# Package 'fastGHQuad'

October 13, 2022

| Type Package                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title Fast 'Rcpp' Implementation of Gauss-Hermite Quadrature                                                                                                                                                                               |
| Version 1.0.1                                                                                                                                                                                                                              |
| <b>Date</b> 2022-05-03                                                                                                                                                                                                                     |
| Author Alexander W Blocker                                                                                                                                                                                                                 |
| Maintainer Alexander W Blocker <ablocker@gmail.com></ablocker@gmail.com>                                                                                                                                                                   |
| <b>Description</b> Fast, numerically-stable Gauss-Hermite quadrature rules and utility functions for adaptive GH quadrature. See Liu, Q. and Pierce, D. A. (1994) <doi:10.2307 2337136=""> for a reference on these methods.</doi:10.2307> |
| License MIT + file LICENSE                                                                                                                                                                                                                 |
| LazyLoad yes                                                                                                                                                                                                                               |
| <pre>URL https://github.com/awblocker/fastGHQuad</pre>                                                                                                                                                                                     |
| <b>Depends</b> Rcpp (>= 0.11.0)                                                                                                                                                                                                            |
| LinkingTo Rcpp                                                                                                                                                                                                                             |
| NeedsCompilation yes                                                                                                                                                                                                                       |
| Repository CRAN                                                                                                                                                                                                                            |
| <b>Date/Publication</b> 2022-05-05 23:30:04 UTC                                                                                                                                                                                            |
| R topics documented:                                                                                                                                                                                                                       |
| fastGHQuad-package                                                                                                                                                                                                                         |
| aghQuad                                                                                                                                                                                                                                    |
| evalHermitePoly                                                                                                                                                                                                                            |
| gaussHermiteData                                                                                                                                                                                                                           |
| ghQuad                                                                                                                                                                                                                                     |
| hermitePolyCoef                                                                                                                                                                                                                            |
| Index 10                                                                                                                                                                                                                                   |

fastGHQuad-package

| fastGHQuad-package | A package for fast, numerically-stable computation of Gauss-Hermite |
|--------------------|---------------------------------------------------------------------|
|                    | quadrature rules                                                    |

# **Description**

This package provides functions to compute Gauss-Hermite quadrature rules very quickly with a higher degree of numerical stability (tested up to 2000 nodes).

#### **Details**

It also provides function for adaptive Gauss-Hermite quadrature, extending Laplace approximations (as in Liu & Pierce 1994).

Package: fastGHQuad
Type: Package
License: MIT
LazyLoad: yes

#### Author(s)

Alexander W Blocker

Maintainer: Alexander W Blocker <ablocker@gmail.com>

#### References

Golub, G. H. and Welsch, J. H. (1969). Calculation of Gauss Quadrature Rules. Mathematics of Computation 23 (106): 221-230.

Liu, Q. and Pierce, D. A. (1994). A Note on Gauss-Hermite Quadrature. Biometrika, 81(3) 624-629.

# See Also

```
gaussHermiteData, aghQuad, ghQuad
```

#### **Examples**

```
# Get quadrature rule
rule <- gaussHermiteData(1000)

# Find a normalizing constant
g <- function(x) 1/(1+x^2/10)^(11/2) # t distribution with 10 df
aghQuad(g, 0, 1.1, rule)
# actual is
1/dt(0,10)

# Find an expectation</pre>
```

aghQuad 3

```
g <- function(x) x^2*dt(x,10) # t distribution with 10 df aghQuad(g, 0, 1.1, rule) # actual is 1.25
```

aghQuad

Adaptive Gauss-Hermite quadrature using Laplace approximation

#### **Description**

Convenience function for integration of a scalar function g based upon its Laplace approximation.

#### Usage

```
aghQuad(g, muHat, sigmaHat, rule, ...)
```

#### **Arguments**

g Function to integrate with respect to first (scalar) argument

Mode for Laplace approximation

Scale for Laplace approximation (sqrt(-1/H), where H is the second derivative of g at muHat)

rule Gauss-Hermite quadrature rule to use, as produced by gaussHermiteData

... Additional arguments for g

#### **Details**

This function approximates

$$\int_{-\infty}^{\infty} g(x) \, dx$$

using the method of Liu & Pierce (1994). This technique uses a Gaussian approximation of g (or the distribution component of g, if an expectation is desired) to "focus" quadrature around the high-density region of the distribution. Formally, it evaluates:

$$\sqrt{2}\hat{\sigma}\sum_{i}w_{i}\exp(x_{i}^{2})g(\hat{\mu}+\sqrt{2}$$

$$\hat{\sigma}x_{i})$$

where x and w come from the given rule.

This method can, in many cases (where the Gaussian approximation is reasonably good), achieve better results with 10-100 quadrature points than with 1e6 or more draws for Monte Carlo integration. It is particularly useful for obtaining marginal likelihoods (or posteriors) in hierarchical and multilevel models — where conditional independence allows for unidimensional integration, adaptive Gauss-Hermite quadrature is often extremely effective.

#### Value

Numeric (scalar) with approximation integral of g from -Inf to Inf.

4 evalHermitePoly

#### Author(s)

Alexander W Blocker <ablocker@gmail.com>

#### References

Liu, Q. and Pierce, D. A. (1994). A Note on Gauss-Hermite Quadrature. Biometrika, 81(3) 624-629.

#### See Also

gaussHermiteData, ghQuad

#### **Examples**

```
# Get quadrature rules
rule10 <- gaussHermiteData(10)</pre>
rule100 <- gaussHermiteData(100)</pre>
# Estimating normalizing constants
g \leftarrow function(x) \frac{1}{(1+x^2/10)^{(11/2)}} # t distribution with 10 df
aghQuad(g, 0, 1.1, rule10)
aghQuad(g, 0, 1.1, rule100)
# actual is
1/dt(0,10)
# Can work well even when the approximation is not exact
g <- function(x) exp(-abs(x)) # Laplace distribution</pre>
aghQuad(g, 0, 2, rule10)
aghQuad(g, 0, 2, rule100)
# actual is 2
# Estimating expectations
# Variances for the previous two distributions
g <- function(x) x^2*dt(x,10) # t distribution with 10 df
aghQuad(g, 0, 1.1, rule10)
aghQuad(g, 0, 1.1, rule100)
# actual is 1.25
# Can work well even when the approximation is not exact
g \leftarrow function(x) x^2 + exp(-abs(x))/2 \# Laplace distribution
aghQuad(g, 0, 2, rule10)
aghQuad(g, 0, 2, rule100)
# actual is 2
```

findPolyRoots 5

#### **Description**

Evaluate Hermite polynomial of given degree at given location. This function is provided for demonstration/teaching purposes; this method is not used by gaussHermiteData. It is numerically unstable for high-degree polynomials.

# Usage

```
evalHermitePoly(x, n)
```

#### **Arguments**

- x Vector of location(s) at which polynomial will be evaluated
- n Degree of Hermite polynomial to compute

#### Value

Vector of length(x) values of Hermite polynomial

#### Author(s)

Alexander W Blocker <ablocker@gmail.com>

#### See Also

gaussHermiteData, aghQuad, ghQuad

 ${\it findPolyRoots}$ 

Find real parts of roots of polynomial

# Description

Finds real parts of polynomial's roots via eigendecomposition of companion matrix. This method is not used by gaussHermiteData. Only the real parts of each root are retained; this can be useful if the polynomial is known a priori to have all roots real.

#### Usage

```
findPolyRoots(c)
```

# **Arguments**

c Coefficients of polynomial

#### Value

Numeric vector containing the real parts of the roots of the polynomial defined by c

6 gaussHermiteData

#### Author(s)

Alexander W Blocker <ablocker@gmail.com>

#### See Also

gaussHermiteData, aghQuad, ghQuad

gaussHermiteData

Compute Gauss-Hermite quadrature rule

#### **Description**

Computes Gauss-Hermite quadrature rule of requested order using Golub-Welsch algorithm. Returns result in list consisting of two entries: x, for nodes, and w, for quadrature weights. This is very fast and numerically stable, using the Golub-Welsch algorithm with specialized eigendecomposition (symmetric tridiagonal) LAPACK routines. It can handle quadrature of order 1000+.

# Usage

gaussHermiteData(n)

#### **Arguments**

n

Order of Gauss-Hermite rule to compute (number of nodes)

#### **Details**

This function computes the Gauss-Hermite rule of order n using the Golub-Welsch algorithm. All of the actual computation is performed in C/C++ and FORTRAN (via LAPACK). It is numerically-stable and extremely memory-efficient for rules of order 1000+.

#### Value

A list containing:

x the n node positions for the requested rulew the w quadrature weights for the requested rule

#### Author(s)

Alexander W Blocker <ablocker@gmail.com>

#### References

Golub, G. H. and Welsch, J. H. (1969). Calculation of Gauss Quadrature Rules. Mathematics of Computation 23 (106): 221-230

Liu, Q. and Pierce, D. A. (1994). A Note on Gauss-Hermite Quadrature. Biometrika, 81(3) 624-629.

ghQuad 7

#### See Also

aghQuad, ghQuad

ghQuad

Convenience function for Gauss-Hermite quadrature

# **Description**

Convenience function for evaluation of Gauss-Hermite quadrature

#### Usage

```
ghQuad(f, rule, ...)
```

# **Arguments**

f Function to integrate with respect to first (scalar) argument; this does not include

the weight function  $exp(-x^2)$ 

rule Gauss-Hermite quadrature rule to use, as produced by gaussHermiteData

... Additional arguments for f

#### **Details**

This function performs classical unidimensional Gauss-Hermite quadrature with the function f using the rule provided; that is, it approximates

$$\int_{-\infty}^{\infty} f(x) \exp(-x^2) \, dx$$

by evaluating

$$\sum_{i} w_{i} f(x_{i})$$

#### Value

Numeric (scalar) with approximation integral of  $f(x)*exp(-x^2)$  from -Inf to Inf.

#### Author(s)

Alexander W Blocker <ablocker@gmail.com>

#### References

Golub, G. H. and Welsch, J. H. (1969). Calculation of Gauss Quadrature Rules. Mathematics of Computation 23 (106): 221-230.

Liu, Q. and Pierce, D. A. (1994). A Note on Gauss-Hermite Quadrature. Biometrika, 81(3) 624-629.

8 hermitePolyCoef

#### See Also

gaussHermiteData, ghQuad

#### **Examples**

```
# Get quadrature rules
rule10 <- gaussHermiteData(10)
rule100 <- gaussHermiteData(100)

# Check that rule is implemented correctly
f <- function(x) rep(1,length(x))
if (!isTRUE(all.equal(sqrt(pi), ghQuad(f, rule10), ghQuad(f, rule100)))) {
   print(ghQuad(f, rule10))
   print(ghQuad(f, rule100))
}
# These should be 1.772454

f <- function(x) x
if (!isTRUE(all.equal(0.0, ghQuad(f, rule10), ghQuad(f, rule100)))) {
   print(ghQuad(f, rule10))
   print(ghQuad(f, rule100))
}
# These should be zero</pre>
```

hermitePolyCoef

Get coefficient of Hermite polynomial

#### **Description**

Calculate coefficients of Hermite polynomial using recursion relation. This function is provided for demonstration/teaching purposes; this method is not used by gaussHermiteData. It is numerically unstable for high-degree polynomials.

#### Usage

```
hermitePolyCoef(n)
```

#### **Arguments**

n

Degree of Hermite polynomial to compute

# Value

Vector of (n+1) coefficients from requested polynomial

#### Author(s)

Alexander W Blocker <ablocker@gmail.com>

hermitePolyCoef 9

# See Also

gaussHermiteData, aghQuad, ghQuad

# **Index**

```
* math
     aghQuad, 3
    {\it eval Hermite Poly}, {\it 4}
     findPolyRoots, 5
     gaussHermiteData, 6
     ghQuad, 7
    hermitePolyCoef, 8
* package
     {\tt fastGHQuad-package}, {\tt 2}
aghQuad, 2, 3, 5-7, 9
evalHermitePoly, 4
{\tt fastGHQuad}\,({\tt fastGHQuad-package}),\,2
fastGHQuad-package, 2
findPolyRoots, 5
gaussHermiteData, 2-6, 6, 7-9
ghQuad, 2, 4–7, 7, 8, 9
hermitePolyCoef, 8
```