Package 'extRC'

October 13, 2022

Type Package

Title Extended RC Models for Contingency Tables

Version 1.2

Date 2020-10-10

Author Francesco Bartolucci, Antonio Forcina

Maintainer Francesco Bartolucci <francesco.bartolucci@unipg.it>

Description Maximum likelihood estimation of an extended class of row-column (RC) association models for two-dimensional contingency tables, which are formulated by a condition of reduced rank on a matrix of extended association parameters; see Forcina (2019) <arXiv:1910.13848>. These parameters are defined by choosing the logit type for the row and column variables among four different options and a transformation derived from suitable divergence measures.

License GPL (>= 2)

Imports MASS

NeedsCompilation no

Repository CRAN

Date/Publication 2020-10-10 21:00:02 UTC

R topics documented:

extRC-package 2
cuby
Deta
dfm 4
Drank
extRC 6
Hmat
MainRC
MatIn
mobility
plot
PraD

extRC-package

																																											1	14
tril	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	12
summary		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	1	12
print																																												

Index

extRC-package

Overview of the Package extRC

Description

Estimation of extended RC models, which are formulate by constraining different types of association parameters to have a reduced rank.

Details

The package contains functions for maximum likelihood (ML) estimation of an extended class of row-column (RC) association models for two-dimensional contingency tables, as described in Forcina (2019). These models are formulated by a condition of reduced rank on a matrix of extended association parameters, which are defined by choosing the logit type for the row and column variables among four different options and a transformation derived from Cressie and Read (1984). Among the available alternatives, it is possible to use log-odds ratio based on different types of aggregation of the joint probabilities. The class of models generalizes that proposed in Kateri and Papaioannou (1994), Bartolucci and Forcina (2002), and Espendiller (2017), and includes the original RC association models of Goodman (1979) and the correspondence analysis model, as formulated in Goodman (1981) and Gilula et al. (1988). Maximum likelihood estimation is based on an algorithm that is an adaptation of the Aitchison and Silvey (1958) algorithm for constrained ML estimation and is related to the algorithm described in Evans and Forcina (2013) for fitting constrained marginal models.

The main function in the package is extRC that provides an output that may be shown by usual R commands print, summary, and plot.

Author(s)

Francesco Bartolucci, Antonio Forcina

Maintainer: Francesco Bartolucci <francesco.bartolucci@unipg.it>

References

Aitchison, J. and Silvey (1958). Maximum-likelihood estimation of parameters subject to restraints. *The Annals of Mathematical Statistics*, **29**, 813-828.

Bartolucci, F. and Forcina, A. (2002). Extended RC association models allowing for order restrictions and marginal modeling. *Journal of the American Statistical Association*, **97**, 1192-1199.

Cressie, N. and Read, T.R., 1984. Multinomial goodness-of-fit tests. *Journal of the Royal Statistical Society: Series B*, **46**, 440-464.

Espendiller, M., 2017. Association in contingency tables. Ph.D. thesis.

cuby

Evans, R.J. and Forcina, A. (2013). Two algorithms for fitting constrained marginal models. *Computational statistics & Data analysis*, **66**, 1-7.

Forcina (2019), An extended class of RC association models: definition and estimation, arXiv:1910.13848.

Gilula, Z., Krieger, A.M., and Ritov, Y., 1988. Ordinal association in contingency tables: Some interpretive aspects. *Journal of the American Statistical Association*, **83**, 540-545.

Goodman, L.A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. *Journal of the American Statistical Association*, **74**, 537-552.

Goodman, L.A., 1981. Association models and canonical correlation in the analysis of crossclassifications having ordered categories. *Journal of the American Statistical Association*, **76**, 320-334.

Kateri, M. and Papaioannou, T. (1994). f-divergence Association Models. University of Ioannina.

Examples

```
# load data
data(mobility)
```

```
# fit model for a single la
out = extRC(mobility,mod=c("l","l"),k=1,la=0.6)
summary(out)
```

cuby

Step length

Description

Internal function that computes step length of the estimation algorithm in extRC by fitting a cubic polynomial.

Usage

cuby(g)

Arguments

g

```
vector of likelihood values at different step lengths
```

Value

comp1 optimal length

Author(s)

Description

Given a vector of canonical parameters coding distribution for an *IxJ* contingency table and the RC model specification in list Model, it computes vector of marginal and joint parameters and matrix of its derivatives with respect the canonical parameters.

Usage

Deta(the, Model, der = FALSE)

Arguments

the	vector of canonical parameters
Model	list specifying all model components
der	to require derivative computation (optional)

Value

eta	vector of marginal parameters
Der	derivative matrix with respect to canonical parameters

Author(s)

Francesco Bartolucci, Antonio Forcina

First difference matrix

Description

It creates a matrix of first differences of order k.

Usage

dfm(k)

Arguments

k size of the matrix

Value

D first difference matrix

Deta

Drank

Author(s)

Francesco Bartolucci, Antonio Forcina

Examples

```
D = dfm(5)
x = runif(5)
(D%*%x)
```

Drank

Check matrix rank

Description

Given the row vectorized matrix, it computes the vector of discrepancies with respect to a certain rank and its derivative.

Usage

Drank(ga, lev, k, der = FALSE)

Arguments

ga	row vectorized matrix of interaction
lev	vector of the number of row and column categories in the original table (the numbers of rows and columns of the input matrix must be increased by 1)
k	matrix rank
der	to require derivative

Value

fr	vector of discrepancies with respect to the rank
Dfr	derivative of fr

References

Bartolucci, F. and Forcina, A. (2002). Extended RC association models allowing for order restrictions and marginal modeling. *Journal of the American Statistical Association*, **97**, 1192-1199.

Examples

```
A = matrix(rnorm(12),4) # matrix the rank of which must be checked
a = as.vector(t(A))
out = Drank(a,c(5,4),1,der=TRUE)
(out$fr)
(out$Dfr)
```

extRC

Description

Main function that fits extended RC models based on different types of aggregation (continuation, local, global) and different divergence functions defined by a suitable value of lambda.

Usage

```
extRC(N, mod, k, la, marg.cons = c("free","equal","shift"))
```

Arguments

Ν	observed contingency table
mod	vector indicating the types of aggregation for row and column variables ("c" for continuation, "l" for local, "g" for global)
k	rank required for the matrix of interaction parameters
la	value of lambda parameter
marg.cons	type of constraint on the marginal distributions

Value

la	vector of lambda values (when a vector is in input)
dev	deviance of the fitted model (when only one lambda value is in input) or vector of deviances (when a vector of lambda values is in input)
df	degrees of freedom (when only one lambda value is in input)
it	number of iterations (when only one lambda value is in input)
dis	final discrepancy (when only one lambda value is in input)
pj	vector of joint probabilities under the fitted model (when only one lambda value is in input)
eta	full vector of marginal parameters (when only one lambda value is in input)
etaX	vector of row marginal parameters (when only one lambda value is in input)
etaY	vector of column marginal parameters (whenonly one lambda value is in input)
Eta	matrix of association parameters (when only one lambda value is in input)
la	vector of lambda values (when more lambda values are in input)
dev	vector of deviance values (when more lambda values are in input)

Author(s)

Hmat

Examples

```
# load data
data(mobility)
# for a single value of lambda, fit model with constraints of rank 1 on
# local-local logits and without constraints on the marginal distributions
out = extRC(mobility,mod=c("1","1"),k=1,la=0.6)
summary(out)
# for a single value of lambda, fit model with constraints of rank 1 on
# local-local logits and under constrain of equal marginal distributions
out = extRC(mobility,mod=c("l","l"),k=1,la=0.6,marg.cons="equal")
summary(out)
# for a single value of lambda, fit model with constraints of rank 2 on
# global-global logits and under constraint that marginal distributions
# are equal up to a constant shift
out = extRC(mobility,mod=c("g","g"),k=2,la=0.6,marg.cons="shift")
summary(out)
# fit model for a vector of lambdas
la = seq(-1.8, 0.6, length.out=10)
out1 = extRC(mobility,mod=c("1","1"),k=1,la=la)
plot(out1)
```

Hmat

Matrix algebra transformation

Description

Internal function that performs a matrix algebra transformation that is used for estimation in extRC.

Usage

Hmat(G)

Arguments

G	input matrix

Value

H transformed matrix

Author(s)

MainRC

Description

Internal function that implements the Aitchinson-Silvey algorithm to estimate extended RC models.

Usage

MainRC(y, Model, the0 = NULL, output = FALSE)

Arguments

У	row vectorized vector of frequencies of the contingency table
Model	list of model components
the0	initial vector of canonical parameters (optional)
output	to require full output (optional)

Value

dev	final deviance
df	degrees of freedom
pj	vector of joint probabilities
it	number of iterations
dis	final discrepancy

Author(s)

Francesco Bartolucci, Antonio Forcina

MatIn

Aggregation matrices

Description

Computation of aggregation matrices for generalized interactions that are used in codeextRC to estimate extended RC models.

Usage

MatIn(lev, mod)

mobility

Arguments

lev	vector number of rows and columns
mod	type of logit for each dimension

Value

RØ	aggregation matrix for the row margin upper level
R1	aggregation matrix for the row margin lower level
C0	aggregation matrix for the column margin upper level
C1	aggregation matrix for the column margin lower level
J00	aggregation matrix for the left upper quadrant
J01	aggregation matrix for the rigth upper quadrant
J10	aggregation matrix for the left lower quadrant
J11	aggregation matrix for the right lower quadrant

Author(s)

Francesco Bartolucci, Antonio Forcina

mobility	Social mobility data	
----------	----------------------	--

Description

Social mobility table of 3,500 British individuals, who are cross-classified according to their occupational status and the occupation status of their fathers.

Usage

data("mobility")

Format

The format is: num [1:5, 1:5] 50 28 11 14 3 45 174 78 150 42 ... - attr(*, "dimnames")=List of 2 ...\$: chr [1:5] "F1" "F2" "F3" "F4"\$: chr [1:5] "S1" "S2" "S3" "S4" ...

References

Mosteller, F. (1968). Association and estimation in contingency tables. *Journal of the American Statistical Association*, **63**, 1-28.

Bartolucci, F. and Forcina, A. (2002). Extended RC association models allowing for order restrictions and marginal modeling. *Journal of the American Statistical Association*, **97**, 1192-1199.

plot

Description

It plots the output of codeextRC function for a vector of lambda values.

Usage

S3 method for class 'extRC'
plot(x, ...)

Arguments

Х	output from extRC
	further arguments passed to or from other methods

Value

None

Author(s)

Francesco Bartolucci, Antonio Forcina

PraD

Discrepancy with respect to equality constraints

Description

Internal function that, given a vector of canonical parameters for an *IxJ* table (vectorized by row) and the RC model specification in list Model, computes vector of discrepancies and matrix of its derivatives with respect to the canonical parameters.

Usage

PraD(the, Model, der = FALSE)

Arguments

the	vector of canonical parameters	
Model	list of model components	
der	to require the derivative (optional)	

print

Value

eta	vector of parameters (logits, interactions)
hdis	vector of discrepancies
Hdis	matrix of derivatives of discrepancies with respect to the canonical parameter (optional)

Author(s)

Francesco Bartolucci, Antonio Forcina

print

Print the output.

Description

Given the output of codeextRC function, it is written in a readable form.

Usage

S3 method for class 'extRC'
print(x, ...)

Arguments

х	output from extRC
	further arguments passed to or from other methods

Value

None

Author(s)

summary

Description

Summary method for the output of codeextRC function.

Usage

S3 method for class 'extRC'
summary(object, ...)

Arguments

object	output from extRC
	further arguments passed to or from other methods

Value

None

Author(s)

Francesco Bartolucci, Antonio Forcina

tril	Lower triangular matrix	

Description

Given a square matrix, it provides the lower triangular part, including the main diagonal.

Usage

tril(M)

Arguments

М	square matrix
---	---------------

Value

N transformed matrix

Author(s)

Examples

M = matrix(1:9,3)
N = tril(M)

Index

* algebra Drank, 5 Hmat, 7* array tril, 12 * datasets mobility, 9 * multivariate extRC-package, 2cuby, 3 Deta, 4 dfm,<mark>4</mark> Drank, 5 extRC, 2, 3, 6, 7, 8, 10–12 extRC-package, 2Hmat,7MainRC, 8 MatIn,<mark>8</mark> mobility, 9 plot, 2, 10 PraD, 10 print, 2, 11 summary, 2, 12 tril, 12