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Abstract

Typical methods of model comparison are used to pick one “best” model, no matter
what the estimates from the model are used for. “Focused” model comparison, by contrast,
considers that different models may be better for different purposes. Different models may
give better estimates of different “focus” quantities, functions of the basic parameters.

In the “focused information criterion” of Claeskens and Hjort (2003), data are assumed
to be generated by a “wide” model, in which all models we would consider are nested.
Fitting the wide model to the observed data, however, may give estimates that are not
sufficiently precise. Therefore we might accept some bias in the estimate in return for
greater precision. The optimal submodel for a particular focus is the one which minimises
the mean squared error of the estimate of that focus from the submodel, assuming that
the wide model is true.

The fic package calculates this error for comparisons within any class of models
fitted by maximum likelihood, for any focus quantity. The bias-variance tradeoff is shown
directly. There are shortcuts for commonly-used model classes such as generalised linear
models and parametric survival models. Covariate selection problems in Cox regression
models are also supported.

Keywords: FIC,model comparison,AIC,BIC.

1. Introduction: principles for model comparison

To compare a set of statistical models fitted to the same data by maximum likelihood, it
is common to rank them according to some “criterion". For example, Akaike’s information
criterion (AIC, Akaike (1973)) takes the form

−2 log ℓ(θ̂; x) + 2p

where ℓ(θ̂; x) is the maximised likelihood for the model fitted to the dataset x, the likelihood
is maximised at parameters θ̂, and p is the number of parameters.

The Bayesian information criterion (BIC, Schwarz (1978)) is

−2 log ℓ(θ̂; x) + p log(n)

where n is the number of observations. These two criteria are based on very different prin-
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ciples. Thus they often rank models differently. The AIC is designed to choose models with
better predictive ability, thus it tends to favour bigger models as the sample size increases.
BIC is an approximation to Bayesian model comparison by Bayes factors, and prefers models
with higher posterior probability under an implicit weak prior (with an amount of information
equivalent to one observation, see Kass and Wasserman 1995). If there is a “true" model, the
BIC will tend to select it as the sample size increases. In many situations there may not be a
true model, and collecting more data will uncover more complexity in the process generating
the data, in which case AIC may be more suitable. See, e.g., Burnham and Anderson (2003),
Claeskens and Hjort (2008) for more theory behind these, and other similar model comparison
criteria.

Both of these methods give a single ranking of models according how well they fit a given
dataset. However, different models may be better for different purposes, for example to
estimate different quantities of interest. Such quantities are termed the “focus” of a model,
and this is the idea behind “focused" model comparison.

This paper describes the fic R package, available from This compares a set of models according
to how accurately they estimate a focus quantity. The models should all be nested in a single
“wide” model that is assumed to generate the data. Section 2 gives an informal introduction
to the principles, and sets out the formulae for various related “focused” model comparison
criteria, as developed by Claeskens and Hjort (2003) and Claeskens and Hjort (2008). Sec-
tion 3 explains how general-purpose software is constructed to enable these quantities to be
evaluated for any class of models and focuses, with the minimum of user effort. A worked
example of using the fic package for covariate selection in generalised linear models is given
in Section 4. The extension of the theory to deal with Cox proportional hazards regression
models is described in Section 5 with a worked example. A set of additional package vignettes
demonstrate the use of the package in a variety of other situations.

2. Focused model comparison: principles and formulae

Suppose the range of models we are willing to use is bounded by

• a wide model, in which all models we would use are nested, with parameters (θ,γ),

• a narrow model, the smallest model we might be willing to use, defined by setting γ = γ0

in the wide model.

A typical example is covariate selection in regression models, where θ are the coefficients of
“protected” covariates which are always included, γ are the coefficients of optional covariates
that may or may not be included, and γ0 = 0. More generally, we wish to choose the
appropriate level of flexibility for the distribution of some outcome. For example, choosing
between a Poisson versus a Negative Binomial model for a count outcome, or an exponential
versus a Weibull survival model, where the former is a constrained version of the latter.

Suppose also that the purpose of the model is to estimate some focus quantity, which could
be any function of the basic parameters

µ = g(θ,γ)
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In focused model comparison, we prefer models which give better estimates of µ. A typical
way to define “better" is by the mean squared error. The mean squared error of the estimate
µ̂S under a submodel S of the wide model, compared to the true value µ, is

E
{

(µ̂S − µ)2
}

This expectation is calculated under the assumption that the data are generated from the
wide model. While we believe the wide model is the most realistic, we also accept that there
may not be enough data to give sufficiently precise estimates of µ. Therefore we are willing
to accept some bias in this estimate, in return for a smaller variance, by selecting a smaller
model than the wide model. The submodel S with the lowest mean squared error is the one
which makes the optimal trade-off between bias and variance.

The mean squared error MSES under model S can be decomposed as a sum of the squared
bias B2

S and the variance VS .

MSES = E {(µ̂S − µ)2} = {E(µ̂S) − µ}2 + E
{

(µ̂S − E(µ̂S))2
}

= B2
S + VS

(1)

Estimators for these quantities are constructed by Claeskens and Hjort (2003) under an
asymptotic framework in which the data are assumed to be n independent identically dis-
tributed observations from the wide model, but reparameterised so that γ = γ0 + δ/

√
n.

Thus as the sample size n increases, we aim to detect more subtle departures from the narrow
model.

An obvious estimate for the bias BS is B̂S = µ̂S − µ̂W , where µ̂W is the estimate of the focus
quantity under the wide model, which is assumed to be unbiased. However, Claeskens and
Hjort (2003) derive a more accurate, asymptotically unbiased, estimate for the squared bias
as

B̂2
S = ω̂⊤(I −GS)(δ̂δ̂

⊤ −Q)(I −GS)ω̂ (2)

where:

• δ̂ = γ̂
√
n, where γ̂ is the estimate of γ under the wide model.

• ω⊤δ is the bias of the estimate of
√
nµ under the narrow model N , that is, the asymp-

totic mean of
√
n(µ̂N − µ). Thus ω acts as a linear transformation from the biases of

the basic parameters γ to the biases of the focus parameter µ.

• ω is estimated as ω̂ = J10J
−1
00

dµ
dθ

− dµ
dγ

using Taylor approximation arguments, where J

is the information (inverse covariance) matrix under the wide model 1 and subscripts
0 and 1 select the rows and columns forming the submatrices of J that correspond to
parameters θ and γ respectively. The partial derivatives of the focus µ are evaluated
at the estimates from the wide model.

1Note that Claeskens and Hjort (2008) calculate the MSE of the focus multiplied by
√

n rather than the
MSE of the focus, thus they define J instead as the information matrix divided by n. Thus their definition of
ω is the same as ours since n cancels, but their definitions of QS and Q are different.
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• GS = π⊤QSπQ
−1 is an estimate of the transformation that maps the wide model

estimate of δ to the submodel S estimate, where QS = (πQ−1π⊤)−1, Q−1 = J11 and π
is the projection matrix consisting of 0s and 1s which maps a vector of the same length
as (θ,γ) to a subvector containing the elements corresponding to submodel S.

Occasionally the estimate (2) of squared bias is negative. Claeskens and Hjort (2003) also
present an adjusted version of (2), which assumes the bias is zero in these cases.

B̂2∗

S = max
{

0, B̂2
S

}
(3)

The corresponding estimate of the bias is

B̂S∗ = sign(ψ̂W − ψ̂S)

√
B̂2∗

S (4)

where ψ̂W = ω̂⊤δ̂ and ψ̂S = ω̂⊤GS δ̂ are estimates of ω⊤δ under the wide model and submodel
respectively.

The estimate for the variance of µ̂S under the wide model, derived by Claeskens and Hjort
(2003), is

V̂S = (τ̂0
2 + ω̂⊤Q0

Sω̂)

where τ̂0
2 estimates the variance of the narrow model focus estimate (using “delta method"

principles, τ̂2
0 = dµ

dθ

⊤

J−1
00

dµ
dθ

), and the additional term (ω̂⊤Q0
Sω̂) is the increase in variance we

accept by using a wider but still misspecified model S, with Q0
S = π⊤QSπ.

Thus we compare models on the basis of the root mean squared error, estimated by

√
̂MSES =

√
B̂2

S + V̂S (5)

or the alternative version which, while not asymptotically unbiased, is based on an inter-
pretable estimate (4) of the bias.

√
̂MSE∗

S =

√
B̂2∗

S + V̂S (6)

Claeskens and Hjort (2003) define the “focused information criterion” (FIC), which has a
slightly simpler form due to excluding terms common to all submodels S, and is related to
the MSE as

FICS = n ̂MSES − τ̂2
0 + ω̂⊤Qω̂ (7)

Models with lower FIC give better estimates of the focus quantity. However we prefer to use
the (root) MSE as the model comparison statistic, due to its direct interpretation as the error
of the focus estimate.

2.1. Model comparison averaged over a range of focuses

Often we want a model that performs well in a range of situations. In covariate selection
problems, for example, we might want to estimate a focus quantity accurately for a defined
range of covariate values. Thus the quantities defined above may now depend on the covariate
value u. We might simply define the “averaged MSE” for submodel S,
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MSE
(ave)
S =

∫
MSES(u)dW (u)du

as a weighted average of the mean squared errors (1) for focuses defined by different covariate
values u, weighted by their prevalence W (u). However Claeskens and Hjort (2008) derived an
alternative formula, so that if correction of the squared bias estimate, as in (3), is required,
it only needs to be performed once:

̂
MSE

(ave)
S = IS +

̂
V

(ave)
S (8)

where
IS = Tr((I −GS)(δ̂δ̂

⊤ −Q)(I −GS)⊤A) (9)

is an estimate of the squared bias, and

̂
V

(ave)
S = τ

2(ave)
0 + IIS (10)

is an estimate of the variance, with τ
2(ave)
0 =

∫
τ0(u)du, IIS = Tr(Q0

SA), and

A = J10J
−1
00 B00J

−1
00 J01 − J10J

−1
00 B01 −B10J

−1
00 J01 +B11

B =

∫ (
dµ(u)/dθ

dµ(u)/dγ

)(
dµ(u)/dθ

dµ(u)/dγ

)⊤

dW (u) =

(
B00 B01

B10 B11

)

An analogue of the alternative MSE estimate (6) can then be defined, based on a bias estimator
which is corrected when (9) is negative, by substituting max(IS, 0) for IS in (8).

If the focus is defined as the log density for one observation y, and if we average over the
observed distribution of y in the data, then model comparison using this procedure is asymp-
totically equivalent to model comparison by AIC (Claeskens and Hjort 2008, 2003). See the
additional fic package vignette on linear models for an example.

3. Software for focused model comparison

In order to calculate the MSE (1) for focused model comparison of a submodel S against a
wide model, we simply need to know

• the estimates θ̂W and γ̂W and their covariance matrix under the wide model,

• the focus function µ(θ,γ)

• the definition of which parameters are included in submodel S and which are included
in the narrow model N .

Additionally if we want to know the focused information criterion (7) we will need the sample
size n.

Derivatives of the focus function, required by (2), can be calculated numerically in general,
for which robust software exists — numDeriv (Gilbert and Varadhan 2016) is used here.
Analytic derivatives are implemented in fic for two built-in focuses (the outcome probability
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in logistic regression, and the mean outcome in linear regression), but we have noticed no loss
in accuracy from using numerical methods.

This knowledge allows the fic package to implement focused model comparison for any class of
models and focuses. The estimates and covariance matrix are routinely computed by functions
for fitting models by maximum likelihood. Therefore the user simply needs to supply

• an R object containing the wide model

• a definition of the focus function µ()

• indicators for what submodels they want to compare

In addition the software needs to know where to look inside the wide model object for the
estimates and covariance matrix, but this information can be built into the software for a
range of commonly-used models.

4. Example: Covariate selection in logistic regression

The use of the fic package is illustrated for covariate selection in logistic regression, using
the example from Claeskens and Hjort (2008) (Example 6.1). The dataset was originally
presented by Hosmer and Lemeshow (1989). Data are taken from n = 189 women with
newborn babies, and the binary outcome is whether the baby is born with a weight of less
than 2500g. We build a logistic regression model to predict the outcome, but are uncertain
about what covariates should be included.

The data are provided as an object birthwt in the fic package. This is the same as birthwt

in MASS (Venables and Ripley 2002) with the addition of a few extra columns defining
interactions and transformations as in Claeskens and Hjort (2008).

The following covariates are always included (coefficient vector θ)

• x1 Weight of mother in kg, lwtkg

The following covariates will be selected from (coefficient vector γ)

• z1 age, in years, age

• z2 indicator for smoking, smoke

• z3 history of hypertension, ht

• z4 uterine irritability, ui

• interaction z5 = z1z2 between smoking and age, smokeage

• interaction z6 = z2z4 between smoking and uterine irritability, smokeui

Firstly the wide model, that includes all the above covariates, is defined and fitted.
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library("fic")

wide.glm <- glm(low ~ lwtkg + age + smoke + ht + ui + smokeage + smokeui,

data = birthwt, family = binomial)

The focus function is then defined. This should be an R function, mapping the parameters par

of the wide model to the quantity of interest. The focus can have any number of additional
arguments. Typically an argument called X is used to supply covariate values at which the
focus function should be evaluated. 2 Here we take the probability of low birth weight as the
focus, for two covariate categories:

1. smokers with average or typical values of the other covariates. These values are given
in the order supplied when specifying the model (for smokers: intercept, lwtkg=58.24,
age=22.95, smoke=1, ht=0, ui=0, smokeage=22.95, smokeui=0).

2. non-smokers with average values of the other covariates

prob_logistic <- function(par, X)plogis(X %*% par)

vals.smoke <- c(1, 58.24, 22.95, 1, 0, 0, 22.95, 0)

vals.nonsmoke <- c(1, 59.50, 23.43, 0, 0, 0, 0, 0)

X <- rbind("Smokers" = vals.smoke, "Non-smokers" = vals.nonsmoke)

We can illustrate this function by calculating the probability of low birth weight, given the
parameters of the fitted wide model, for each group. This is about twice as high for smokers.

prob_logistic(coef(wide.glm), X=X)

## [,1]

## Smokers 0.345

## Non-smokers 0.168

The fic function can then be used to calculate the mean squared error of the focus for
one or more given submodels. For illustration we will compare two models, both including
maternal weight, one including age and smoking, but the other including age, smoking and
hypertension.

mod1.glm <- glm(low ~ lwtkg + age + smoke, data = birthwt, family = binomial)

mod2.glm <- glm(low ~ lwtkg + age + smoke + ht, data = birthwt,

family = binomial)

We supply the following arguments to the fic function.

2Note we could also have written the focus function as function(par,X)plogis(par[1] + X %*% par[-1])

then we could have omitted the dummy covariate values of 1 for the intercept at the start of vals.smoke and
vals.nonsmoke.
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• wide: the fitted wide model. All the model fit statistics are computed using the es-
timates and covariance matrix from this model. fic will automatically recognise that
this is a GLM fitted by the glm function in R, and extract the relevant information.

• inds: indicators for which parameters are included in the submodels, that is, which
elements of (θ,γ) are fixed to γ0. This should have number of rows equal to the
number of submodels to be assessed, and number of columns equal to dim(θ)+dim(γ),
the total number of parameters in the wide model, 8 in the case of wide.glm, which
includes the intercept and the coefficients of seven covariates. It contains 1s in the
positions where the parameter is included in the submodel, and 0s in positions where
the parameter is excluded. This should always be 1 in the positions defining the narrow
model, as specified in inds0 below. If just one submodel is to be assessed, inds can
also be supplied as a vector of length dim(θ) + dim(γ).

Note that inds indexes parameters rather than linear model terms, that is, in covariate
selection problems where a variable is a factor with more than two levels, inds should
contain separate entries for the coefficient of each factor level relative to the baseline
level, not just one entry indicating the presence of the factor as a whole. A utility to
construct this in the presence of factors is illustrated in Section 5.1.

• inds0 vector of indicators for which parameters are included in the narrow model, in
the same format as inds. This can be omitted, in which case the narrow model is
assumed to be given by the first row of inds. In this case, just the first two parameters
are included, the intercept and the coefficient of lwtkg.

inds <- rbind(mod1 = c(1,1,1,1,0,0,0,0),

mod2 = c(1,1,1,1,1,0,0,0))

inds0 <- c(1,1,0,0,0,0,0,0)

• focus the focus function, and X, the alternative covariate values to evaluate it at. As
well as an R function, this argument can alternatively be supplied as a character string
naming a built-in focus function supplied by the fic package. Currently these just include
"prob_logistic", the outcome probability in a logistic regression, and "mean_normal",
the mean outcome in a normal linear regression.

The main fic function then returns the model fit statistics and the estimate of the focus
quantity for each model.

fic1 <- fic(wide = wide.glm, inds = inds, inds0 = inds0,

focus = prob_logistic, X=X)

fic1

## vals mods rmse rmse.adj bias se FIC focus

## 1 Smokers mod1 0.0723 0.0723 0.0459 0.0558 1.187 0.398

## 4 Smokers mod2 0.0556 0.0572 0.0000 0.0572 0.783 0.366

## 2 Non-smokers mod1 0.0804 0.0804 0.0731 0.0334 1.305 0.243
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## 5 Non-smokers mod2 0.0596 0.0596 0.0484 0.0348 0.755 0.215

## 3 Average mod1 0.0764 0.0764 0.0610 0.0460 1.005 0.320

## 6 Average mod2 0.0576 0.0576 0.0329 0.0473 0.528 0.291

The object returned by fic is a data frame containing one row for each combination of focus
covariate values indicated in the column vals and submodels indicated in the column mods.
The focus estimate is returned in the final column focus, while the remaining columns contain
the following model comparison statistics:

• rmse The root mean squared error of the submodel focus estimate, calculated assuming
the wide model is true (Equation 5),

• rmse.adj Alternative estimate of the root mean squared error (Equation 6) based on
the adjusted bias estimator (3–4).

• bias The estimated bias B̂S∗ (Equation 4), which will be zero if B̂2
S (2) is negative.

• se The standard error
√
V̂ of the submodel focus estimate, calculated assuming the

wide model is true.

• FIC The FIC as originally defined by Claeskens and Hjort (2003) (Equation 7).

The submodels are fitted automatically within the fic function in order to produce the
focus estimate, so it was not really necessary to fit mod1.glm and mod2.glm by hand, as
above. As the wide model has class glm, it is recognised as a GLM, so fic assumes that our
submodels correspond to models with different covariates included, as indicated by inds. The
focus estimates from the submodels can then be returned alongside the model comparison
statistics.

As well as the specific covariate categories, fic calculates model comparison statistics which
are averaged over the categories, indicated by a value of ave in the column vals. An equally-
weighted average is computed by default. Arbitrary weights can be supplied in the argument
wt to fic.

Recall that mod2 contains one more covariate than mod1. For each of the two focuses, and
the average, the unadjusted and adjusted bias estimates are lower due to the inclusion of this
covariate, while the standard error se is higher. Given the lower rmse and rmse.adj under
mod2, the reduction in bias is deemed to be worth the increase in uncertainty.

4.1. Comparing a wide range of models

We may want to examine a broad range of models, particularly in regression contexts. The
function all_inds (a wrapper around expand.grid) creates a matrix of indicators that de-
fines all submodels with different covariates, spanned by a given wide model (here wide.glm)
and a narrow model (here defined by inds0). This function works only for classes of model
objects x for which the terms(x) function is understood, which includes standard R regression
models such as lm and glm. Factors are handled naturally.
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combs <- all_inds(wide.glm, inds0)

The resulting matrix can be used as the inds argument to fic to compare all submodels in
this example, again for a focus defined by the probability of low birth weight at covariate
values defined by X. Before calling fic again, we redefine combs to exclude models with
interactions but not both corresponding main effects.

combs <- subset(combs,

!((smoke==0 & smokeage==1) |

(smoke==0 & smokeui==1) |

(age==0 & smokeage==1) |

(ui==0 & smokeui==1)))

ficres <- fic(wide = wide.glm, inds = combs, inds0 = inds0,

focus = prob_logistic, X = X)

Notice that some of the rmse elements of ficres are NaN, since the first squared bias estimate

B̂2 is negative. The alternative estimate (6), rmse.adj, might be preferred in these cases,
since it is consistent with the bias and variance estimates.

A comparison of many models can be illustrated by a scatterplot of the focus estimate against
the root MSE of each submodel. The default plot method for fic objects accomplishes this
using base R graphics: try plot(ficres). Alternatively a graph can be plotted using ggplot2

if this package is installed. This is illustrated in Figure 1.

There is one panel for each of the two covariate categories (smokers and non-smokers) defining
the focus (probability of low birth weight) and an average over the two categories. The solid
blue line is the focus estimate under the wide model, and the dashed blue line is the focus
estimate under the narrow model. An informal illustration of the uncertainty around the

estimate of the focus quantity from each submodel is given by the estimate ±1.96 ×
√
V̂ .

Note that this underestimates the uncertainty if inference is based on a selected model —
a better confidence interval would then account for the range of models being searched over
(“post-selection” inference, see, e.g., Hjort and Claeskens (2003); Berk et al. (2013)).

Each submodel is labelled faintly using the row names of the matrix supplied as the inds

argument to fic. In this case, these names were automatically constructed by the function
all_inds and contain a string of binary 0/1 indicators for the inclusion of eight parameters.
For smokers, a group of smaller models including the narrow model (labelled 11000000) give
estimates of the probability of low birth weight with the lowest MSE, while by contrast, for
non-smokers, the wide model (labelled 11111111) and similar larger models give the most
accurate estimates of the focus quantity. Note that in this dataset, there are 115 non-smokers
and 74 smokers, thus more data enables bigger models to be identified for non-smokers. Wider
models are also preferred for describing the average population.

The model with the optimal MSE could be identified if necessary, with the summary method
for objects returned by fic. This lists the parameters included in the optimal model for each
focus.
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Figure 1: Focused comparison of logistic regression models for low birth weight with different
covariates

summary(ficres)

## Model with lowest RMSE by focus

## index

## Smokers 5

## Non-smokers 20

## Average 20

## pars

## Smokers (Intercept),lwtkg,htTRUE

## Non-smokers (Intercept),lwtkg,age,smokeTRUE,htTRUE,uiTRUE,smokeage

## Average (Intercept),lwtkg,age,smokeTRUE,htTRUE,uiTRUE,smokeage

## focus

## Smokers 0.280

## Non-smokers 0.183

## Average 0.254

##
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## Range of focus estimates and RMSE over models

## min(focus) max(focus) min(RMSE) max(RMSE)

## Smokers 0.249 0.400 0.0403 0.0896

## Non-smokers 0.168 0.300 0.0385 0.1226

## Average 0.244 0.322 0.0512 0.0812

Though in general, if there are multiple models with similar estimation performance and
different results, the reasons for their differences should be explored in greater depth with the
aid of background knowledge.

4.2. Calling fic for an unfamiliar class of models

Above, the fic function recognised the fitted model objects as GLMs, that is, objects of class
"glm" returned by the glm() function in base R. But the package can be used to calculate
focused model comparison statistics for any class of models, not just the special classes it
recognises. To do this, it needs to know where two things are stored inside the fitted model
objects:

1. the vector of maximum likelihood estimates (θ̂, γ̂),

2. the covariance matrix of the maximum likelihood estimates, J−1.

plus, if the “classic” FIC is required, also the number of observations n contributing to the
model fit. Given a fitted model object called mod, the fic() function assumes by default that
coef(mod), and vcov(mod) respectively return the estimates and covariance matrix. Likewise
it assumes that nobs(mod) returns the number of observations if FIC is required.

If one or more of these assumptions is not true, the defaults can be changed by supplying the
argument fns to fic(), which should be a named list of three components. Each component
should be a function taking one argument (the fitted model) which extracts the required
information from the fitted model and returns it, as in the following example. Here the first
component of fns is a function which, when applied to a glm object, returns the maximum
likelihood estimates of the regression coefficients.

fns <- list(coef = function(x)coef(x),

nobs = function(x)nobs(x),

vcov = function(x)vcov(x))

fic1 <- fic(wide = wide.glm, inds = inds, inds0 = inds0,

focus = prob_logistic, fns = fns, X = X)

A full worked example of a using fic for a novel class of models, defined and fitted by
custom R functions, is given in the package vignette “Examples of focused model comparison:
skew-normal models”.

4.3. Other classes of models

The fic package also has built-in methods for the following classes of models.
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• Linear models fitted with lm in base R. Examples of covariate selection and polynomial
order selection are given in an additional fic vignette on linear models, which also
illustrates the use of quantiles of the outcome distribution as focuses, and focuses that
depend on variance parameters as well as linear model coefficients.

• Parametric survival models fitted with flexsurvreg in the flexsurv package (Jackson
2016), or survreg in the survival package (Therneau 2015).

The additional fic vignette “Examples of focused model comparison: parametric survival
models” illustrates the use of fic to compare parametric baseline survival functions of
different levels of complexity. fic needs to be set up carefully here since the same model
can be presented in several different parameterisations. Focused comparison requires
the submodels to be defined by fixing parameters of the wide model to special values.

• Multi-state models fitted with the msm package (Jackson 2011).

A multi-state model might consist of several regression models, one for each transition
between states in a multi-state structure, which poses a challenge to defining and inter-
preting a focused model comparison. The package vignette “Examples of focused model
comparison: multi-state models” gives a worked example. Another feature of this ex-
ample is that the focus of interest is a complicated model summary function provided
by the msm package, which needs to be converted carefully into the format expected
by fic.

5. Focused covariate selection in Cox proportional hazards regression

In a Cox regression model, time-to-event outcomes ti are observed on individuals i, potentially
with right-censoring. At time t, individual i is assumed to have a hazard hi(t) which is pro-
portional to their covariate values. We compare models that have different sets of covariates.
In the most general “wide” model, hi(t) = h0(t) exp(θ⊤

xi + γ⊤
zi). The baseline hazard h0(t)

is left unspecified, while θ and γ are estimated by maximum partial likelihood.

We compare submodels S of this wide model, which include different subsets of covariates,
according to how accurately they estimate some focus quantity µ = µ(θ,γ, H0()|x, t), where
H0() is the cumulative baseline hazard function, which can be estimated nonparametrically
by various methods. Typical focus quantities might depend on time t as well as covariate
values x, e.g., the probability S(t|x,θ,γ, H0()) that a person with covariates x will survive t
years.

Again the mean squared error MSES = B2
S +VS of µS , the focus quantity under submodel S,

has an asymptotically unbiased estimator B̂2
S + V̂S , like that in Section 2, which was derived

by Hjort and Claeskens (2006) under the same theoretical principles:

B̂2
S = (ω̂ − κ̂)(I −GS)(δ̂δ̂

⊤ −Q)(I −GS)(ω̂ − κ̂)

V̂S =
{
τ̂0(t)2 + (ω̂ − κ̂)⊤Q0

S(ω̂ − κ̂)
}
/n

ω̂ = J10J
−1
00

dµ

dθ
− dµ

dγ

κ̂(t) = (J10J
−1
00 F0(t) − F1(t))

dµ

dH0
,
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where Q0
S , GS , δ̂, J10, J00 are defined as in Section 2, except in terms of the partial likelihood

instead of the likelihood. Newly-defined quantities are

F (t) =

∫ t

0

{
G(1)

n (u)/G(0)
n (u)

}
dH0(u) =

(
F0(t)
F1(t)

)

where F0(t) and F1(t) have p and q components respectively,

G(0)
n (u) =

1

n

n∑

i=1

Yi(u) exp(θ⊤
xi + γ⊤

zi)

G(1)
n (u) =

1

n

n∑

i=1

Yi(u) exp(θ⊤
xi + γ⊤

zi)

(
xi

zi

)

both evaluated at the estimates of θ, γ and H0() from the wide model,

τ0(t)2 =
( dµ
dH0

)2
∫ t

0

dH0(u)

g(0)(u, β, 0)
+

{
dµ

dβ
− dµ

dH0
F0(t)

}⊤

J−1
00

{
dµ

dβ
− dµ

dH0
F0(t)

}

and Yi(t) = I(ti ≥ t) is the indicator for individual i being at risk at time t.

As before, if B̂2
S < 0, we could also use an alternative estimator for MSES which assumes

that the bias is zero in these cases.

5.1. Example: Malignant melanoma

To illustrate the method, Hjort and Claeskens (2006) study a dataset from 205 patients with
malignant melanoma, earlier analysed in detail by Andersen et al. (1993). This dataset is
also provided in the fic package.

We compare models ranging from a wide model wide that includes 7 terms in the regression
model formula, to a narrow model that includes only sex.

library("survival")

wide <- coxph(Surv(years, death==1) ~ sex + thick_centred + infilt + epith +

ulcer + depth + age, data = melanoma)

In this example, we need to deal with factor terms in the model when setting up the inds

and inds0 indicators to supply to fic. Specifically, infilt and depth are factors with 4
and 3 levels respectively, represented in the model by 3 and 2 model parameters respectively,
instead of one parameter for each. The remaining terms in the model are each associated
with one parameter. Thus the wide model, with 7 terms, includes 10 parameters.

The function expand_inds can be used to construct inds or inds0 terms in the presence of
factors3. We supply a vector of 7 elements, indicating the presence or absence of each of the
7 terms in the model formula. In this case, only the first term, sex, is included in the narrow
model. Then to create an inds0 vector of 10 elements, indicating the presence or absence of
each of the wide model’s 10 parameters in the narrow model, we call

3This function only works for classes of models for which the model.matrix function is understood and
returns objects with an "assign" attribute. This includes all the commonly-used models in base R.
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inds0 <- expand_inds(c(1,0,0,0,0,0,0), wide)

inds0

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] 1 0 0 0 0 0 0 0 0 0

Note that in Cox regression there is no intercept parameter, therefore the model parameters
include only the regression coefficients. In fully parametric regression models, for example
GLMs, the vector supplied to expand_inds should contain an additional element indicating
the presence of the intercept.

The fic package includes three built-in alternative focuses, as specified through the focus

argument to fic.

• focus="hr": the hazard ratio between an individual with covariatesX and an individual
with covariates 0 (which by definition of the Cox model is independent of time t)

• focus="survival": the survival probability at time t, for an individual with covariates
X

• focus="cumhaz": the cumulative hazard at time t, for an individual with covariates X

The required covariate values and/or time point(s) are supplied as the X and t arguments to
fic.

It is possible to supply alternative focuses, though this is slightly trickier than for standard
full likelihood models. It requires the user to supply a list of three functions as the focus

argument to fic, one returning the focus, and two returning its derivatives with respect to
(θ,γ) and H0(t) respectively. The functions take arguments par, H0, X and t representing
the parameter vector, cumulative hazard, covariate matrix and time. To see some examples,
print the following lists of functions, which are used for the three built-in focuses above.

list(focus = fic:::cox_hr,

deriv = fic:::cox_hr_deriv,

dH = fic:::cox_hr_dH)

list(focus = fic:::cox_cumhaz,

deriv = fic:::cox_cumhaz_deriv,

dH = fic:::cox_cumhaz_dH)

list(focus = fic:::cox_survival,

deriv = fic:::cox_survival_deriv,

dH = fic:::cox_survival_dH)

In the melanoma example, all possible submodels spanning the wide and narrow model are
compared. As before, a matrix of indicators describing these models is constructed, and the
submodels are fitted automatically within the fic function.

combs <- all_inds(wide, inds0)
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The focus is defined as the 5 year survival probability fic(...,focus = "survival", t

= 5) for the covariate values defined by X, here taken as men and women separately, with
average age and mean observed tumour thickness among men and women, infiltration level
4, epithelioid cells and ulceration present, and invasion depth 2. The utility newdata_to_X

is used to convert the user-defined data frame newdata that identifies these covariate values,
with one variable per covariate or factor, to a design matrix X, with one column for each of
the 10 parameter values.4

newdata <- with(melanoma,

data.frame(sex = c("female","male"),

thick_centred = tapply(thick_centred, sex, mean),

infilt = 4, epith = 1, ulcer = 1, depth = 2,

age = tapply(age, sex, mean)))

X <- newdata_to_X(newdata, wide, intercept=FALSE)

ficall <- fic(wide, inds = combs, inds0 = inds0,

focus = "survival", X = X, t = 5)

The models give a big range of estimates for the focus survival probability. Generally, the
models returning higher survival estimates are those models closer to the narrow model, and
the error of these estimates is high. The most accurate models, as judged by the MSE of this
focus, return survival estimates of around 0.6–0.7 for men and 0.4–0.5 for women. If desired,
the model with the lowest root MSE could be identified with the summary method.

summary(ficall)

## Model with lowest RMSE by focus

## index pars focus

## female 61 sexmale,epith,ulcer,depth2,depth3,age 0.629

## male 21 sexmale,epith,depth2,depth3 0.447

##

## Range of focus estimates and RMSE over models

## min(focus) max(focus) min(RMSE) max(RMSE)

## female 0.420 0.837 0.0291 0.341

## male 0.208 0.691 0.0408 0.314

However, the reasons for the variation in results between models should be investigated fur-
ther, with the aid of clinical background knowledge.

6. Discussion

In focused model comparison, we explicitly connect statistical models with the scientific ques-
tions that the models were designed to address. Different models might give better estimates
of different focus quantities of interest. Focused information criteria enable models to be

4Note the intercept is excluded here, as Cox models don’t have a regression intercept term. In GLMs, the
design matrix usually includes an intercept.
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Figure 2: Focused comparison of Cox regression models for the melanoma data.

compared according to how well they balance the bias and variance of an estimate of inter-
est. The bias and variance terms that contribute to the criteria can be examined directly to
illustrate the trade-off.

The fic package performs focused model comparison easily for any class of models fitted by
maximum likelihood. The package is designed to be easily extensible, by adding new model
classes and focuses. The vignettes illustrate some examples of particular model classes, focuses
and model comparison problems. Further contributions of code and worked examples would
be welcome. More advanced models, beyond standard maximum likelihood, might need novel
focused criteria to be implemented. Some generalisations were discussed by Claeskens and
Hjort (2008), for example, for mixed models, missing data, and where a submodel is on
the boundary of the parameter space. Gueuning and Claeskens (2018) developed focused
information criteria for high-dimensional situations where one or more of the models being
compared is not identifiable from the data. Jullum and Hjort (2017, 2018) used FIC to choose
between parametric and nonparametric estimators, Hellton and Hjort (2018) used ideas of
focused selection to set the tuning parameter in ridge regression, while Ko et al. (2019) used
it for copula model selection.

Model uncertainty is an area of ongoing research. It is often not wise to highlight only the
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results of the single model that is selected by a criterion. If multiple well-performing models
give different estimates, then the uncertainty about the model choice should be acknowledged.
If a single “best” estimate is desired, then this could be produced by a model-averaged estima-
tor (see, e.g., Hjort and Claeskens (2003), Claeskens and Hjort (2008), Hansen (2014), Zhang
et al. (2016)). Alternatively, if we wish to highlight a single best model, this could provide the
point estimate, but coupled with a confidence interval that acknowledges the range of models
that have been selected from. In either case, determining appropriate confidence intervals or
standard errors is challenging (see, e.g., Charkhi and Claeskens 2018; Bachoc et al. 2019).
Bootstrapping, e.g., by resampling the data, or resampling parameter estimates from their
asymptotic sampling distributions under a wide model, is an attractive method of handling
model uncertainty that is simple to implement in software, though its theoretical properties in
this context are not well understood. See, e.g., Claeskens and Hjort (2008), Breiman (1996),
Jackson et al. (2010), for examples and discussion.

Estimation is often followed by decision making. Formal decision theory might also lend
itself to focused model comparison. For example we might consider the “focus” to be the
decision among discrete actions with optimal expected loss. Again, bootstrapping might
provide a route to focused model comparison, e.g., by calculating the average loss, over a set
of bootstrap resamples, of decisions made under competing models.

Focused model comparison principles might also be used for Bayesian inference. In realistic
situations, the true process is typically more complex than the biggest model that can be
identified from the data. From a Bayesian perspective, we might use a theoretically-realistic
model, but with a prior that encodes external information to enable the parameters to be
identified from the data, e.g., through shrinkage, regularisation or elicited judgements. How-
ever, the appropriate model or prior might still be uncertain, and we may have multiple
competing models. Claeskens and Hjort (2008) present some equivalents of FIC for Bayesian
estimators where there is prior information about departures from the narrow model. Various
criteria, with justifications related to cross-validation or predictive loss, have been developed
to compare Bayesian models (Spiegelhalter et al. 2002; Plummer 2008; Watanabe 2013; Ve-
htari et al. 2017) or average their estimates (Yao et al. 2018; Jackson et al. 2010). These
might also be extended to enable models to be compared for different focuses.

fic is available from http://CRAN.R-project.org/package=fic. Development versions are
available on https://github.com/chjackson/fic, and contributions are welcome.
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