fdaoutlier: Outlier Detection Tools for Functional Data Analysis
A collection of functions for outlier detection in functional data analysis. 
  Methods implemented include directional outlyingness by 
  Dai and Genton (2019) <doi:10.1016/j.csda.2018.03.017>,
  MS-plot by Dai and Genton (2018) <doi:10.1080/10618600.2018.1473781>,
  total variation depth and modified shape similarity index by 
  Huang and Sun (2019) <doi:10.1080/00401706.2019.1574241>, and sequential transformations by
  Dai et al. (2020) <doi:10.1016/j.csda.2020.106960 among others. Additional outlier detection
  tools and depths for functional data like functional boxplot, (modified) band depth etc.,
  are also available. 
| Version: | 0.2.1 | 
| Depends: | R (≥ 2.10) | 
| Imports: | MASS | 
| Suggests: | testthat (≥ 2.1.0), covr, spelling, knitr, rmarkdown | 
| Published: | 2023-09-30 | 
| DOI: | 10.32614/CRAN.package.fdaoutlier | 
| Author: | Oluwasegun Taiwo Ojo  [aut, cre,
    cph],
  Rosa Elvira Lillo [aut],
  Antonio Fernandez Anta [aut, fnd] | 
| Maintainer: | Oluwasegun Taiwo Ojo  <seguntaiwoojo at gmail.com> | 
| BugReports: | https://github.com/otsegun/fdaoutlier/issues | 
| License: | GPL-3 | 
| URL: | https://github.com/otsegun/fdaoutlier | 
| NeedsCompilation: | yes | 
| Language: | en-US | 
| Materials: | README, NEWS | 
| In views: | AnomalyDetection, FunctionalData | 
| CRAN checks: | fdaoutlier results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=fdaoutlier
to link to this page.