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Abstract

This vignette illustrates focused model comparison with the fic package for linear re-
gression models. Examples are given of covariate selection and polynomial order selection,
with focuses defined by the mean, median or other quantiles of the outcome.

Keywords: models.

The linear regression model considered here has the general form

yi ∼ N(µi, σ2), µi = α +
∑

βsxis.

for observations i = 1, . . . , n. The regressors xis might represent different covariates, contrasts
between levels of a factor, functions of covariates such as polynomials, or interactions between
different covariates.

1. Covariate selection in linear regression

Firstly we present a simple covariate selection problem in the well-known mtcars dataset
from the datasets package distributed with standard R installations. The outcome yi is the
fuel efficiency of car model i measured in MPG. The wide model is taken to be the model
suggested in Henderson and Velleman (1981) which includes the following predictors

• am: transmission type (0=automatic, 1=manual)

• wt: weight in 1000 lbs

• qsec: quarter mile time in seconds

• disp: displacement (cubic inches)

• hp: gross horsepower

Paired scatterplots of these variables suggest that mpg is correlated with all of these predictors,
but many of the predictors themselves are correlated with each other.
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mtcars$am <- factor(mtcars$am)

library(ggplot2)

if (requireNamespace("GGally",quietly=TRUE)){

GGally::ggpairs(mtcars[,c("mpg","am","wt","qsec","disp","hp")], aes(colour=am))

} else pairs(mtcars[,c("mpg","am","wt","qsec","disp","hp")])

Corr: −0.868***

0: −0.768***

1: −0.909***

Corr: 0.419*

0: 0.657** 

1: 0.802***

Corr: −0.175

0: −0.371 

1: −0.679*

Corr: −0.848***

0: −0.793***

1: −0.835***

Corr: 0.888***

0: 0.819***

1: 0.831***

Corr: −0.434*

0: −0.670** 

1: −0.845***

Corr: −0.776***

0: −0.832***

1: −0.801** 

Corr: 0.659***

0: 0.680** 

1: 0.815***

Corr: −0.708***

0: −0.804***

1: −0.849***

Corr: 0.791***

0: 0.834***

1: 0.924***
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wide.lm <- lm(mpg ~ am + wt + qsec + disp + hp, data=mtcars)

We compare all submodels of this wide model, with the minimal model including only an
intercept. The all_inds function constructs a matrix of indicators inds for whether each
coefficient (column) is included in each submodel (row).
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library(fic)

ncovs_wide <- length(coef(wide.lm)) - 1

inds0 <- c(1, rep(0, ncovs_wide))

inds <- all_inds(wide.lm, inds0)

The focus is taken as the mean outcome (focus=mean_normal) for a car with covariate values
supplied in X: automatic transmission am=0 and values of the other four continuous covariates
defined by their means in the data.

cmeans <- colMeans(model.frame(wide.lm)[,c("wt","qsec","disp","hp")])

X <- rbind(

"auto" = c(intercept=1, am=0, cmeans),

"manual" = c(intercept=1, am=1, cmeans)

)

ficres <- fic(wide.lm, inds=inds, focus=mean_normal, X=X)

summary(ficres)

## Model with lowest RMSE by focus

## index pars focus

## auto 26 (Intercept),am1,disp,hp 18.5

## manual 26 (Intercept),am1,disp,hp 22.3

## Average 26 (Intercept),am1,disp,hp 20.4

##

## Range of focus estimates and RMSE over models

## min(focus) max(focus) min(RMSE) max(RMSE)

## auto 16.5 20.1 0.572 2.22

## manual 20.1 25.4 0.699 3.21

## Average 20.1 20.9 0.638 2.76

There is a cluster of submodels whose focus estimates are judged to have relatively low bias
and mean square error. The model with minimal mean square error, for either focus, omits wt

and qsec. Given the strong correlation of wt with disp and qsec with hp, these two variables
do not improve the precision of the focus estimate.

2. Polynomial order selection

A common model selection problem is to choose an appropriate level of flexibility for a nonlin-
ear relationship of an outcome with a predictor. This is often implemented through polynomial
regression.

In this example, a linear model with orthogonal polynomials is used to represent the rela-
tionship of life expectancy to GDP per capita for 1704 countries (worldwide) and years from
1952 to 2007, using data from http://www.gapminder.org, packaged by Bryan (2017). The
dataset used for analysis excludes Kuwait, whose data follow a distinct pattern. The scat-
terplot shows a diminishing increase in life expectancy as GDP increases above a certain
level.

http://www.gapminder.org
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Figure 1: Focused comparison of linear regression models for the mtcars data.

library(gapminder)

gap2 <- gapminder[gapminder$country !="Kuwait",]

pal <- heat.colors(5)

p <- ggplot(gap2, aes(x=gdpPercap, y=lifeExp)) +

geom_point() +

xlab("GDP per capita (US$, inflation-adjusted)") +

ylab("Life expectancy (years)") +

geom_point(data=gapminder[gapminder$country =="Kuwait",], col="gray") +

annotate("text", x=80000, y=70, label="Kuwait", col="gray")

A wide model is fitted with a polynomial relationship of degree 5. Fitted values from each
model are added to the scatterplot.

wide.lm <- lm(lifeExp ~ poly(gdpPercap,5), data=gap2)

yilab <- c(0, 50, 100, 65, 85)

for (i in 2:5) {

poly.lm <- lm(lifeExp ~ poly(gdpPercap,i), data=gap2)



Christopher Jackson, MRC Biostatistics Unit 5

ft <- data.frame(x=gap2$gdpPercap, y=fitted(poly.lm))

ft <- ft[order(ft$x),]

p <- p +

geom_line(data=ft, aes(x=x,y=y), col=pal[i], lwd=2, alpha=0.8) +

annotate("text", x=60000, y=yilab[i], col="black",

label=sprintf("Polynomial degree %s", i))

}

gdp_focus <- c(10000, 25000, 40000)

p <- p +

geom_vline(xintercept=gdp_focus, col="gray") +

scale_x_continuous(breaks=c(0, gdp_focus, 60000, 80000, 100000))

p
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Submodels of degrees 2, 3 and 4 are compared in terms of how well they estimate three
focuses: the average life expectancy at GDP per capita of $10,000, $25,000 and $40,000.
Note that the parameters include the intercept, so, for example, the simplest model, the
quadratic polynomial model, has three parameters indicated by entries of 1 in the first row
of inds.

inds <- rbind("quadratic"= c(1,1,1,0,0,0),

"cubic" =c(1,1,1,1,0,0),

"quartic" =c(1,1,1,1,1,0),

"degree 5" =c(1,1,1,1,1,1))

X <- newdata_to_X(list(gdpPercap=gdp_focus), wide.lm, intercept=TRUE)

rownames(X) <- gdp_focus

(ficres <- fic(wide.lm, inds=inds, focus=mean_normal, X=X))

## vals mods rmse rmse.adj bias se FIC focus

## 1 10000 quadratic 1.701 1.701 -1.68e+00 0.286 4854 68.0

## 5 10000 cubic 0.989 0.989 9.32e-01 0.333 1615 70.7

## 9 10000 quartic 1.153 1.153 1.10e+00 0.334 2209 70.8

## 13 10000 degree 5 0.373 0.373 0.00e+00 0.373 194 69.7

## 2 25000 quadratic 3.768 3.768 3.74e+00 0.444 24123 80.0

## 6 25000 cubic 1.518 1.518 -1.41e+00 0.559 3999 74.8

## 10 25000 quartic 2.483 2.483 -2.42e+00 0.566 10535 73.8

## 14 25000 degree 5 0.673 0.673 -2.68e-16 0.673 867 76.2

## 3 40000 quadratic 6.459 6.459 -6.33e+00 1.299 71321 69.9

## 7 40000 cubic 2.970 2.970 2.60e+00 1.433 15660 79.1

## 11 40000 quartic 8.331 8.331 8.19e+00 1.513 118171 84.5

## 15 40000 degree 5 1.952 1.952 9.10e-16 1.952 7180 76.2

## 4 Average quadratic 4.335 4.335 -4.26e+00 0.809 30955 72.6

## 8 Average cubic 2.009 2.009 1.79e+00 0.909 5987 74.9

## 12 Average quartic 5.063 5.063 4.97e+00 0.952 42534 76.4

## 16 Average degree 5 1.211 1.211 5.52e-16 1.211 1643 74.0

summary(ficres)

## Model with lowest RMSE by focus

## index

## 10000 4

## 25000 4

## 40000 4

## Average 4

##

## 10000 (Intercept),poly(gdpPercap, 5)1,poly(gdpPercap, 5)2,poly(gdpPercap, 5)3,poly(gdpPercap,

## 25000 (Intercept),poly(gdpPercap, 5)1,poly(gdpPercap, 5)2,poly(gdpPercap, 5)3,poly(gdpPercap,

## 40000 (Intercept),poly(gdpPercap, 5)1,poly(gdpPercap, 5)2,poly(gdpPercap, 5)3,poly(gdpPercap,

## Average (Intercept),poly(gdpPercap, 5)1,poly(gdpPercap, 5)2,poly(gdpPercap, 5)3,poly(gdpPercap,

## focus

## 10000 69.7
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## 25000 76.2

## 40000 76.2

## Average 74.0

##

## Range of focus estimates and RMSE over models

## min(focus) max(focus) min(RMSE) max(RMSE)

## 10000 68.0 70.8 0.373 1.70

## 25000 73.8 80.0 0.673 3.77

## 40000 69.9 84.5 1.952 8.33

## Average 72.6 76.4 1.211 5.06

While the most complex model gives the most precise estimates of mean life expectancy at all
focuses, the preference for the complex model is less strong for GDP=10000 — at this point
there are more data, the models give more consistent focus estimates, and the bias incurred
by using a simpler model is less.

This is a simplified example — alternative approaches to nonlinear regression might involve,
e.g. splines or fractional polynomials. In theory, these can be implemented as linear additive
models of the form shown here. Though exact details of implementing focused model compar-
ison have not been investigated for these classes of models — note that this would require all
submodels to be nested within a single wide model. Note also the importance of considering
knowledge of the underlying mechanism when building a regression model, for example, we
might be sure that the relationship is monotonic.

2.1. Quantiles as the focus

Claeskens and Hjort (2008) show that for a normal linear regression model, FIC and MSE
are the same for a focus defined by the mean outcome as for a focus defined by any quantile
of the outcome.

We can check this in this example, while demonstrating how to implement quantiles as focus
functions in fic.

Firstly, the median of a normal distribution is equal to the mean, and is independent of the
variance. Therefore we will get identical answers to the results for focus=mean_normal above
by doing:

median_normal<- function(par,X){

qnorm(0.5, mean = as.numeric(X %*% par))

}

ficres <- fic(wide.lm, inds=inds, focus=median_normal, X=X)

Other quantiles, however, depend on the variance. Therefore a sigma argument should be
defined for the focus function. This allows, e.g. a 10% quantile focus to be implemented as

q10_normal <- function(par, X, sigma){

qnorm(0.1, mean = as.numeric(X %*% par), sd=sigma)

}

ficres <- fic(wide.lm, inds=inds, focus=q10_normal, X=X)
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However, we can define focus functions with arbitrary additional arguments. This allows any
quantile to be defined using one common function, with an argument, say, focus_p, specifying
the particular quantile to return. in a

quantile_normal <- function(par, X, sigma, focus_p=0.5){

qnorm(focus_p, mean = as.numeric(X %*% par), sd=sigma)

}

This argument can be passed to fic, along with the focus function, to fully specify the focus
of interest. If a vector of values is supplied in focus_p, then multiple focuses are evaluated
at once.1

ficres <- fic(wide.lm, inds=inds, focus=quantile_normal,

X=X[1,], focus_p=c(0.1,0.5,0.9))

We can check that the results match between the alternative ways of setting up fic for the
same focus.

3. Relation of focused model comparison with AIC

Using the mtcars example, we illustrate when focused model comparison agrees with model
comparison using AIC. The following code performs focused model comparison for 32 distinct
focus parameters, defined as the log likelihood contribution from each of the 32 observed
covariate combinations in the mtcars data.

Firstly the focus function is defined as the log density for an individual outcome. Claeskens
and Hjort (2003) show that differences between submodels in the expected mean square error
of this focus are asymptotically equivalent to differences in AIC.

focus_loglik <- function(par,X,sigma,Y){

mu <- as.numeric(X %*% par)

dnorm(Y,mu,sigma,log=TRUE)

}

To illustrate this result, we run fic with n = 32 variants of this focus defined by the observed
outcomes Y and covariates X in the mtcars data.

wide.lm <- lm(mpg ~ am + wt + qsec + disp + hp, data=mtcars)

ncovs_wide <- length(coef(wide.lm)) - 1

inds0 <- c(1, rep(0, ncovs_wide))

inds <- all_inds(wide.lm, inds0)

X <- model.matrix(wide.lm)

1Note that vectors for X are treated differently from vectors for other focus arguments. If a named vector is

supplied for X it is assumed to refer to multiple covariate values defining a single focus. If a vector is supplied

for any other argument, it is assumed to identify multiple focuses. To completely avoid ambiguity for any

argument, a matrix can be supplied, where the rows identify focuses and the columns identify, e.g. covariate

values.
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Y <- model.response(model.frame(wide.lm))

ficres <- fic(wide.lm, inds=inds, focus=focus_loglik, X=X, Y=Y)

We then extract the results averaged over these focuses, automatically computed by fic with
each focus weighted equally, and extract the AICs of the submodels. The preference among
models from the averaged FIC result agrees with AIC, up to sampling error.

ficres <- ficres[ficres$vals=="ave",]

aics <- sapply(attr(ficres,"sub"), AIC)

ggplot(data=NULL, aes(x=ficres[["rmse"]], y=aics)) +

geom_point() +

xlab("Root mean square error of log density estimate") +

ylab("AIC")
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