Package ‘fastGHQuad’

October 13, 2022
Type Package

Title Fast Rcpp' Implementation of Gauss-Hermite Quadrature
Version 1.0.1

Date 2022-05-03

Author Alexander W Blocker

Maintainer Alexander W Blocker <ablocker@gmail . com>

Description Fast, numerically-stable Gauss-Hermite quadrature rules and
utility functions for adaptive GH quadrature. See Liu, Q. and Pierce, D. A.
(1994) <doi:10.2307/2337136> for a reference on these methods.

License MIT + file LICENSE
LazyLoad yes

URL https://github.com/awblocker/fastGHQuad
Depends Rcpp (>=0.11.0)

LinkingTo Rcpp

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-05-05 23:30:04 UTC

R topics documented:

fastGHQuad-package
aghQuad e
evalHermitePoly e
findPolyRoots
gaussHermiteData L
ghQuad e
hermitePolyCoef

Index

https://doi.org/10.2307/2337136
https://github.com/awblocker/fastGHQuad

2 fastGHQuad-package

fastGHQuad-package A package for fast, numerically-stable computation of Gauss-Hermite
quadrature rules

Description

This package provides functions to compute Gauss-Hermite quadrature rules very quickly with a
higher degree of numerical stability (tested up to 2000 nodes).

Details
It also provides function for adaptive Gauss-Hermite quadrature, extending Laplace approximations

(as in Liu & Pierce 1994).

Package: fastGHQuad
Type: Package
License: MIT
LazyLoad: yes

Author(s)
Alexander W Blocker

Maintainer: Alexander W Blocker <ablocker @ gmail.com>

References

Golub, G. H. and Welsch, J. H. (1969). Calculation of Gauss Quadrature Rules. Mathematics of
Computation 23 (106): 221-230.

Liu, Q. and Pierce, D. A. (1994). A Note on Gauss-Hermite Quadrature. Biometrika, 81(3) 624-
629.

See Also

gaussHermiteData, aghQuad, ghQuad

Examples

Get quadrature rule
rule <- gaussHermiteData(1000)

Find a normalizing constant

g <- function(x) 1/(1+x*2/10)*(11/2) # t distribution with 10 df
aghQuad(g, 0, 1.1, rule)

actual is

1/dt(0,10)

Find an expectation

aghQuad 3

g <- function(x) x*2*dt(x,10) # t distribution with 10 df
aghQuad(g, 0, 1.1, rule)
actual is 1.25

aghQuad Adaptive Gauss-Hermite quadrature using Laplace approximation

Description

Convenience function for integration of a scalar function g based upon its Laplace approximation.

Usage
aghQuad(g, muHat, sigmaHat, rule, ...)
Arguments
g Function to integrate with respect to first (scalar) argument
muHat Mode for Laplace approximation
sigmaHat Scale for Laplace approximation (sqrt (-1/H), where H is the second derivative
of g at muHat)
rule Gauss-Hermite quadrature rule to use, as produced by gaussHermiteData
Additional arguments for g
Details

This function approximates

/: g(z) dx

using the method of Liu & Pierce (1994). This technique uses a Gaussian approximation of g
(or the distribution component of g, if an expectation is desired) to "focus" quadrature around the
high-density region of the distribution. Formally, it evaluates:

V26) wiexp(al)g(i+ V2

where x and w come from the given rule.

This method can, in many cases (where the Gaussian approximation is reasonably good), achieve
better results with 10-100 quadrature points than with 1e6 or more draws for Monte Carlo inte-
gration. It is particularly useful for obtaining marginal likelihoods (or posteriors) in hierarchical
and multilevel models — where conditional independence allows for unidimensional integration,
adaptive Gauss-Hermite quadrature is often extremely effective.

Value

Numeric (scalar) with approximation integral of g from -Inf to Inf.

4 evalHermitePoly

Author(s)

Alexander W Blocker <ablocker@gmail.com>

References

Liu, Q. and Pierce, D. A. (1994). A Note on Gauss-Hermite Quadrature. Biometrika, 81(3) 624-
629.

See Also

gaussHermiteData, ghQuad

Examples

Get quadrature rules
rule1®@ <- gaussHermiteData(10)
rule100 <- gaussHermiteData(100)

Estimating normalizing constants

g <- function(x) 1/(1+x*2/10)*(11/2) # t distribution with 10 df
aghQuad(g, 0, 1.1, rulel@)

aghQuad(g, 0, 1.1, rulel0@)

actual is

1/dt(0,10)

Can work well even when the approximation is not exact
g <- function(x) exp(-abs(x)) # Laplace distribution
aghQuad(g, 0, 2, rulelo)

aghQuad(g, 0, 2, rulel0@)

actual is 2

Estimating expectations

Variances for the previous two distributions

g <- function(x) x*2*dt(x,10) # t distribution with 10 df
aghQuad(g, 0, 1.1, rulel@)

aghQuad(g, 0, 1.1, rulel0@)

actual is 1.25

Can work well even when the approximation is not exact

g <- function(x) x*2*xexp(-abs(x))/2 # Laplace distribution
aghQuad(g, 0, 2, rulel@)

aghQuad(g, 0, 2, rulel0o)

actual is 2

evalHermitePoly Evaluate Hermite polynomial at given location

findPolyRoots 5

Description

Evaluate Hermite polynomial of given degree at given location. This function is provided for
demonstration/teaching purposes; this method is not used by gaussHermiteData. It is numerically
unstable for high-degree polynomials.

Usage

evalHermitePoly(x, n)

Arguments
X Vector of location(s) at which polynomial will be evaluated
n Degree of Hermite polynomial to compute

Value

Vector of length(x) values of Hermite polynomial

Author(s)

Alexander W Blocker <ablocker@gmail . com>

See Also

gaussHermiteData, aghQuad, ghQuad

findPolyRoots Find real parts of roots of polynomial

Description

Finds real parts of polynomial’s roots via eigendecomposition of companion matrix. This method
is not used by gaussHermiteData. Only the real parts of each root are retained; this can be useful if
the polynomial is known a priori to have all roots real.

Usage

findPolyRoots(c)
Arguments

c Coefficients of polynomial
Value

Numeric vector containing the real parts of the roots of the polynomial defined by ¢

6 gaussHermiteData

Author(s)

Alexander W Blocker <ablocker@gmail . com>

See Also

gaussHermiteData, aghQuad, ghQuad

gaussHermiteData Compute Gauss-Hermite quadrature rule

Description

Computes Gauss-Hermite quadrature rule of requested order using Golub-Welsch algorithm. Re-
turns result in list consisting of two entries: x, for nodes, and w, for quadrature weights. This is very
fast and numerically stable, using the Golub-Welsch algorithm with specialized eigendecomposition
(symmetric tridiagonal) LAPACK routines. It can handle quadrature of order 1000+.

Usage

gaussHermiteData(n)
Arguments

n Order of Gauss-Hermite rule to compute (number of nodes)
Details

This function computes the Gauss-Hermite rule of order n using the Golub-Welsch algorithm. All
of the actual computation is performed in C/C++ and FORTRAN (via LAPACK). It is numerically-
stable and extremely memory-efficient for rules of order 1000+.

Value

A list containing:

X the n node positions for the requested rule
w the w quadrature weights for the requested rule
Author(s)

Alexander W Blocker <ablocker@gmail.com>

References

Golub, G. H. and Welsch, J. H. (1969). Calculation of Gauss Quadrature Rules. Mathematics of
Computation 23 (106): 221-230

Liu, Q. and Pierce, D. A. (1994). A Note on Gauss-Hermite Quadrature. Biometrika, 81(3) 624-
629.

ghQuad 7

See Also
aghQuad, ghQuad

ghQuad Convenience function for Gauss-Hermite quadrature

Description

Convenience function for evaluation of Gauss-Hermite quadrature

Usage
ghQuad(f, rule, ...)

Arguments
f Function to integrate with respect to first (scalar) argument; this does not include
the weight function exp(-x*2)
rule Gauss-Hermite quadrature rule to use, as produced by gaussHermiteData
Additional arguments for f
Details

This function performs classical unidimensional Gauss-Hermite quadrature with the function f us-
ing the rule provided; that is, it approximates

/ Zf(x) exp(—a?) do

by evaluating

Zwif(xi)

Value

Numeric (scalar) with approximation integral of f(x)*exp(-x”2) from -Inf to Inf.

Author(s)

Alexander W Blocker <ablocker@gmail.com>

References

Golub, G. H. and Welsch, J. H. (1969). Calculation of Gauss Quadrature Rules. Mathematics of
Computation 23 (106): 221-230.

Liu, Q. and Pierce, D. A. (1994). A Note on Gauss-Hermite Quadrature. Biometrika, 81(3) 624-
629.

8 hermitePolyCoef

See Also

gaussHermiteData, ghQuad

Examples

Get quadrature rules
rule1® <- gaussHermiteData(10)
rule100 <- gaussHermiteData(100)

Check that rule is implemented correctly

f <- function(x) rep(1,length(x))

if (!isTRUE(all.equal(sqrt(pi), ghQuad(f, rulel1@), ghQuad(f, rulel00)))) {
print(ghQuad(f, rulel®))
print(ghQuad(f, rulel@o))

3

These should be 1.772454

f <- function(x) x

if (!isTRUE(all.equal(@.@, ghQuad(f, rulel1@), ghQuad(f, rulel00)))) {
print(ghQuad(f, rulel®@))
print(ghQuad(f, rulel0o))

3

These should be zero

hermitePolyCoef Get coefficient of Hermite polynomial

Description

Calculate coefficients of Hermite polynomial using recursion relation. This function is provided for
demonstration/teaching purposes; this method is not used by gaussHermiteData. It is numerically
unstable for high-degree polynomials.

Usage

hermitePolyCoef(n)
Arguments

n Degree of Hermite polynomial to compute
Value

Vector of (n+1) coefficients from requested polynomial

Author(s)

Alexander W Blocker <ablocker@gmail.com>

hermitePolyCoef

See Also

gaussHermiteData, aghQuad, ghQuad

Index

+x math
aghQuad, 3
evalHermitePoly, 4
findPolyRoots, 5
gaussHermiteData, 6
ghQuad, 7
hermitePolyCoef, 8

+ package
fastGHQuad-package, 2

aghQuad, 2, 3, 5-7, 9
evalHermitePoly, 4

fastGHQuad (fastGHQuad-package), 2
fastGHQuad-package, 2
findPolyRoots, 5

gaussHermiteData, 2-6, 6, 7-9
ghQuad, 2,4-7,7,8, 9

hermitePolyCoef, 8

10

	fastGHQuad-package
	aghQuad
	evalHermitePoly
	findPolyRoots
	gaussHermiteData
	ghQuad
	hermitePolyCoef
	Index

