importance rank, with 1
indicating the most important feature), and weight (the algorithm’s weight in the Super Learner)

Examples

data("biomarkers")

# subset to complete cases for illustration

cc <- complete.cases(biomarkers)

dat_cc <- biomarkers[cc, ]

# use only the mucinous outcome, not the high-malignancy outcome
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y <- dat_cc$mucinous

x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy"))]

feature_nms <- names(x)

x_mat <- as.matrix(x)

# get the fit

set.seed(20231129)

fit <- polspline::polyclass(y, x_mat)

# extract importance

importance <- extract_importance_polymars(fit = fit, feature_names = feature_nms)
importance

extract_importance_ranger
Extract the learner-specific importance from a ranger object

Description

Extract the individual-algorithm extrinsic importance from a ranger object, along with the impor-

tance rank.
Usage

extract_importance_ranger(fit = NULL, feature_names = "", coef = Q)
Arguments

fit the ranger object.

feature_names the feature names

coef the Super Learner coefficient associated with the learner.
Value

a tibble, with columns algorithm (the fitted algorithm), feature (the feature), importance (the
algorithm-specific extrinsic importance of the feature), rank (the feature importance rank, with 1
indicating the most important feature), and weight (the algorithm’s weight in the Super Learner)

Examples

data("biomarkers")

# subset to complete cases for illustration

cc <- complete.cases(biomarkers)

dat_cc <- biomarkers[cc, ]

# use only the mucinous outcome, not the high-malignancy outcome

y <- dat_cc$mucinous

x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy”))]
feature_nms <- names(x)

# get the fit

set.seed(20231129)
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fit <- ranger::ranger(y ~ ., data = data.frame(y =y, x), importance = "impurity")
# extract importance

importance <- extract_importance_ranger(fit = fit, feature_names = feature_nms)
importance

extract_importance_SL Extract extrinsic importance from a Super Learner object

Description

Extract the individual-algorithm extrinsic importance from each fitted algorithm within the Super
Learner; compute the average weighted rank of the importance scores, with weights specified by
each algorithm’s weight in the Super Learner.

Usage

extract_importance_SL(fit, feature_names, import_type = "all"”, ...)
Arguments

fit the fitted Super Learner ensemble

feature_names the names of the features

import_type the level of granularity for importance: "all” is the importance based on the
weighted average of ranks across algorithmrithms (weights are SL coefs); "best”
is the importance based on the algorithmrithm with highest weight. Defaults to
n a l 1 n .

other arguments to pass to individual-algorithm extractors.

Value

a tibble, with columns feature (the feature) and rank (the weighted feature importance rank, with
1 indicating the most important feature).

Examples

data("biomarkers")

# subset to complete cases for illustration

cc <- complete.cases(biomarkers)

dat_cc <- biomarkers[cc, ]

# use only the mucinous outcome, not the high-malignancy outcome

y <- dat_cc$mucinous

x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy"))]
feature_nms <- names(x)

# get the fit (using a simple library and 2 folds for illustration only)
set.seed(20231129)

library(”SuperLearner")

fit <- SuperlLearner::SuperLearner(Y =y, X = x, SL.library = c("SL.glm", "SL.mean"),
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cvControl = list(V = 2))
# extract importance using all learners
importance <- extract_importance_SL(fit = fit, feature_names = feature_nms)
importance
# extract importance of best learner
best_importance <- extract_importance_SL(fit = fit, feature_names = feature_nms,
import_type = "best")
best_importance

extract_importance_SL_learner
Extract the learner-specific importance from a fitted SuperLearner al-
gorithm

Description

Extract the individual-algorithm extrinsic importance from one fitted algorithm within the Super
Learner, along with the importance rank.

Usage

extract_importance_SL_learner(fit = NULL, coef = @, feature_names = "", ...)
Arguments

fit the specific learner (e.g., from the Super Learner’s fitLibrary list).

coef the Super Learner coefficient associated with the learner.

feature_names the feature names

other arguments to pass to algorithm-specific importance extractors.

Value

a tibble, with columns algorithm (the fitted algorithm), feature (the feature), importance (the
algorithm-specific extrinsic importance of the feature), rank (the feature importance rank, with 1
indicating the most important feature), and weight (the algorithm’s weight in the Super Learner)

Examples

data("biomarkers")

# subset to complete cases for illustration

cc <- complete.cases(biomarkers)

dat_cc <- biomarkers[cc, ]

# use only the mucinous outcome, not the high-malignancy outcome

y <- dat_cc$mucinous

x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy"))]
feature_nms <- names(x)

# get the fit (using a simple library and 2 folds for illustration only)
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library(”SuperLearner")

set.seed(20231129)

fit <- SuperlLearner::SuperLearner(Y =y, X = x, SL.library = c("SL.glm", "SL.mean"),
cvControl = list(V = 2))

# extract importance

importance <- extract_importance_SL_learner(fit = fit$fitLibrary[[1]]$object,

feature_names = feature_nms, coef = fit$coef[1])
importance

extract_importance_svm
Extract the learner-specific importance from an svm object

Description

Extract the individual-algorithm extrinsic importance from a glm object, along with the importance

rank.
Usage
extract_importance_svm(
fit = NULL,
feature_names = "",
coef = 0,
x = NULL,
y = NULL
)
Arguments
fit the svm object.

feature_names the feature names

coef the Super Learner coefficient associated with the learner.
X the features
y the outcome

Value

a tibble, with columns algorithm (the fitted algorithm), feature (the feature), importance (the
algorithm-specific extrinsic importance of the feature), rank (the feature importance rank, with 1
indicating the most important feature), and weight (the algorithm’s weight in the Super Learner)
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Examples

data("biomarkers")

# subset to complete cases for illustration

cc <- complete.cases(biomarkers)

dat_cc <- biomarkers[cc, 1]

# use only the mucinous outcome, not the high-malignancy outcome

y <- dat_cc$mucinous

X <- as.data.frame(dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy”))1)
x_mat <- as.matrix(x)

feature_nms <- names(x)

# get the fit

set.seed(20231129)

fit <- kernlab::ksvm(x_mat, y)

# extract importance

importance <- extract_importance_svm(fit = fit, feature_names = feature_nms, x = x, y = y)
importance

extract_importance_xgboost
Extract the learner-specific importance from an xgboost object

Description

Extract the individual-algorithm extrinsic importance from an xgboost object, along with the im-
portance rank.

Usage

extract_importance_xgboost(fit = NULL, feature_names = "", coef = 0)
Arguments

fit the xgboost object.

feature_names the feature names

coef the Super Learner coefficient associated with the learner.

Value

a tibble, with columns algorithm (the fitted algorithm), feature (the feature), importance (the
algorithm-specific extrinsic importance of the feature), rank (the feature importance rank, with 1
indicating the most important feature), and weight (the algorithm’s weight in the Super Learner)
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Examples

data("biomarkers")

# subset to complete cases for illustration

cc <- complete.cases(biomarkers)

dat_cc <- biomarkers[cc, ]

# use only the mucinous outcome, not the high-malignancy outcome

y <- dat_cc$mucinous

x <- as.matrix(dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy”))])
feature_nms <- names(x)

set.seed(20231129)

xgbmat <- xgboost::xgh.DMatrix(data = x, label =y)

# get the fit, using a small number of rounds for illustration only

fit <- xgboost: :xgboost(data = xgbmat, objective = "binary:logistic”, nthread = 1, nrounds = 10)
# extract importance

importance <- extract_importance_xgboost(fit = fit, feature_names = feature_nms)
importance

extrinsic_selection Perform extrinsic, ensemble-based variable selection

Description

Based on a fitted Super Learner ensemble, extract extrinsic variable importance estimates, rank
them, and do variable selection using the specified rank threshold.

Usage

extrinsic_selection(
fit = NULL,
feature_names = "",
threshold = 20,
import_type = "all"”,

Arguments

fit the fitted Super Learner ensemble.

feature_names the names of the features (a character vector of length p (the total number of
features)); only used if the fitted Super Learner ensemble was fit on a matrix
rather than on a data. frame, tibble, etc.

threshold the threshold for selection based on ranked variable importance; rank 1 is the
most important. Defaults to 20 (though this is arbitrary, and really should be
specified for the task at hand).
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import_type the type of extrinsic importance (either "all”, the default, for a weighted com-
bination of the individual-algorithm importance; or "best”, for the importance
from the algorithm with the highest weight in the Super Learner).

other arguments to pass to algorithm-specific importance extractors.

Value

a tibble with the estimated extrinsic variable importance, the corresponding variable importance
ranks, and the selected variables.

See Also

SuperLearner for specific usage of the SuperlLearner function and package.

Examples

data("biomarkers")

# subset to complete cases for illustration

cc <- complete.cases(biomarkers)

dat_cc <- biomarkers[cc, 1]

# use only the mucinous outcome, not the high-malignancy outcome

y <- dat_cc$mucinous

x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy"))]

feature_nms <- names(x)

# get the fit (using a simple library and 2 folds for illustration only)

library(”SuperLearner")

set.seed(20231129)

fit <- SuperLearner::SuperLearner(Y =y, X = x, SL.library = c("SL.glm", "SL.mean"),
cvControl = list(V = 2))

# extract importance

importance <- extrinsic_selection(fit = fit, feature_names = feature_nms, threshold = 1.5,
import_type = "all")

importance
flevr flevr: Flexible, Ensemble-Based Variable Selection with Potentially
Missing Data
Description

A framework for flexible, ensemble-based variable selection using either extrinsic or intrinsic vari-
able importance. You provide the data and a library of candidate algorithms for estimating the
conditional mean outcome given covariates; flevr handles the rest.
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Author(s)
Maintainer: Brian Williamson https://bdwilliamson.github.io/

Methodology authors:

¢ Brian D. Williamson

* Ying Huang

See Also
Papers:
e https://arxiv.org/abs/2202.12989
Other useful links:

e https://bdwilliamson.github.io/flevr/
e https://github.com/bdwilliamson/flevr
* Report bugs at https://github.com/bdwilliamson/flevr/issues

Imports

The packages that we import either make the internal code nice (dplyr, magrittr, tibble) or are
directly relevant for estimating variable importance (SuperLearner, caret).

We suggest several other packages: xgboost, ranger, glmnet, kernlab, polspline and quadprog allow
a flexible library of candidate learners in the Super Learner; stabs allows importance to be embedded
within stability selection; testthat and covr help with unit tests; and knitr, rmarkdown,and RCurl
help with the vignettes and examples.

get_augmented_set Get an augmented set based on the next-most significant variables

Description

Based on the adjusted p-values from a FWER-controlling procedure and a more general error rate
for which control is desired (e.g., generalized FWER, proportion of false positives, or FDR), aug-
ment the set based on FWER control with the next-most significant variables.

Usage

get_augmented_set(
p_values = NULL,
num_rejected = 0,
alpha = 0.05,
quantity = "gFWER",
q = 0.05,
k =1


https://bdwilliamson.github.io/
https://arxiv.org/abs/2202.12989
https://bdwilliamson.github.io/flevr/
https://github.com/bdwilliamson/flevr
https://github.com/bdwilliamson/flevr/issues
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Arguments

p_values the adjusted p-values.

num_rejected  the number of rejected null hypotheses from the base FWER-controlling proce-

dure.
alpha the significance level.
quantity the quantity to control (i.e., "gFWER", "PFP", or "FDR").
q the proportion for FDR or PFP control.
k the number of false positives for gFWER control.

Value

a list of the variables selected into the augmentation set. Contains the following values:

e set, a numeric vector where 1 denotes that the variable was selected and O otherwise
e k, the value of k used

* g_star, the value of g-star used

Examples

data("biomarkers")

# subset to complete cases for illustration

cc <- complete.cases(biomarkers)

dat_cc <- biomarkers[cc, ]

# use only the mucinous outcome, not the high-malignancy outcome

y <- dat_cc$mucinous

x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy”))]

feature_nms <- names(x)

# estimate SPVIMs (using simple library and V = 2 for illustration only)

set.seed(20231129)

library("SuperLearner™)

est <- vimp::sp_vim(Y =y, X =x, V=2, type = "auc", SL.library = "SL.glm",
cvControl = list(V = 2))

# get base set
base_set <- get_base_set(test_statistics = est$test_statistic, p_values = est$p_value,
alpha = 0.2, method = "Holm")

# get augmented set

augmented_set <- get_augmented_set(p_values = base_set$p_values,
num_rejected = sum(base_set$decision), alpha = 0.2,
quantity = "gFWER", k = 1)

augmented_set$set
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get_base_set Get an initial selected set based on intrinsic importance and a base
method

Description

Using the estimated intrinsic importance and a base method designed to control the family-wise
error rate (e.g., Holm), obtain an initial selected set.

Usage

get_base_set(
test_statistics = NULL,
p_values = NULL,

alpha = 0.05,
method = "maxT",
B = 10000,
Sigma = diag(1, nrow = length(test_statistics)),
g = NULL
)
Arguments

test_statistics
the test statistics (used with "maxT")

p_values (used with "minP" or "Holm")
alpha the alpha level
method the method (one of "maxT", "minP", or "Holm")
B the number of resamples (for minP or maxT)
Sigma the estimated covariance matrix for the test statistics
q the false discovery rate (for method = "BY")
Value

the initial selected set, a list of the following:

* decision, a numeric vector with 1 indicating that the variable was selected and 0 otherwise

* p_values, the p-values used to make the decision

Examples

data("biomarkers")

# subset to complete cases for illustration
cc <- complete.cases(biomarkers)

dat_cc <- biomarkers[cc, ]



intrinsic_control 17

# use only the mucinous outcome, not the high-malignancy outcome

y <- dat_cc$mucinous

x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy”))]

feature_nms <- names(x)

# estimate SPVIMs (using simple library and V = 2 for illustration only)

set.seed(20231129)

library("SuperLearner”)

est <- vimp::sp_vim(Y =y, X = x, V =2, type
cvControl = list(V = 2))

"

auc”, SL.library = "SL.glm",

# get base set

base_set <- get_base_set(test_statistics = est$test_statistic, p_values = est$p_value,
alpha = 0.2, method = "Holm")

base_set$decision

intrinsic_control Control parameters for intrinsic variable selection

Description

Control parameters for SPVIM-based intrinsic variable selection.

Usage

intrinsic_control(
quantity = "gFWER",

base_method = "Holm",
fdr_method = "Holm",
q=20.2,
k=5
)
Arguments
quantity the desired quantity for error-rate control: possible values are "gFWER" (the gen-
eralized family-wise error rate), "PFP" (the proportion of false positives), and
"FDR" (the false discovery rate).
base_method the family-wise error rate controlling method to use for obtaining the initial set
of selected variables. Possible values are "maxT" and "minP" (for step-down
procedures based on the test statistics ranked from largest to smallest or the p-
values ranked from smallest to largest, respectively) or "Holm" for a procedure
based on Holm-adjusted p-values.
fdr_method the method for controlling the FDR (if quantity = "FDR"); possible values are
"BY" (for Benjamini-Yekutieli) or one of the base_methods.
q the desired proportion of false positives (only used if quantity = "PFP" or
"FDR"; a fraction between 0 and 1).
k the desired number of family-wise errors (an integer, greater than or equal to

Zero.)
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Value

a list with the control parameters.

Examples

control <- intrinsic_control(quantity = "gFWER", base_method = "Holm", fdr_method = "Holm",
k=1)
control

intrinsic_selection Perform intrinsic, ensemble-based variable selection

Description

Based on estimated SPVIM values, do variable selection using the specified error-controlling method.

Usage

intrinsic_selection(
spvim_ests = NULL,
sample_size = NULL,

nn

feature_names = R

alpha = 0.05,
control = list(quantity = "gFWER", base_method = "Holm", fdr_method = NULL, q = NULL, k
= NULL)
)
Arguments
spvim_ests the estimated SPVIM values (an object of class vim, resulting from a call to
vimp: :sp_vim). Can also be a list of estimated SPVIMs, if multiple imputation
was used to handle missing data; in this case, Rubin’s rules will be used to com-
bine the estimated SPVIMSs, and then selection will be based on the combined
SPVIMs.
sample_size the number of independent observations used to estimate the SPVIM values.

feature_names the names of the features (a character vector of length p (the total number of
features)); only used if the fitted Super Learner ensemble was fit on a matrix
rather than on a data. frame, tibble, etc.

alpha the nominal generalized family-wise error rate, proportion of false positives, or
false discovery rate level to control at (e.g., 0.05).

control a list of parameters to control the variable selection process. Parameters include
quantity, base_method, g, and k. See intrinsic_control for details.
Value

a tibble with the estimated intrinsic variable importance, the corresponding variable importance
ranks, and the selected variables.
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See Also

sp_vim for specific usage of the sp_vim function and the vimp package for estimating intrinsic
variable importance.

Examples

data("biomarkers")
# subset to complete cases for illustration
cc <- complete.cases(biomarkers)
dat_cc <- biomarkers[cc, ]
# use only the mucinous outcome, not the high-malignancy outcome
y <- dat_cc$mucinous
x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy”))]
feature_nms <- names(x)
# estimate SPVIMs (using simple library and V = 2 for illustration only)
set.seed(20231129)
library("SuperLearner”)
est <- vimp::sp_vim(Y =y, X = x, V =2, type
cvControl = list(V = 2))
# do intrinsic selection
intrinsic_set <- intrinsic_selection(spvim_ests = est, sample_size = nrow(dat_cc), alpha=20.2,
feature_names = feature_nms,
control = list(quantity = "gFWER", base_method = "Holm",
k=1))

"

auc”, SL.library = "SL.glm",

intrinsic_set

pool_selected_sets Pool selected sets from multiply-imputed data

Description

Pool the selected sets from multiply-imputed or bootstrap + imputed data. Uses the "stability" of
the variables over the multiple selected sets to select variables that are stable across the sets, where
stability is determined by presence in a certain fraction of the selected sets (and the fraction must
be above the specified threshold to be "stable").

Usage

pool_selected_sets(sets = 1list(), threshold = 0.8)

Arguments
sets a list of sets of selected variables from the multiply-imputed datasets. Expects
each set of selected variables to be a binary vector, where 1 denotes that the
variable was selected.
threshold a numeric threshold between 0 and 1 detemining the "stability" of a feature;

only features with stability above the threshold after pooling will be in the final
selected set of variables.
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Value

a vector denoting the final set of selected variables (1 denotes selected, O denotes not selected)

Examples

data("biomarkers")
x <- biomarkers[, !(names(biomarkers) %in% c("mucinous”, "high_malignancy"))]
feature_nms <- names(x)
library("dplyr")
library(”SuperLearner")
# do multiple imputation (with a small number for illustration only)
library("mice")
n_imp <- 2
set.seed(20231129)
mi_biomarkers <- mice::mice(data = biomarkers, m = n_imp, printFlag = FALSE)
imputed_biomarkers <- mice::complete(mi_biomarkers, action = "long") %>%
rename(imp = .imp, id = .id)
# set up a list to collect selected sets
all_selected_vars <- vector("list”, length = 5)
for (i in 1:n_imp) {
# fit a Super Learner using simple library for illustration only
these_data <- imputed_biomarkers %>%
filter(imp == i)
this_y <- these_data$mucinous
this_x <- these_data %>%
select(starts_with("lab"), starts_with("cea"))
this_x_df <- as.data.frame(this_x)
fit <- SuperLearner::SuperLearner(Y = this_y, X = this_x_df,
SL.library = "SL.glm",
cvControl = list(V = 2),
family = "binomial”)
# do extrinsic selection
all_selected_vars[[i]] <- extrinsic_selection(
fit = fit, feature_names = feature_nms, threshold = 5, import_type = "all”
)$selected
3
# perform extrinsic variable selection
selected_vars <- pool_selected_sets(sets = all_selected_vars, threshold = 1 / n_imp)
feature_nms[selected_vars]

pool_spvims Pool SPVIM Estimates Using Rubin’s Rules

Description

If multiple imputation was used due to the presence of missing data, pool SPVIM estimates from
individual imputed datasets using Rubin’s rules. Results in point estimates averaged over the impu-
tations, along with within-imputation variance estimates and across-imputation variance estimates;
and test statistics and p-values for hypothesis testing.
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Usage

pool_spvims(spvim_ests = NULL)

Arguments

spvim_ests a list of estimated SPVIMs (of class vim)

Value

a list of results containing the following:

* est, the average SPVIM estimate over the multiply-imputed datasets
* se, the average of the within-imputation SPVIM variance estimates

* test_statistics, the test statistics for hypothesis tests of zero importance, using the Rubin’s
rules standard error estimator and average SPVIM estimate

* p_values, p-values computed using the above test statistics
* tau_n, the across-imputation variance estimates

e vcov, the overall variance-covariance matrix

Examples

data("biomarkers")
library("dplyr")
# do multiple imputation (with a small number for illustration only)
library("mice")
n_imp <- 2
set.seed(20231129)
mi_biomarkers <- mice::mice(data = biomarkers, m = n_imp, printFlag = FALSE)
imputed_biomarkers <- mice::complete(mi_biomarkers, action = "long") %>%
rename(imp = .imp, id = .id)
# estimate SPVIMs for each imputed dataset, using simple library for illustration only
library(”SuperLearner")
est_lst <- lapply(as.list(1:n_imp), function(l) {
this_x <- imputed_biomarkers %>%
filter(imp == 1) %>%
select(starts_with("lab"), starts_with("cea"))
this_y <- biomarkers$mucinous
suppressWarnings(
vimp::sp_vim(Y = this_y, X = this_x, V = 2, type = "auc”,
SL.library = "SL.glm", gamma = @.1, alpha = 0.05, delta = 0,
cvControl = list(V = 2), env = environment())
)
»
# pool the SPVIMs using Rubin's rules
pooled_spvims <- pool_spvims(spvim_ests = est_lst)
pooled_spvims
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SL.ranger.imp Super Learner wrapper for a ranger object with variable importance

Description

Super Learner wrapper for a ranger object with variable importance

Usage

SL.ranger.imp(
Y:
X,
newx,
family,
obsWeights = rep(1, length(Y)),
num. trees = 500,
mtry = floor(sqrt(ncol(X))),
write.forest = TRUE,
probability = family$family == "binomial”,
min.node.size = ifelse(family$family == "gaussian”, 5, 1),
replace = TRUE,
sample.fraction = ifelse(replace, 1, 0.632),
num.threads = 1,
verbose = FALSE,

importance = "impurity”,
)
Arguments
Y Outcome variable
X Training dataframe
newX Test dataframe
family Gaussian or binomial
obsWeights Observation-level weights
num. trees Number of trees.
mtry Number of variables to possibly split at in each node. Default is the (rounded

down) square root of the number variables.

write.forest  Save ranger.forest object, required for prediction. Set to FALSE to reduce mem-
ory usage if no prediction intended.

probability Grow a probability forest as in Malley et al. (2012).

min.node.size Minimal node size. Default 1 for classification, 5 for regression, 3 for survival,
and 10 for probability.

replace Sample with replacement.
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sample.fraction

Fraction of observations to sample. Default is 1 for sampling with replacement
and 0.632 for sampling without replacement.

num. threads Number of threads to use.
verbose If TRUE, display additional output during execution.
importance Variable importance mode, one of *none’, ’impurity’, *impurity_corrected’, *per-

mutation’. The *impurity’ measure is the Gini index for classification, the vari-
ance of the responses for regression and the sum of test statistics (see splitrule)
for survival.

Any additional arguments, not currently used.

Value

a named list with elements pred (predictions on newX) and fit (the fitted ranger object).

References

Breiman, L. (2001). Random forests. Machine learning 45:5-32.

Wright, M. N. & Ziegler, A. (2016). ranger: A Fast Implementation of Random Forests for High Di-
mensional Data in C++ and R. Journal of Statistical Software, in press. http://arxiv.org/abs/1508.04409.

See Also

SL.ranger ranger predict.ranger

Examples

data("biomarkers")

# subset to complete cases for illustration

cc <- complete.cases(biomarkers)

dat_cc <- biomarkers[cc, ]

# use only the mucinous outcome, not the high-malignancy outcome
y <- dat_cc$mucinous

x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy"))]
feature_nms <- names(x)

# get the fit

set.seed(20231129)

fit <- SL.ranger.imp(Y =y, X = x, newX = x, family = binomial())

fit
SL_stabs_fitfun Wrapper for using Super Learner-based extrinsic selection within sta-
bility selection
Description

A wrapper function for Super Learner-based extrinsic variable selection within stability selection,
using the stabs package.
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Usage
SL_stabs_fitfun(x, y, q, ...)
Arguments
X the features.
y the outcome of interest.
the number of features to select on average.
other arguments to pass to SuperLearner.
Value

a named list, with elements: selected (alogical vector indicating whether or not each variable was
selected); and path ( a logical matrix indicating which variable was selected at each step).

See Also

stabsel for general usage of stability selection.

Examples

data("biomarkers")

# subset to complete cases for illustration

cc <- complete.cases(biomarkers)

dat_cc <- biomarkers[cc, ]

# use only the mucinous outcome, not the high-malignancy outcome

y <- dat_cc$mucinous

x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy”))]
feature_nms <- names(x)

# use stability selection with SL (using small number of folds for CV,
# small SL library and small number of bootstrap replicates for illustration only)
set.seed(20231129)

library(”SuperLearner")

sl_stabs <- stabs::stabsel(x = x, y =y,

fitfun = SL_stabs_fitfun,
args.fitfun = list(SL.library = "SL.glm", cvControl = list(V = 2)),
g=2,B =5, PFER = 5)
sl_stabs
spvim_vcov Extract a Variance-Covariance Matrix for SPVIM Estimates
Description

Extract a variance-covariance matrix based on the efficient influence function for each of the esti-
mated SPVIMs.
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Usage

spvim_vcov(spvim_ests = NULL)

Arguments

spvim_ests estimated SPVIMs

Value

a variance-covariance matrix

Examples

data("biomarkers")

# subset to complete cases for illustration

cc <- complete.cases(biomarkers)
dat_cc <- biomarkers[cc, ]

# use only the mucinous outcome, not the high-malignancy outcome

y <- dat_cc$mucinous

x <- dat_cc[, !(names(dat_cc) %in% c("mucinous”, "high_malignancy”))]

feature_nms <- names(x)

# estimate SPVIMs (using simple library and V

set.seed(20231129)
library(”SuperLearner")

est <- vimp::sp_vim(Y =y, X = x, V =2, type
cvControl = list(V = 2))

# get variance-covariance matrix

vcov <- spvim_vcov(spvim_ests = est)

2 for illustration only)

"auc"”, SL.library = "SL.glm",
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