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Abstract

This paper provides an introduction into to the R-package flacco. A slightly modified
version of this document has recently been submitted to the Journal of Statistical Software
and is currently under review.

Choosing the best-performing optimizer(s) out of a portfolio of optimization algorithms
is usually a difficult and complex task. It gets even worse, if the underlying functions are
unknown, i.e., so-called Black-Box problems, and function evaluations are considered to be
expensive. In the case of continuous single-objective optimization problems, Exploratory
Landscape Analysis (ELA) – a sophisticated and effective approach for characterizing the
landscapes of such problems by means of numerical values before actually performing the
optimization task itself – is advantageous. Unfortunately, until now it has been quite
complicated to compute multiple ELA features simultaneously, as the corresponding code
has been – if at all – spread across multiple platforms or at least across several packages
within these platforms.

This article presents a broad summary of existing ELA approaches and introduces
flacco, an R-package for feature-based landscape analysis of continuous and constrained
optimization problems. Although its functions neither solve the optimization problem it-
self nor the related Algorithm Selection Problem (ASP), it offers easy access to an essential
ingredient of the ASP by providing a wide collection of ELA features on a single plat-
form – even within a single package. In addition, flacco provides multiple visualization
techniques, which enhance the understanding of some of these numerical features, and
thereby make certain landscape properties more comprehensible. On top of that, we will
introduce the package’s build-in, as well as web-hosted and hence platform-independent,
graphical user interface (GUI), which facilitates the usage of the package – especially for
people who are not familiar with R – making it a very convenient toolbox when working
towards algorithm selection of continuous single-objective optimization problems.

Keywords: Exploratory Landscape Analysis, R-Package, Graphical User Interface, Single-
Objective Optimization, Continuous Optimization, Algorithm Selection, Black-Box Optimiza-
tion.
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1. Introduction

Already a long time ago, Rice (1975) introduced the Algorithm Selection Problem (ASP),
which aims at finding the best algorithm A out of a set of algorithms A for a specific instance1

I ∈ I. Thus, one can say that the algorithm selection model m tries to find the best-
performing algorithm A for a given set of problem instances I.

As the performance of an optimization algorithm strongly depends on the structure of the
underlying instance, it is crucial to have some a priori knowledge of the problem’s landscape
in order to pick a well-performing optimizer. One promising approach for such heads-up in-
formation are landscape features, which characterize certain landscape properties by means of
numerical values. Figure 1 schematically shows how Exploratory Landscape Analysis (ELA)
can be integrated into the model-finding process of an ASP. In the context of continuous
single-objective optimization, relevant problem characteristics cover information such as the
degree of Multimodality, its Separability or its Variable Scaling (Mersmann, Bischl, Traut-
mann, Preuss, Weihs, and Rudolph 2011). However, the majority of these so-called“high-level
properties”have a few drawbacks: they (1) are categorical, (2) require expert knowledge (i.e., a
decision maker), (3) might miss relevant information, and (4) require knowledge of the entire
(often unknown) problem. Therefore, Bischl, Mersmann, Trautmann, and Preuss (2012) in-
troduced so-called “low-level properties”, which characterize a problem instance by means of
– not necessarily intuitively understandable – numerical values, based on a sample of observa-
tions from the underlying problem. Figure 2 shows which of their automatically computable
low-level properties (shown as white ellipses) could potentially describe the expert-designed
high-level properties (grey boxes).

In recent years, researchers all over the world have developed further (low-level) landscape
features and implemented them in many different programming languages – mainly in MAT-

LAB (MATLAB 2013), Python (VanRossum and The Python Development Team 2015) or R (R
Core Team 2017). Most of these features are very cheap to compute as they only require an
initial design, i.e., a small amount of (often randomly chosen) exemplary observations, which
are used as representatives of the original problem instance.

1In this context, an instance is the equivalent to an optimization problem, i.e., it maps the elements of the
decision space X to the objective space Y.

Figure 1: Scheme for using ELA in the context of an Algorithm Selection Problem.
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Figure 2: Relationship between expert-based high-level properties (grey rectangles in the outer
columns) and automatically computable low-level properties (white ellipses in the middle).

For instance, Jones and Forrest (1995) characterized problem landscapes using the correlation
between the distances from a set of points to the global optimum and their respective fitness
values. Later, Lunacek and Whitley (2006) introduced dispersion features, which compare
pairwise distances of all points in the initial design with the pairwise distances of the best
points in the initial design (according to the corresponding objective). Malan and Engelbrecht
(2009) designed features that quantify the ruggedness of a continuous landscape and Müller
and Sbalzarini (2011) characterized landscapes by performing fitness-distance analyses. In
other works, features were constructed using the problem definition, hill climbing characteris-
tics and a set of random points (Abell, Malitsky, and Tierney 2013), or based on a tour across
the problem’s landscape, using the change in the objective values of neighboring points to
measure the landscape’s information content (Muñoz, Kirley, and Halgamuge 2012, 2015a).

The fact that feature-based landscape analysis also exists in other domains – e.g., in dis-
crete optimization (Daolio, Liefooghe, Verel, Aguirre, and Tanaka 2016; Jones 1995; Ochoa,
Verel, Daolio, and Tomassini 2014) including its subdomain, the Traveling Salesperson Prob-
lem (Mersmann, Bischl, Trautmann, Wagner, Bossek, and Neumann 2013; Hutter, Xu, Hoos,
and Leyton-Brown 2014; Pihera and Musliu 2014) – also lead to attempts to discretize the
continuous problems and afterwards use a so-called cell mapping approach (Kerschke, Preuss,
Hernández, Schütze, Sun, Grimme, Rudolph, Bischl, and Trautmann 2014), or compute bar-
rier trees on the discretized landscapes (Flamm, Hofacker, Stadler, and Wolfinger 2002).

In recent years, Morgan and Gallagher (2015) analyzed optimization problems by means of
length scale features, Kerschke, Preuss, Wessing, and Trautmann (2015, 2016) distinguished
between so-called“funnel”and“non-funnel”structures with the help of nearest better clustering
features, Malan, Oberholzer, and Engelbrecht (2015) used violation landscapes to characterize
constrained continuous optimization problems, and Shirakawa and Nagao (2016) introduced
the bag of local landscape features.

Looking at the list from above, one can see that there exists a plethora of approaches for
characterizing the fitness landscapes of continuous optimization problems, which makes it
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difficult to keep track of all the new approaches. For this purpose, we would like to refer
the interested reader to the survey paper by Muñoz, Sun, Kirley, and Halgamuge (2015b),
which provides a nice introduction and overview on various methods and challenges of this
whole research field, i.e., the combination of feature-based landscape analysis and algorithm
selection for continuous black-box optimization problems.

Given the studies from above, each of them provided new feature sets, describing certain
aspects or properties of a problem. However, due to the fact that one would have to run the
experiments across several platforms, usually only a few feature sets were combined – if at
all – within a single study. As a consequence, the full potential of feature-based landscape
analysis could not be exploited. This issue has now been addressed with the implementation
of the R-package flacco (Kerschke 2017), which is introduced within this paper.

While the general idea of flacco (Kerschke and Trautmann 2016), as well as its associated
graphical user interface (Hanster and Kerschke 2017) were already published individually in
earlier works, this paper combines them for the first time and – more importantly – clearly
enhances them by providing a detailed description of the implemented landscape features.

The following section provides a very detailed overview of the integrated landscape features
and the additional functionalities of flacco. Section 3 demonstrates the usage of the R-package
based on a well-known Black-Box optimization problem and Section 4 introduces the built-in
visualization techniques. In Section 5, the functionalities and usage of the package’s graphical
user interface is presented and Section 6 concludes this work.

2. Integrated ELA features

The here presented R-package provides a unified interface to a collection of the majority of
feature sets from above within a single package2 and consequently simplifies their accessibility.
In its default settings, flacco computes more than 300 different numerical landscape features,
distributed across 17 so-called feature sets (further details on these sets are given on page 6).
Additionally, the total number of performed function evaluations, as well as the required
runtime for the computation of a feature set, are automatically tracked per feature set.

Within flacco, basically all feature computations and visualizations are based on a so-called
feature object, which stores all the relevant information of the problem instance. It contains
the initial design, i.e., a data frame of all the (exemplary) observations from the decision space
along with their corresponding objective values and – if provided – the number of blocks per
input dimension (e.g., required for the cell mapping approach, Kerschke et al. (2014)), as well
as the exact (mathematical) function definition, which is needed for those feature sets, which
perform additional function evaluations, e.g., the local search features (which were already
mentioned in Figure 2).

Such a feature object can be created in different ways as shown in Figure 3. First, one has
to provide some input data by either passing (a) a matrix or data frame of the (sampled)
observations from the decision space (denoted as X), as well as a vector with the corresponding
objective values (y), or (b) a data frame of the initial design (init.design), which basically
combines the two ingredients from (a), i.e., the decision space samples and the corresponding
objective values, within a single data set. Then, the function createFeatureObject takes
the provided input data and transforms it into a specific R object – the feature object. During

2The author also intends to extend flacco by the feature sets, which have not yet been integrated in it.
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Figure 3: Scheme for creating a feature object: (1) provide the input data, (2) call
createFeatureObject and pass additional arguments if applicable, (3) receive the feature
object, i.e., a specific R-object, which is the basis for all further computations and visualiza-
tions.

its creation, this object can (optionally) be enhanced / specified by further details such as
the exact function of the problem (fun), the number of blocks per dimension (blocks), or the
upper (upper) and lower (lower) bounds of the problem’s decision space. If the latter are
not provided, the initial design’s minimum and maximum (per input variable) will be used as
boundaries.

Furthermore, the package also provides the function createInitialSample, which allows
to create a random sample of observations (denoted as X within Figure 3) within the box-
constraints [0, 1]d (with d being the number of input dimensions). This sample-generator also
allows to configure the boundaries or use an improved latin hypercube sample (Beachkofski
and Grandhi 2002; McKay, Beckman, and Conover 2000) instead of a sample that is based
on a random uniform distribution.

As one of the main purposes of Exploratory Landscape Analysis is the description of landscapes
when given a very restricted budget (of function evaluations), it is highly recommended to
keep the sample sizes small. Within recent work, Kerschke et al. (2016) have shown that
initial designs consisting of 50 · d observations – i.e., sampled points in the decision space –
can be completely sufficient for describing certain high-level properties by means of numerical
features. Also, one should note that the majority of research within the field of continuous
single-objective optimization deals with at most 40-dimensional problems. Thus, unless one
possesses a high budget of function evaluations, as well as the computational resources, it is
not useful to compute features based on initial designs with more than 10 000 observations or
more than 40 features. And even in case one has those resources, one should consider whether
it is necessary to perform feature-based algorithm selection; depending on the problems,
algorithms and resources it might as well be possible to simply run all optimization algorithms
on all problem instances.

Given the aforementioned feature object, one has provided the basis for calculating specific
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feature sets (using the function calculateFeatureSet), computing all available feature sets
at once (calculateFeatures) or visualizing certain characteristics (described in more detail
in Section 4).

In order to get an overview of all currently implemented feature sets, one can call the function
listAvailableFeatureSets. This function, as well as calculateFeatures, i.e., the function
for calculating all feature sets at once, allows to turn off specific feature sets, such as those,
which require additional function evaluations or follow the cell mapping approach. Turning off
the cell mapping features could for instance be useful in case of higher dimensional problems
due to the Curse of Dimensionality (Friedman 1997)3.

In general, the current version of flacco consists of the feature sets that are described below.
Note that the final two“features”per feature set always provide its costs, i.e., the additionally
performed function evaluations and running time (in seconds) for calculating that specific set.

Classical ELA Features (83 features across 6 feature sets): The first six groups of
features are the “original” ELA features as defined by Mersmann et al. (2011).

Six features measure the convexity by taking (multiple times) two points of the initial design
and comparing the convex combination of their objective values with the objective value
of their convex combinations. Obviously, each convex combination requires an additional
function evaluation. The set of these differences – i.e., the distance between the objective
value of the convex combination and the convex combination of the objective values – is then
used to estimate the probabilities of convexity and linearity. In addition, the arithmetic mean
of these differences, as well as the arithmetic mean of the absolute differences are used as
features as well.

The 26 curvature features measure information on the estimated gradient and Hessian of (a
subset of) points from the initial design. More precisely, the lengths’ of the gradients, the
ratios between the biggest and smallest (absolute) gradient directions and the ratios of the
biggest and smallest eigenvalues of the Hessian matrices are aggregated using the minimum,
first quartile (= 25%-quantile), arithmetic mean, median, third quartile (= 75%-quantile),
maximum, standard deviation and number of missing values4. Note that estimating the
derivatives also requires additional function evaluations.

The five y-distribution features compute the kurtosis, skewness and number of peaks of the
kernel-based estimation of the density of the initial design’s objective values.

For the next group, the initial design is divided into two groups (based on a configurable
threshold for the objective values). Afterwards the performances of various classification
techniques, which are applied to that binary classification task, are used for computing the 20
levelset features. Based on the classifiers and thresholds5, flacco uses the R-package mlr (Bis-
chl, Lang, Kotthoff, Schiffner, Richter, Studerus, Casalicchio, and Jones 2016) to compute
the mean misclassification errors (per combination of classifier and threshold). Per default,
these error rates are based on a 10-fold crossvalidation, but this can be changed to any other

3In case of a 10-dimensional problem in which each input variable is discretized by three blocks, one already
needs 310 = 59 049 observations to have one observation per cell – on average.

4If a point is a local optimum the gradient is zero for all dimensions of a sample point, then the ratio of
biggest and smallest gradient obviously can not be computed and therefore results in a missing value (= NA).

5The default classifiers are linear (LDA), quadratic (QDA) and mixture discriminant analysis (MDA) and
the default threshold for dividing the data set into two groups are the 10%-, 25%- and 50%-quantile of the
objective values.
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resampling-strategy that is implemented in mlr. In addition to the “pure” misclassification
errors, flacco computes the ratio of misclassification errors per threshold and pair of classifiers.

The 15 local search features extract information from several local search runs (each of them
starting in one of the points from the initial design). Per default, each of the local searches
uses a specific quasi-Newton method, namely "L-BFGS-B" (Byrd, Lu, Nocedal, and Zhu 1995)
as implemented in R’s optim-function, to find a local optimum. The found optima are then
clustered (per default via single-linkage hierarchical clustering, Jobson (2012)) in order to
decide whether the found optima belong to the same basins. The resulting total number of
found optima (= clusters) is the first feature of this group, whereas the ratio of this number
of optima and the conducted local searches form the second one. The next two features
measure the ratio of the best and average objective values of the found clusters. As the
clusters likely combine multiple local optima, the number of optima per cluster can be used
as representation for the basin sizes. These basin sizes are then averaged for the best, all non-
best and the worst cluster(s). Finally, the number of required function evaluations across the
different local search runs is aggregated using the minimum, first quartile (= 25%-quantile),
arithmetic mean, median, third quartile (= 75%-quantile), maximum and standard deviation.

The remaining 11 meta model features extract information from linear and quadratic models
(with and without interactions) that were fitted to the initial design. More precisely, these
features compute the model fit (= R2

adj) for each of the four aforementioned models, the in-
tercept of the linear model without interactions, the condition of the quadratic model without
interactions and the minimum, maximum as well as ratio of maximum and minimum of all
(absolute) coefficients – except for the intercept – of the linear model without interactions.

Cell Mapping Features (20 / 3): This approach discretizes the continuous decision space
using a pre-defined number of blocks (= cells) per input dimension. Then, the interaction of
the cells, as well as the observations that are located within a cell, are used to compute the
corresponding landscape features (Kerschke et al. 2014).

As shown in Figure 4, the ten angle features extract information based on the location of
the best and worst (available) observation of a cell w.r.t. the corresponding cell center. The
distance from cell center to the best and worst point within the cell, as well as the angle
between the three points are computed per cell and afterwards aggregated across all cells
using the arithmetic mean and standard deviation. The remaining features compute the
difference between the best and worst objective value per cell, normalize these differences by
the biggest span in objective values within the entire initial design and afterwards aggregate
these distances across all cells (using the arithmetic mean and the standard deviation).

The four gradient homogeneity features aggregate the cell-wise information on the gradients
between each point of a cell and its corresponding nearest neighbor. Figure 5 illustrates the
idea of this feature set. That is, for each point within a cell, we compute the gradient towards
its nearest neighbor, normalize it, point it towards the better one of the two neighboring
points and afterwards sum up all the normalized gradients (per cell). Then, the lengths of
the resulting vectors are aggregated across all cells using the arithmetic mean and standard
deviation.

The remaining six cell mapping features aggregate the (estimated) convexity based on repre-
sentative observations of (all combinations of) three either horizontally, vertically or diago-
nally successive cells. Each cell is represented by the sample observation that is located closest
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Figure 4: Overview of the “ingredi-
ents” computing the cell mapping
angle features: the location of the
best and worst points within a cell.

Figure 5: General idea for computing the cell map-
ping gradient homogeneity features: (1) find the near-
est neighbours, (2) compute and normalize the gradient
vectors, (3) point them towards the better of the two
points and (4) sum them up.

to the corresponding cell center. We then compare – for each combination of three neigh-
boring cells – their objective values: if the objective value of the middle cell is below/above
the mean of the objective values of the outer two cells, we have an indication for (soft) con-
vexity/concavity. If the objective value of the middle cell even is the lowest/biggest value of
the three neighboring cells, we have an indication for (hard) convexity/concavity. Averag-
ing these values across all combinations of three neighboring cells, results in the estimated
“probabilities” for (soft/hard) convexity or concavity.

Generalized Cell Mapping Features (75 / 1): Analogously to the previous group of
features, these features are also based on the block-wise discretized decision space. Here, each
cell will be represented by exactly one of its observations – either its best or average value
or the one that is located closest to the cell center – and each of the cells is then considered
to be an absorbing Markov chain. That is, for each cell the transition probability for moving
from one cell to one of its neighboring cells is computed. Based on the resulting transition
probabilities, the cells are categorized into attractor, transient, periodic and uncertain cells.
Figure 6 shows two exemplary cell mapping plots – each of them is based on the same feature
object, but follows a different representation approach – which color the cells according to their
category: attractor cells are depicted by black boxes, grey cells indicate uncertain cells, i.e.,
cells that are attracted by multiple attractors, and the remaining cells represent the certain
cells, which form the basins of attractions. Furthermore, all non-attractor cells possess arrows
that point toward their attractors and their length’s represent the attraction probabilities.
The different cell types, as well as the accompanying probabilities are the foundation for the
25 GCM-features (per approach):

1. total number of attractor cells and ratio of cells that are periodic (usually the attractor
cells), transient (= non-periodic cells) or uncertain cells,

2. aggregation (minimum, arithmetic mean, median, maximum and standard deviation)
of the probabilities for reaching the different basins of attractions,
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3. aggregation of the basin sizes when the basins are only formed by the “certain” cells,

4. aggregation of the basin sizes when the “uncertain” cells also count toward the basins
(a cell which points towards multiple attractors contributes to each of them),

5. number and probability of finding the attractor cell with the best objective value.

Further details on the GCM-approach are given in Kerschke et al. (2014).

Barrier Tree Features (93 / 1): Building on top of the transition probability repre-
sentation and the three approaches from the generalized cell mapping features, a so-called
barrier tree (Flamm et al. 2002), as shown in Figure 7, is constructed (per approach). The
local optima of the problem landscape – i.e., the valleys in case of minimization problems
– are represented by the leaves of the tree (indicated by filled circles within Figure 7) and
the branching nodes (depicted as non-filled diamonds) represent the ridges of the landscape,
i.e., the locations where (at least) two neighboring valleys are connected. Based on these trees,
the following 31 features can be computed for each of the three cell-representing approaches:

1. number of leaves (= filled circles) and levels (= branches of different colors), as well as
the tree depth, i.e., the distance from the root node (red triangle) to the lowest leaf,

2. ratio of the depth of the tree and the number of levels,

3. ratio of the number of levels and the number of non-root nodes,

4. aggregation (minimum, arithmetic mean, median, maximum and standard deviation)
of the height differences between a node and its predecessor,

5. aggregation of the average height difference per level,

6. ratio of biggest and smallest basin of attraction (based on the number of cells counting
towards the basin) for three different “definitions” of a basin: (a) based on the “certain”
cells, (b) based on the “uncertain” cells or (c) based on the “certain” cells, plus the
“uncertain”cells for which the probability towards the respective attractor is the highest,

7. proportion of cells that belong to the basin, which contains the attractor with the best
objective value, and cells from the other basins – aggregated across the different basins,

8. widest range of a basin.

Nearest Better Clustering Features (7 / 1): These features extract information based
on the comparison of the sets of distances from (a) all observations towards their nearest
neighbors and (b) their nearest better neighbors6 (Kerschke et al. 2015). More precisely, these
features measure the ratios of the standard deviations and the arithmetic means between the
two sets, the correlation between the distances of the nearest neighbors and nearest better
neighbors, the coefficient of variation of the distance ratios and the correlation between the
fitness value, and the count of observations to whom the current observation is the nearest
better neighbour, i.e., the so-called “indegree”.

6Here, the “nearest better neighbor” is the observation, which is the nearest neighbor among the set of all
observations with a better objective value.
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Figure 6: Cell Mappings of a two-dimensional version of Gallagher’s Gaussian 101-me
Peaks (Hansen et al. 2009) function based on a minimum (left) and average (right) approach.
The black cells are the attractor cells, i.e., potential local optima. Each of those cells might
come with a basin of attraction, i.e., the colored cells which point towards the attractor. All
uncertain cells, i.e., cells that are attracted by multiple attractors, are shown in grey. The
arrows show in the direction(s) of their attracting cell(s).
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Figure 7: Visualisations of a barrier tree in 2D (left) and 3D (right). Both versions of the
tree belong to the same problem – a two-dimensional version of Gallagher’s Gaussian 101-me
Peaks function based on the minimum approach. The root of the tree is highlighted by a
red triangle and the leaves of the tree, which usually lie in an attractor cell, are marked with
filled circles. The saddle points, i.e., the points where two or more basins of attraction come
together, are indicated by empty circles, as well as one incoming and two outgoing branches.
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Dispersion Features (18 / 1): The dispersion features by Lunacek and Whitley (2006)
compare the dispersion among observations within the initial design and among a subset of
these points. The subsets are created based on predefined thresholds, whose default values
are the 2%-, 5%-, 10%- and 25%-quantile of the objective values. For each of these threshold
values, we compute the arithmetic mean and median of all distances among the points of
the subset, and then compare it – using the difference and ratio – to the mean or median,
respectively, of the distances among all points from the initial design.

Information Content Features (7 / 1): The Information Content of Fitness Sequences
(ICoFiS) approach (Muñoz et al. 2015a) quantifies the so-called information content of a
continuous landscape, i.e., smoothness, ruggedness, or neutrality. While similar methods
already exist for the information content of discrete landscapes, this approach provides an
adaptation to continuous landscapes that for instance accounts for variable step sizes in
random walk sampling. This approach is based on a symbol sequence Φ = {φ1, . . . , φn−1},
with

φi :=















1̄ , if yi+1−yi
||xi+1−xi||

< −ε

0 , if
∣

∣

∣

yi+1−yi
||xi+1−xi||

∣

∣

∣
≤ ε

1 , if yi+1−yi
||xi+1−xi||

> ε

.

This sequence is derived from the objective values y1, . . . , yn belonging to the n points
x1, . . . ,xn of a random walk across (the initial design of) the landscape and depends on
the information sensitivity parameter ε > 0.

This symbol sequence Φ is aggregated by the information content H(ε) :=
∑

i 6=j pij · log6 pij ,
where pij is the probability of having the “block” φiφj , with φi, φj ∈ {1̄, 0, 1}, within the
sequence. Note that the base of the logarithm was set to six as this equals the number of
possible blocks φiφj for which φi 6= φj , i.e., φiφj ∈ {1̄0, 01̄, 1̄1, 11̄, 10, 01} (Muñoz et al. 2015a).

Another aggregation of the information is the so-called partial information content M(ε) :=
|Φ

′

|/(n−1), where Φ
′

is the symbol sequence of alternating 1’s and 1̄’s, which is derived from
Φ by removing all zeros and repeated symbols. Muñoz et al. (2015a) then suggest to use these
two characteristics for computing the following five features:

1. maximum information content Hmax := maxε{H(ε)},

2. settling sensitivity εs := log10 (minε{ε : H(ε) < s}), with the default of s being 0.05 as
suggested by Muñoz et al. (2015a),

3. εmax := argmaxε{H(ε)},

4. initial partial information M0 := M(ε = 0),

5. ratio of partial information sensitivity εr := log10 (maxε{ε : M(ε) > r ·M0}), with the
default of r being 0.5 as suggested by Muñoz et al. (2015a).

The various characteristics and features described above can also be visualized within an
Information Content Plot as exemplarily shown in Figure 8.
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Figure 8: Information Content Plot of a two-dimensional version of Gallagher’s Gaussian
101-me Peaks function. This approach analyzes the behavior of the tour along the points of
the problem’s initial design.

Further Miscellaneous Features (40 / 3): The remaining three feature sets provided
within flacco are based on some very simple ideas. Note that there exists no (further) detailed
description for these three feature sets as – according to the best knowledge of the author –
none of them has been used for any (published) experiments. However, from our perspective
they are worth to be included in future studies.

The simplest and quickest computable group of features are the 16 basic features, which
provide rather obvious information of the initial design: (a) the number of observations and
input variables, (b) the minimum and maximum of the lower and upper boundaries, objective
values and number of blocks per dimension, (c) the number of filled cells and the total number
of cells, and (d) a binary flag stating whether the objective function should be minimized.

The 14 linear model features fit a linear model – with the objective variable being the depend-
ing variable and all the remaining variables as explaining variables – within each cell of the
feature object and aggregate the coefficient vectors across all the cells. That is, we compute
(a) the length of the average coefficient vector, (b) the correlation of the coefficient vectors,
(c) the ratio of maximum and minimum, as well as the arithmetic mean of the standard devi-
ation of the (non-intercept) coefficients, (d) the previous features based on coefficient vectors
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that were a priori normalized per cell, (e) the arithmetic mean and standard deviation of the
lengths of the coefficient vectors (across the cells), and (f) the arithmetic mean and standard
deviation of the ratio of biggest and smallest (non-intercept) coefficients per cell.

The remaining ten features extract information from a principal component analysis, which
is performed on the initial design – both, including and excluding the objective values – and
that are based on the covariance, as well as correlation matrix, respectively. For each of
these four combinations, the features measure the proportion of principal components that
are needed to explain a pre-defined percentage (default: 0.9) of the data’s variance, as well
as the percentage of variation that is explained by the first principal component.

Further information on all the implemented features, especially more detailed information on
each of its configurable parameters is given within the documentation of the package. Note
that – in contrast to the original implementation of most of the feature sets – the majority of
parameters, e.g., the classifiers used by the level set features, or the ratio for the partial infor-
mation sensitivity within the information content features, are configurable. While for reasons
of conveniency, the default values are set according to their original publications, they can
easily be changed using the control argument within the functions calculateFeatureSet

or calculateFeatures, respectively. An example for this is given at the end of Section 3.

Note that each feature set can be computed for unconstrained, as well as box-constrained op-
timization problems. Upon creation of the feature object, R asserts that each point from the
initial sample X lies within the defined lower and upper boundaries. Hence, if one intends to
consider unconstrained problems, one should set the boundaries to -Inf or Inf, respectively.
When dealing with box-constrained problems, one has to take a look at the feature sets them-
selves. Given that 14 out of the 17 feature sets do not perform additional function evaluations
at all, none of them can violate any of the constraints. This also holds for the remaining three
feature sets. The convexity features always evaluate (additional) points that are located in
the center of two already existing (and thereby feasible) points. Consequently, each of them
has to be located within the box-constraints as well. In case of the local search features, the
box-constraints are also respected as long as one uses the default local search algorithm (L-
BFGS-B), which was designed to optimize bound-constrained optimization problems. Finally,
the curvature features do not violate the constraints either as the internal functions, which
are used for estimating the gradient and Hessian of the function, were adapted in such a way
that they always estimate them by evaluating points within the box-constraints – even in case
the points are located close to or even exactly on the border of the box.

As described within the previous two sections, numerous researchers have already developed
feature sets and many of them also shared their source code, enabling the creation of this
wide collection of landscape features in the first place. By developing flacco on a publicly
accessible platform7, other R-users may easily contribute to the package by providing further
feature sets. Aside from using the most recent (development) version of the package, one can
also use the stable release of flacco provided on CRAN8. Note that the package repository on
GitHub also provides a link to the corresponding online tutorial9, the platform-independent
web-application10 (further details are given in Section 5) and an issue tracker, where one could
report bugs, provide feedback or suggest the integration of further feature sets.

7The development version is available on GitHub: https://github.com/kerschke/flacco
8The stable release is published on CRAN: https://cran.r-project.org/package=flacco
9Link to the package’s tutorial: http://kerschke.github.io/flacco-tutorial/

10Link to the package’s GUI: https://flacco.shinyapps.io/flacco/

https://github.com/kerschke/flacco
https://cran.r-project.org/package=flacco
http://kerschke.github.io/flacco-tutorial/
https://flacco.shinyapps.io/flacco/
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3. Exemplary feature computation

In the following, the usage of flacco will exemplarily be presented on a well-known Black-
Box optimization problem, namely Gallagher’s Gaussian 101-me Peaks (Hansen et al. 2009).
This is the 21st out of the 24 artificially designed, continuous single-objective optimization
problems from the Black-Box Optimization Benchmark (BBOB, Hansen, Auger, Finck, and
Ros 2010). Within this benchmark, it belongs to a group of five multimodal problem instances
with a weak global structure. Each of the 24 function classes from BBOB can be seen as a
specific problem generator, whose problems are identical up to rotation, shifts and scaling.
Therefore the exact instance has to be defined by a function ID (fid) and an instance ID
(iid). For this exemplary presentation, we will use the second instance and generate it
using makeBBOBFunction from the R-package smoof (Bossek 2016). The resulting landscape
is depicted as a three-dimensional perspective plot in Figure 9 and as a contour plot in
Figure 10.

In a first step, one needs to install the package along with all its dependencies, load it into the
workspace and afterwards generate the input data – i.e., a (hopefully) representative sample
X of observations from the decision space along with their corresponding objective values y.

R> install.packages("flacco", dependencies = TRUE)

R> library("flacco")

R> f = smoof::makeBBOBFunction(dimension = 2, fid = 21, iid = 2)

R> ctrl = list(init_sample.lower = -5, init_sample.upper = 5)

R> X = createInitialSample(n.obs = 800, dim = 2, control = ctrl)

R> y = apply(X, 1, f)

f(x
1 , x

2 )

x1

x
2

Figure 9: 3D-Perspective plot of Gal-
lagher’s Gaussian 101-me Peaks func-
tion.
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The code above would also work without explicitly specifying the lower and upper boundaries
(within ctrl), but in that case, the decision sample would automatically be generated within
[0, 1]×[0, 1] rather than within the (for BBOB) common box-constraints of [−5, 5]×[−5, 5]. In
a next step, this input data is used (eventually in combination with further parameters such
as the number of blocks per dimension) to create the feature object as already schematized
in Figure 3. The following R-code shows how this could be achieved.

R> feat.object = createFeatureObject(X = X, y = y, fun = f, blocks = c(8, 5))

As stated earlier, a feature object is the fundamental object for the majority of computations
performed by flacco and thus, it obviously has to store quite a lot of information – such as the
number of observations and (input) variables, the names and boundaries of the variables, the
amount of empty and non-empty cells, etc. Parts of that information can easily be printed
to the console by calling print on the feature object.11

R> print(feat.object)

Feature Object:

- Number of Observations: 800

- Number of Variables: 2

- Lower Boundaries: -5.00e+00, -5.00e+00

- Upper Boundaries: 5.00e+00, 5.00e+00

- Name of Variables: x1, x2

- Optimization Problem: minimize y

- Function to be Optimized: smoof-function (BBOB_2_21_2)

- Number of Cells per Dimension: 8, 5

- Size of Cells per Dimension: 1.25, 2.00

- Number of Cells:

- total: 40

- non-empty: 40 (100.00%)

- empty: 0 (0.00%)

- Average Number of Observations per Cell:

- total: 20.00

- non-empty: 20.00

Given the feature object, one can easily calculate any of the 17 feature sets that were intro-
duced in Section 2. Specific feature sets can for instance – exemplarily shown for the angle,
dispersion and nearest better clustering features – be computed as shown in the code below.

R> angle.features = calculateFeatureSet(

+ feat.object = feat.object, set = "cm_angle")

R> dispersion.features = calculateFeatureSet(

+ feat.object = feat.object, set = "disp")

R> nbc.features = calculateFeatureSet(

+ feat.object = feat.object, set = "nbc")

11Note that the shown numbers, especially the ones for the number of observations per cell, might be different
on your machine, as the initial sample is drawn randomly.
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Alternatively, one can compute all of the more than 300 features simultaneously via:

R> all.features = calculateFeatures(feat.object)

Each of these calculations results in a list of (mostly numeric, i.e., real-valued) features. In
order to avoid errors due to the possibility of similar feature names between different feature
sets, each feature inherits the abbreviation of its feature set’s name as a prefix, e.g., cm_angle
for the cell mapping angle features or disp for the dispersion features. Using the results from
the previous example, the output for the calculation of the seven nearest better clustering
features could look like this:

R> str(nbc.features)

List of 7

$ nbc.nn_nb.sd_ratio : num 0.303

$ nbc.nn_nb.mean_ratio : num 0.605

$ nbc.nn_nb.cor : num 0.271

$ nbc.dist_ratio.coeff_var: num 0.383

$ nbc.nb_fitness.cor : num -0.364

$ nbc.costs_fun_evals : int 0

$ nbc.costs_runtime : num 0.081

At this point, the authors would like to emphasize that one should not try to interpret the
numerical feature values on their own as the majority of them simply are not intuitively
understandable. Instead, these numbers should rather be used to distinguish between different
problems – usually in an automated fashion, e.g., by means of a machine learning algorithm.

Also, it is important to note that features, which belong to the same feature set, are based
on the same idea and only differ in the way they aggregate those ideas. For instance, the
nearest better clustering features are based on the same distance sets – the distances to their
nearest neighbors and nearest better neighbors. However, the features differ in the way they
aggregate those distance sets, e.g., by computing the ratio of their standard deviations or
the ratio of their arithmetic means. As the underlying approaches are the bottleneck of each
feature set, computing single features on their own would not be very beneficial and therefore
has not been implemented in this package. Therefore, given the fact that multiple features
share a common idea, which is usually the expensive part of the feature computation – for
this group of features it would be the computation of the two distance sets – they will be
computed together as an entire feature set instead of computing each feature on its own.

Figure 11 shows the results of a so-called “microbenchmark” (Mersmann 2014) on the chosen
BBOB instance. Such a benchmark allows the comparison of the (logarithmic) runtimes
across the different feature sets. As one can see, the time for calculating a specific feature
set heavily depends on the chosen feature set. Although the majority of feature sets can be
computed in less than half a second (the basic features even in less than a millisecond), three
feature sets – namely curvature, level set and local search – usually needed between one and
two seconds. And although two seconds might not sound that bad, it can have a huge impact
on the required resources when computing all feature sets across thousands or even millions
of instances. The amount of required time might even increase when considering the fact that
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Figure 11: Visualization of a microbenchmark, measuring the logarithmic runtimes (in mi-
croseconds) of each feature set based on 1,000 replications on a two-dimensional version of
the Gallagher’s Gaussian 101-me Peaks function.

some of the features are stochastic. In such a case it is strongly recommended to calculate
each of those feature sets multiple times (on the same problem instance) in order to capture
the variance of these features.

Note that the current definition of the feature object also contains the actual Gallagher’s
Gaussian 101-me Peaks function itself – it was added to the feature object by setting the
parameter fun = f within the function createFeatureObject. Without that information it
would have been impossible to calculate feature sets, which require additional function eval-
uations, i.e., the convexity, curvature and local search features of the classical ELA features.
Similarly, the barrier tree, cell mapping and general cell mapping features strongly depend on
the value of the blocks argument, which defines the number of blocks per dimension when
representing the decision space as a grid of cells.12

As mentioned in Section 2, the majority of feature sets uses some parameters, all of them hav-
ing certain default settings. However, as different landscapes / optimization problems might
require different configurations of these parameters, the package allows its users to change the
default parameters by setting their parameter configuration within the control argument of
the functions calculateFeatures or calculateFeatureSet, respectively. Similarly to the
naming convention of the features themselves, the names of parameters use the abbreviation
of the corresponding feature set as a prefix. This way, one can store all the preferred config-

12The barrier tree features can only be computed if the total number of cells is at least two and the cell

mapping convexity features require at least three blocks per dimension.
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urations within a single control argument and does not have to deal with a separate control
argument for each feature set. In order to illustrate the usage of the control argument, let’s
assume one wants to solve the following two tasks:

1. Calculate the dispersion features for a problem, where the Manhattan distance (also
known as city-block distance or L1-norm) is more reasonable than the (default) Eu-
clidean distance.

2. Calculate the General Cell Mapping features for two instead of the usual three GCM
approaches (i.e., "min" = best value per cell, "mean" = average value per cell and
"near" = closest value to a cell center).

Due to the availability of a shared control parameter, these adaptations can easily be per-
formed with a minimum of additional code:

R> ctrl = list(

+ disp.dist_method = "manhattan",

+ gcm.approaches = c("min", "near")

+ )

R> dispersion.features = calculateFeatureSet(

+ feat.object = feat.object, set = "disp", control = ctrl)

R> gcm.features = calculateFeatureSet(

+ feat.object = feat.object, set = "gcm", control = ctrl)

This shared control parameter also works when computing all features simultaneously:

R> all.features = calculateFeatures(feat.object, control = ctrl)

A detailed overview of all the configurable parameters is available within the documentation of
the previous functions and can for instance be accessed via the command ?calculateFeatures.

4. Visualisation techniques

In addition to the features themselves, flacco provides a handful of visualization techniques al-
lowing the user to get a better understanding of the features. The function plotCellMapping

produces a plot of the discretized grid of cells, representing the problem’s landscape when
using the cell mapping approach. Figure 6, which was already presented in Section 2, shows
two of these cell mapping plots – the left one represents each cell by the smallest fitness
value of its respective points, and the right plot represents each cell by the average of the
fitness values of the respective cell’s sample points. In each of those plots, the attractor cells,
i.e., cells containing the sample’s local optima, are filled black. The uncertain cells, i.e., cells
that transition to multiple attractors, are colored grey, whereas the certain cells are colored
according to their basin of attraction, i.e., all cells which transition towards the same attractor
(and no other one) share the same color. Additionally, the figure highlights the attracting
cells of each cell via arrows that point towards the corresponding attractor(s). Note that the
length of the arrows is proportional to the transition probabilities.
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Given the feature object from the example of the previous section, i.e., the one that is based
on Gallagher’s Gaussian 101-me Peaks function, the two cell mapping plots can be produced
with the following code:

R> plotCellMapping(feat.object,

+ control = list(gcm.approach = "min"))

R> plotCellMapping(feat.object,

+ control = list(gcm.approach = "mean"))

Analogously to the cell mapping plots, one can visualize the barrier trees of a problem. They
can either be plotted in 2D as a layer on top of a cell mapping (per default without any
arrows) or in 3D as a layer on top of a perspective / surface plot of the discretized decision
space. Using the given feature object, the code for creating the plots from Figure 7 (also
already shown in Section 2) would look like this:

R> plotBarrierTree2D(feat.object)

R> plotBarrierTree3D(feat.object)

The representation of the tree itself is in both cases very similar. Each of the trees begins
with its root, depicted by a red triangle. Starting from that point, there will usually be two
or more branches, pointing either towards a saddle point (depicted by a non-filled diamond)
– a node that connects multiple basins of attraction – or towards a leaf (filled circles) of the
tree, indicating a local optimum. Branches belonging to the same level (i.e., having the same
number of predecessors on their path up to the root) of the tree are colored identically. Note
that all of the aforementioned points, i.e., root, saddle points and leaves, belong to distinct
cells. The corresponding (unique) cell IDs are given by the numbers next to the points.

The last plot, which is directly related to the visualization of a feature set, is the so-called
information content plot, which was shown in Figure 8 in Section 2. It depicts the logarithm
of the information sensitivity ε against the (partial) information content. Following these two
curves – the solid red line representing the information content H(ε), and the dashed blue
line representing the partial information content M(ε) – one can (more or less) easily derive
the features from the plot. The blue diamond at the very left represents the initial partial
information M0, the red circle on top of the solid, red line shows the maximum information
content Hmax, the green triangle indicates the ratio of partial information sensitivity ε0.5 (with
a ratio of r = 0.5) and the black square marks the settling sensitivity εs (with s = 0.05).
Further details on the interpretation of this plot and the related features can be found in
Muñoz et al. (2012, 2015a). In accordance to the code of the previous visualization techniques,
such an information content plot can be created by the following command:

R> plotInformationContent(feat.object)

In addition to the previously introduced visualization methods, flacco provides another plot
function. However, in contrast to the previous ones, the Feature Importance Plot (cf. Fig-
ure 12) does not visualize a specific feature set. Instead, it can be used to assess the importance
of several features during a feature selection process of a machine learning (e.g., classification
or regression) task. Given the high amount of features, provided by this package, it is very
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Feature Importance Plot

Figure 12: Plot of the feature importance as derived from a 10-fold cross-validated feature
selection.

likely that many of them are redundant when training a (classification or regression) model
and therefore, a feature selection strategy would be useful.

The scenario of Figure 12 shows the (artificially created) result of such a feature selection after
performing a 10-fold cross validation using the R-package mlr (Bischl et al. 2016)13. Such a
resampling strategy is useful in order to assess whether a certain feature was selected because
of its importance to the model or more or less just by chance. The red points show whether
an important feature – i.e., a feature, which has been selected in the majority of iterations
(default: ≥ 80%) – was selected within a specific iteration (= fold of the cross-validation).
Less important features are depicted as orange points. The only information that is required
to create such a Feature Importance Plot is a list, whose elements (one per fold / iteration) are
vectors of character strings. In the illustrated example, this list consists of ten elements (one
per fold) with the first one being a character vector that contains exactly the three features
"gcm.min.attractors", "nbc.nn_nb.cor" and "ic.h.max". The entire list that leads to the
plot from Figure 12 (denoted as list.of.features) would look like this:

R> list.of.features = readRDS("list_of_features.rds")

R> str(list.of.features, width = 77, strict.width = "cut")

13A more detailed step-by-step example can be found in the documentation of the respective flacco-function
plotFeatureImportancePlot.
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List of 10

$ : chr [1:2] "ela_meta.lin_simple.intercept" "ela_meta.lin_simple.coef.min"

$ : chr "ela_meta.quad_w_interact.adj_r2"

$ : chr [1:4] "ela_meta.lin_simple.adj_r2" "ela_meta.lin_simple.intercept"..

$ : chr [1:7] "ela_meta.lin_simple.intercept" "ela_meta.lin_simple.coef.m"..

$ : chr [1:4] "ela_meta.lin_simple.intercept" "ela_meta.lin_simple.coef.m"..

$ : chr [1:5] "ela_meta.lin_simple.adj_r2" "ela_meta.lin_simple.intercept"..

$ : chr [1:6] "ela_meta.lin_simple.intercept" "ela_meta.lin_simple.coef.m"..

$ : chr [1:7] "ela_meta.lin_simple.adj_r2" "ela_meta.lin_simple.intercept"..

$ : chr [1:6] "ela_meta.lin_simple.intercept" "ela_meta.lin_simple.coef.m"..

$ : chr [1:3] "ela_meta.lin_simple.coef.min" "ela_meta.quad_simple.adj_r2"..

Given such a list of features, the Feature Importance Plot can be generated with the following
command:

R> plotFeatureImportance(list.of.features)

Similarly to the computation of the features that has been described in Section 3, each of the
plots can be modified according to a user’s needs by making use of the control parameter
within each of the plot functions. Further details on the possible configurations of each of the
visualization techniques can be found in their documentations.

5. Graphical user interface

Within the previous sections, we have introduced flacco, which provides a wide collection
of feature sets that were previously implemented in different programming languages or at
least in different packages. Furthermore, we have shown how one can use it to compute the
landscape features. While this is beneficial for researchers who are familiar with R, it comes
with the drawback that researchers who are not familiar with R are left out. Therefore,
Hanster and Kerschke (2017) implemented a graphical user interface (GUI) for the package,
which can either be started from within R, or – which is probably more appealing to non-R-
users – as a platform-independent web-application.

The GUI was implemented using the R-package shiny (Chang, Cheng, Allaire, Xie, and
McPherson 2016) and according to its developers, shiny “makes it incredibly easy to build
interactive web applications with R” and its “extensive pre-built widgets make it possible to
build beautiful, responsive, and powerful applications with minimal effort.”

If one wants to use the GUI-version that is integrated within flacco (version 1.5 or higher), one
first needs to install flacco from CRAN (https://cran.r-project.org/package=flacco)
and load it into the workspace of R.

R> install.packages("flacco", dependencies = TRUE)

R> library("flacco")

Afterwards it only takes the following line of code to start the application:

R> runFlaccoGUI()

https://cran.r-project.org/package=flacco
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Figure 13: Screenshot of the GUI, after computing the cell mapping angle features for a
two-dimensional version of the Rastrigin function as implemented in smoof.

If one rather prefers to use the platform-independent GUI, one can use the web-application,
which is hosted on https://flacco.shinyapps.io/flacco/.

Once started, the application shows a bar on the top, where the user can select between
the following three options (as depicted in Figure 13): “Single Function Analysis”, “BBOB-
Import” and “Smoof-Import”. Selecting the first tab, the application will show two windows:
(1) a box (colored in grey) on the left, which inquires all the information that is needed for
creating the feature object, i.e., the underlying function, the problem dimension (= number
of input variables), the boundaries, the size and sampling type (latin hypercube or random
uniform sampling) of the initial sample and the number of cells per dimension, and (2) a
screen for the output on the right, where one can either compute the numerical landscape
features under the tab “Feature Calculation” (as shown in Figure 13) or create a related plot
under the tab “Visualization” (as shown in Figure 14).

For the definition of the underlying function (within the grey box), the user has the following
options: (1) providing a user-defined function by entering the corresponding R expression,
e.g., sum(x^2), into a text box, (2) selecting one of the single-objective problems provided
by smoof from a drop-down menu, (3) defining a BBOB function (Hansen et al. 2010) via its
function ID (FID) and instance ID (IID), or (4) ignoring the function input and just provide
the initial design, i.e., the input variables and the corresponding objective value, by importing
a CSV-file.

Immediately after the necessary information for the feature object is provided, the application
will automatically produce the selected output on the right half of the screen. If one does
not select anything (on the right half), the application will try to compute the cell mapping

https://flacco.shinyapps.io/flacco/
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Figure 14: Exemplary screenshots of two visualization techniques as provided by the GUI
and shown for two different optimization problems. Top: An interactive surface plot of an
instance of Gallagher’s 101-me Peaks function, more precisely the second instance of the 21st
BBOB problem, which for instance allows to zoom in and out of the landscape, as well as to
rotate or shift it. Bottom: A 3-dimensional representation of the barrier tree for an instance
of the Rastrigin function as implemented in smoof.
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angle features, as this is the default selection at the start of the GUI. However, the user can
select any other feature set, as well as the option“all features”, from a drop-down menu. Once
the computation of the features is completed, one can download the results as a CSV-file by
clicking on the “Download”-button underneath the feature values.

Aside from the computation of the landscape features, the GUI also provides functionali-
ties for generating multiple visualizations of the given feature object. Aside from the cell
mapping plots and two- and three-dimensional barrier trees, which can only be created for
two-dimensional problems, it is also able to produce information content plots (cf. Section 4).
Note that the latter currently is the only plotting function that is able to visualize problems
with more than two input variables. In addition to the aforementioned plots, the application
also enables the visualization of the function itself – if applicable – by means of an inter-
active function plot (for one-dimensional problems), as well as two-dimensional contour or
three-dimensional surface plots (for two-dimensional problems). The interactivity of these
plots, such as the one that is shown in the upper image of Figure 14, was provided by the R-
package plotly (Sievert, Parmer, Hocking, Chamberlain, Ram, Corvellec, and Despouy 2016)
and (amongst others) enables to zoom in and out of the landscape, as well as to rotate or
shift the latter.

While flacco itself allows the configuration of all of its parameters – i.e., the parameters used
by any of the feature sets, as well as the ones related to the plotting functions – the GUI
provides a simplified version of this. Hence, for the cell mapping and barrier tree plots, one
can choose the approach for selecting the representative objective value per cell: (a) the best
objective value among the samples from the cell (as shown in the lower image of Figure 14),
(b) the average of all objective values from the cell’s sample points, or (c) the objective value
of the observation that is located closest to the cell’s center. In case of the information content
plot, one can configure the range of the x-axis, i.e., the range of the (logarithmic) values of
the information sensitivity parameter ε.

The previous paragraphs described the computation and visualization when dealing with a
single optimization problem. However, as already mentioned in Section 3, the authors highly
recommend not to interpret single features on single optimization problems. Instead, one
should rather compute several (sets of) landscape features across an entire benchmark of op-
timization problems. This way, they might be able to provide the information for distinguish-
ing the benchmark’s problems from each other and predicting a well-performing optimization
algorithm per instance – cf. the Algorithm Selection Problem, which was already mentioned
as a potential use case in Section 1 – or for adapting the parameters of such an optimizer to
the underlying landscape.

In order to facilitate such experiments, our application also provides functionalities for com-
puting a specific feature set (or even all feature sets) simultaneously on multiple instances of
a specific problem class – such as the BBOB functions or any of the other single-objective
optimization problems provided by smoof. Figure 15 shows an exemplary screenshot of how
such a batch computation could look like for the BBOB problems. In a first step, one has
to upload a CSV-file consisting of three columns – the function ID (FID), instance ID (IID)
and problem dimension (dim) – and one row per problem instance. Next, one defines the de-
sired number of replications, i.e., how often should the features be computed per instance14.

14As many of the features are stochastic, it is highly recommended to compute the features multiple (= at
least 5 to 10) times.
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Figure 15: Screenshot of the GUI, after computing the cell mapping angle features for four
different BBOB instances with three replications each. Note that the remaining eight features
from this set were computed as well and were simply cut off for better visibility.

Afterwards, one selects the feature set that is supposed to be computed, defines number of
blocks and boundaries per dimension, as well as the desired sample type and size. Note that,
depending on the size of the benchmark, i.e., the number of instances and replications, the
number and dimensions of the initial sample, as well as the complexity of the chosen feature
set, the computation of the features might take a while. Furthermore, please note that the
entire application is reactive. That is, once all the required fields provide some information,
the computation of the features will start and each time the user changes the information
within a field, the computation will automatically restart. Therefore, the authors recommend
to first configure all the parameters prior to uploading the CSV-file as the latter is the only
missing piece of information at the start of the application. Once the feature computation was
successfully completed, one can download the computed features / feature sets as a CSV-file
by clicking on the “Download”-Button.

Analogously to the batch-wise feature computation on BBOB instances, one can also perform
batch-wise feature computation for any of the other single-objective problems that are imple-
mented in smoof. For this purpose, one simply has to go to the tab labelled “smoof-Import”
and perform the same steps as described before. The only difference is, that the CSV-file
with the parameters now only consists of a single column (with the problem dimension).



26 Feature-Based Landscape Analysis of Continuous Optimization Problems Using flacco

6. Summary

The R-package flacco provides a collection of numerous features for exploring and charac-
terizing the landscape of continuous, single-objective (optimization) problems by means of
numerical values, which can be computed based on rather small samples from the decision
space. Having this wide variety of feature sets bundled within a single package simplifies fur-
ther researches significantly – especially in the fields of algorithm selection and configuration
– as one does not have to run experiments across multiple platforms. In addition, the package
comes with different visualization strategies, which can be used for analyzing and illustrating
certain feature sets, leading towards an improved understanding of the features.

Furthermore, this package can be meaningfully combined with other R-packages such as mlr

(Bischl et al. 2016) or smoof (Bossek 2016) in order to achieve better results when solving
algorithm selection problems. Consequently, flacco should be seen as a useful toolbox when
performing Exploratory Landscape Analysis and when working towards algorithm selection
models of single-objective, continuous optimization problems. Therefore, the package can
be considered as a solid foundation for further researches – as for instance performed by
members of the COSEAL group15 – allowing to get a better understanding of algorithm
selection scenarios and the employed optimization algorithms.

Lastly, flacco also comes with a graphical user interface, which can either be run from within R,
or alternatively as a platform-independent standalone web-application. Therefore, even people
who are not familiar with R have the chance to benefit of the functionalities of this package
– especially from the computation of numerous landscape features – without the burden of
interfacing or re-implementing identical features in a different programming language.

Acknowledgements

The author acknowledges support by the European Center of Information Systems (ERCIS)16.
He also appreciates the support from Carlos Hernández (from CINVESTAV in Mexico City,
Mexico) and Jan Dageförde (from the University of Münster, Germany) when translating the
MATLAB-code of some feature sets into R-code. Furthermore, the author thanks Christian
Hanster for his valuable contributions to the package’s GUI.

References

Abell T, Malitsky Y, Tierney K (2013). “Features for Exploiting Black-Box Optimization
Problem Structure.” In Proceedings of the 7th International Conference on Learning and
Intelligent Optimization (LION), pp. 30 – 36. Springer-Verlag. ISBN 978-3-642-44972-7.
ISSN 978-3-642-44973-4. doi:10.1007/978-3-642-44973-4_4.

Beachkofski BK, Grandhi RV (2002). “Improved Distributed Hypercube Sampling.” In 43rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence.

15COSEAL is an international group of researchers with a focus on the Configuration and Selection of
Algorithms, cf. http://www.coseal.net/

16The ERCIS is an international network in the field of Information Systems, cf. https://www.ercis.org/

http://dx.doi.org/10.1007/978-3-642-44973-4_4
http://www.coseal.net/
https://www.ercis.org/


Pascal Kerschke 27

Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, Casalicchio G, Jones ZM
(2016). “mlr: Machine Learning in R.” Journal of Machine Learning Research, 17(170),
1 – 5. R-package version 2.10, URL http://jmlr.org/papers/v17/15-066.html.

Bischl B, Mersmann O, Trautmann H, Preuss M (2012). “Algorithm Selection Based on
Exploratory Landscape Analysis and Cost-Sensitive Learning.” In Proceedings of the 14th
Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 313 – 320.
ACM, New York, NY, USA. ISBN 978-1-4503-0557-0. doi:10.1145/2330163.2330209.

Bossek J (2016). smoof: Single and Multi-Objective Optimization Test Functions. R-package
version 1.4, URL https://github.com/jakobbossek/smoof.

Byrd RH, Lu P, Nocedal J, Zhu C (1995). “A Limited Memory Algorithm for Bound Con-
strained Optimization.” SIAM Journal on Scientific Computing, 16(5), 1190 – 1208.

ChangW, Cheng J, Allaire J, Xie Y, McPherson J (2016). shiny: Web Application Framework
for R. R-package version 0.14.1, URL https://CRAN.R-project.org/package=shiny.

Daolio F, Liefooghe A, Verel S, Aguirre H, Tanaka K (2016). “Problem Features vs. Algorithm
Performance on Rugged Multi-Objective Combinatorial Fitness Landscapes.” Evolutionary
Computation. doi:10.1162/EVCO_a_00193.

Flamm C, Hofacker IL, Stadler PF, Wolfinger MT (2002). “Barrier Trees of Degenerate
Landscapes.” Zeitschrift für Physikalische Chemie International Journal of Research in
Physical Chemistry and Chemical Physics, 216(2/2002), 155 – 173. ISSN 0942-9352. doi:
10.1524/zpch.2002.216.2.155.

Friedman JH (1997). “On Bias, Variance, 0/1–loss, and the Curse-of-Dimensionality.” Data
Mining and Knowledge Discovery, 1(1), 55 – 77.

Hansen N, Auger A, Finck S, Ros R (2010). “Real-Parameter Black-Box Optimization
Benchmarking 2010: Experimental Setup.” Technical Report RR-7215, INRIA. URL
http://hal.inria.fr/docs/00/46/24/81/PDF/RR-7215.pdf.

Hansen N, Finck S, Ros R, Auger A (2009). “Real-Parameter Black-Box Optimization Bench-
marking 2009: Noiseless Functions Definitions.” Technical Report RR-6829, INRIA. URL
https://hal.inria.fr/inria-00362633/document.

Hanster C, Kerschke P (2017). “flaccogui: Exploratory Landscape Analysis for Everyone.”
In Proceedings of the 19th Annual Conference on Genetic and Evolutionary Computation
(GECCO) Companion. ACM. doi:10.1145/3067695.3082477.

Hutter F, Xu L, Hoos HH, Leyton-Brown K (2014). “Algorithm Runtime Prediction: Methods
& Evaluation.” Journal of Artificial Intelligence, 206(0), 79 – 111. ISSN 0004-3702.

Jobson J (2012). Applied Multivariate Data Analysis: Volume II: Categorical and Multivariate
Methods. Springer-Verlag.

Jones T (1995). Evolutionary Algorithms, Fitness Landscapes and Search. Ph.D. thesis,
Citeseer.

http://jmlr.org/papers/v17/15-066.html
http://dx.doi.org/10.1145/2330163.2330209
https://github.com/jakobbossek/smoof
https://CRAN.R-project.org/package=shiny
http://dx.doi.org/10.1162/EVCO_a_00193
http://dx.doi.org/10.1524/zpch.2002.216.2.155
http://dx.doi.org/10.1524/zpch.2002.216.2.155
http://hal.inria.fr/docs/00/46/24/81/PDF/RR-7215.pdf
https://hal.inria.fr/inria-00362633/document
http://dx.doi.org/10.1145/3067695.3082477


28 Feature-Based Landscape Analysis of Continuous Optimization Problems Using flacco

Jones T, Forrest S (1995). “Fitness Distance Correlation as a Measure of Problem Difficulty
for Genetic Algorithms.” In Proceedings of the 6th International Conference on Genetic
Algorithms (GA), pp. 184 – 192. Morgan Kaufmann Publishers.

Kerschke P (2017). flacco: Feature-Based Landscape Analysis of Continuous and Constrained
Optimization Problems. R-package version 1.7, URL https://github.com/kerschke/

flacco.

Kerschke P, Preuss M, Hernández C, Schütze O, Sun JQ, Grimme C, Rudolph G, Bischl
B, Trautmann H (2014). “Cell Mapping Techniques for Exploratory Landscape Analysis.”
In EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary
Computation V, pp. 115 – 131. Springer-Verlag. ISBN 978-3-319-07493-1. doi:10.1007/

978-3-319-07494-8_9.

Kerschke P, Preuss M, Wessing S, Trautmann H (2015). “Detecting Funnel Structures by
Means of Exploratory Landscape Analysis.” In Proceedings of the 17th Annual Conference
on Genetic and Evolutionary Computation (GECCO), pp. 265 – 272. ACM. ISBN 978-1-
4503-3472-3. doi:10.1145/2739480.2754642.

Kerschke P, Preuss M, Wessing S, Trautmann H (2016). “Low-Budget Exploratory Landscape
Analysis on Multiple Peaks Models.” In Proceedings of the 18th Annual Conference on Ge-
netic and Evolutionary Computation (GECCO). ACM. doi:10.1145/2908812.2908845.

Kerschke P, Trautmann H (2016). “The R-Package flacco for Exploratory Landscape Analysis
with Applications to Multi-Objective Optimization Problems.” In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC). IEEE.

Lunacek M, Whitley D (2006). “The Dispersion Metric and the CMA Evolution Strategy.”
In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation
(GECCO), pp. 477 – 484. ACM. ISBN 1-59593-186-4. doi:10.1145/1143997.1144085.

Malan KM, Engelbrecht AP (2009). “Quantifying Ruggedness of Continuous Landscapes using
Entropy.” In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp.
1440 – 1447. IEEE. ISBN 978-1-4244-2958-5. ISSN 978-1-4244-2959-2. doi:10.1109/CEC.
2009.4983112.

Malan KM, Oberholzer JF, Engelbrecht AP (2015). “Characterising Constrained Continuous
Optimisation Problems.” In Proceedings of the IEEE Congress on Evolutionary Computa-
tion (CEC), pp. 1351 – 1358. IEEE.

McKay MD, Beckman RJ, Conover WJ (2000). “A Comparison of Three Methods for Selecting
Values of Input Variables in the Analysis of Output from a Computer Code.”Technometrics,
42(1), 55 – 61.

Mersmann O (2014). microbenchmark: Accurate Timing Functions. R-package version
1.4-2, URL http://CRAN.R-project.org/package=microbenchmark.

Mersmann O, Bischl B, Trautmann H, Preuss M, Weihs C, Rudolph G (2011). “Exploratory
Landscape Analysis.” In Proceedings of the 13th Annual Conference on Genetic and Evo-
lutionary Computation (GECCO), pp. 829 – 836. ACM, New York, NY, USA. ISBN 978-
1-4503-0557-0. doi:10.1145/2001576.2001690.

https://github.com/kerschke/flacco
https://github.com/kerschke/flacco
http://dx.doi.org/10.1007/978-3-319-07494-8_9
http://dx.doi.org/10.1007/978-3-319-07494-8_9
http://dx.doi.org/10.1145/2739480.2754642
http://dx.doi.org/10.1145/2908812.2908845
http://dx.doi.org/10.1145/1143997.1144085
http://dx.doi.org/10.1109/CEC.2009.4983112
http://dx.doi.org/10.1109/CEC.2009.4983112
http://CRAN.R-project.org/package=microbenchmark
http://dx.doi.org/10.1145/2001576.2001690


Pascal Kerschke 29

Mersmann O, Bischl B, Trautmann H, Wagner M, Bossek J, Neumann F (2013). “A Novel
Feature-Based Approach to Characterize Algorithm Performance for the Traveling Sales-
person Problem.”Annals of Mathematics and Artificial Intelligence, 69(2), 151 – 182. ISSN
1012-2443. doi:10.1007/s10472-013-9341-2.

Morgan R, Gallagher M (2015). “Analysing and Characterising Optimization Problems
Using Length Scale.” Soft Computing, pp. 1 – 18. ISSN 1433-7479. doi:10.1007/

s00500-015-1878-z.

Müller CL, Sbalzarini IF (2011). “Global Characterization of the CEC 2005 Fitness Land-
scapes using Fitness-Distance Analysis.” In Applications of Evolutionary Computation, pp.
294 – 303. Springer-Verlag. ISBN 978-3-642-20524-8. doi:10.1007/978-3-642-20525-5_
30.
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