
Package ‘expm’
August 19, 2024

Type Package

Title Matrix Exponential, Log, 'etc'

Version 1.0-0

Date 2024-08-19

Contact expm-developers@lists.R-forge.R-project.org

Description Computation of the matrix exponential, logarithm, sqrt,
and related quantities, using traditional and modern methods.

Depends Matrix

Imports methods

Suggests RColorBrewer, sfsmisc, Rmpfr

BuildResaveData no

License GPL (>= 2)

URL https://R-Forge.R-project.org/projects/expm/

BugReports https://R-forge.R-project.org/tracker/?atid=472&group_id=107

Encoding UTF-8

NeedsCompilation yes

Author Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>),
Christophe Dutang [aut] (<https://orcid.org/0000-0001-6732-1501>),
Vincent Goulet [aut] (<https://orcid.org/0000-0002-9315-5719>),
Douglas Bates [ctb] (cosmetic clean up, in svn r42),
David Firth [ctb] (expm(method= ``PadeO'' and ``TaylorO'')),
Marina Shapira [ctb] (expm(method= ``PadeO'' and ``TaylorO'')),
Michael Stadelmann [ctb] (``Higham08*'' methods, see ?expm.Higham08...)

Maintainer Martin Maechler <maechler@stat.math.ethz.ch>

Repository CRAN

Date/Publication 2024-08-19 15:20:07 UTC

1

https://R-Forge.R-project.org/projects/expm/
https://R-forge.R-project.org/tracker/?atid=472&group_id=107
https://orcid.org/0000-0002-8685-9910
https://orcid.org/0000-0001-6732-1501
https://orcid.org/0000-0002-9315-5719

2 balance

Contents

balance . 2
expAtv . 4
expm . 5
expm.Higham08 . 10
expmCond . 13
expmFrechet . 15
logm . 16
matpow . 18
matStig . 19
sqrtm . 20

Index 22

balance Balance a Square Matrix via LAPACK’s DGEBAL

Description

Balance a square matrix via LAPACK’s DGEBAL. This is an R interface, mainly used for experimen-
tation.

This LAPACK routine is used internally for Eigenvalue decompositions, but also, in Ward(1977)’s
algorithm for the matrix exponential.

The name balance() is preferred nowadays, and “dgebal()” has been deprecated (finally, after 9
years ...).

Usage

balance(A, job = c("B", "N", "P", "S"))
Deprecated now:
dgebal(A, job = c("B", "N", "P", "S"))

Arguments

A a square (n× n) numeric, logical or complex matrix.

job a one-letter string specifying the ‘job’ for DGEBAL / ZGEBAL.

P Permutation
S Scaling
B Both permutation and scaling
N None

balance 3

Details

An excerpt of the LAPACK documentation about DGEBAL() or ZGEBAL(), respectively, describing
the result

i1 ("ILO") (output) integer

i2 ("IHI") (output) integer
i1 and i2 are set to integers such that on exit z[i,j] = 0 if i > j and j = 1, ..., i1 − 1 or
i = i2 + 1, ..., n.
If job = 'N' or 'S', i1 = 1 and i2 = n.

scale (output) numeric vector of length n. Details of the permutations and scaling factors applied
to A. If P[j] is the index of the row and column interchanged with row and column j and D[j]
is the scaling factor applied to row and column j, then scale[j] = P[j] for j = 1, ..., i1− 1
= D[j] for j = i1, ..., i2,
= P[j] for j = i2 + 1, ..., n.
The order in which the interchanges are made is n to i2+1, then 1 to i1-1.

Look at the LAPACK documentation for more details.

Value

A list with components

z the transformation of matrix A, after permutation and or scaling.

scale numeric vector of length n, containing the permutation and/or scale vectors ap-
plied.

i1, i2 integers (length 1) in {1, 2, . . . , n}, denoted by ILO and IHI respectively in the
LAPACK documentation. Only relevant for "P" or "B", they describe where
permutations and where scaling took place; see the ‘Details’ section.

Author(s)

Martin Maechler

References

LAPACK Reference Manual, https://netlib.org/lapack/, balancing ‘gebal’, currently at https:
//www.netlib.org/lapack/explore-html/df/df3/group__gebal.html.

See Also

eigen, expm.

Examples

m4 <- rbind(c(-1,-1, 0, 0),
c(0, 0,10,10),
c(0, 0,10, 0),
c(0,10, 0, 0))

(b4 <- balance(m4))

https://netlib.org/lapack/
https://www.netlib.org/lapack/explore-html/df/df3/group__gebal.html
https://www.netlib.org/lapack/explore-html/df/df3/group__gebal.html

4 expAtv

--- for testing and didactical reasons : ----
if(expm:::doExtras()) withAutoprint({

sessionInfo()
packageDescription("Matrix")
"expm installed at"
dirname(attr(packageDescription("expm"), "file"))

})

demo(balanceTst) # also defines the balanceTst() function
which in its tests ``defines'' what
the return value means, notably (i1,i2,scale)

expAtv Compute Matrix Exponential exp(A t) * v directly

Description

Compute exp(At) ∗ v directly, without evaluating exp(A).

Usage

expAtv(A, v, t = 1,
method = "Sidje98",
rescaleBelow = 1e-6,
tol = 1e-07, btol = 1e-07, m.max = 30, mxrej = 10,
verbose = getOption("verbose"))

Arguments

A n x n matrix
v n - vector
t number (scalar);
method a string indicating the method to be used; there’s only one currently; we would

like to add newer ones.
rescaleBelow if norm(A,"I") is smaller than rescaleBelow, rescale A to norm 1 and t such

that At remains unchanged. This step is in addition to Sidje’s original algorithm
and easily seen to be necessary even in simple cases (e.g., n = 3).

tol, btol tolerances; these are tuning constants of the "Sidje1998" method which the user
should typically not change.

m.max, mxrej integer constants you should only change if you know what you’re doing
verbose flag indicating if the algorithm should be verbose..

Value

a list with components

eAtvfixme...

expm 5

Author(s)

Ravi Varadhan, Johns Hopkins University; Martin Maechler (cosmetic, generalization to sparse
matrices; rescaling (see rescaleBelow).

References

Roger B. Sidje (1998) EXPOKIT: Software Package for Computing Matrix Exponentials. ACM -
Transactions On Mathematical Software 24(1), 130–156.

(Not yet available in our expm package!)
Al-Mohy, A. and Higham, N. (2011). Computing the Action of the Matrix Exponential, with an
Application to Exponential Integrators. SIAM Journal on Scientific Computing, 33(2), 488–511.
doi:10.1137/100788860

See Also

expm

Examples

source(system.file("demo", "exact-fn.R", package = "expm"))
##-> rnilMat() ; xct10
set.seed(1)
(s5 <- Matrix(m5 <- rnilMat(5))); v <- c(1,6:9)
(em5 <- expm(m5))
r5 <- expAtv(m5, v)
r5. <- expAtv(s5, v)
stopifnot(all.equal(r5, r5., tolerance = 1e-14),

all.equal(c(em5 %*% v), r5$eAtv))

v <- 10:1
with(xct10, all.equal(expm(m), expm))
all.equal(c(xct10$expm %*% v),

expAtv(xct10$m, v)$eAtv)

expm Matrix Exponential

Description

This function computes the exponential of a square matrix A, defined as the sum from r = 0 to
infinity of Ar/r!. Several methods are provided. The Taylor series and Padé approximation are
very importantly combined with scaling and squaring.

https://doi.org/10.1137/100788860

6 expm

Usage

expm(x, method = c("Higham08.b", "Higham08",
"AlMohy-Hi09",
"Ward77", "PadeRBS", "Pade", "Taylor", "PadeO", "TaylorO",
"R_Eigen", "R_Pade", "R_Ward77", "hybrid_Eigen_Ward"),

order = 8, trySym = TRUE, tol = .Machine$double.eps, do.sparseMsg = TRUE,
preconditioning = c("2bal", "1bal", "buggy"))

.methComplex # those 'method' s which also work for complex (number) matrices

.methSparse # those 'method' s which work with _sparseMatrix_ w/o coercion to dense

Arguments

x a square matrix.

method "Higham08.b", "Ward77", "Pade" or "Taylor", etc; The default is now "Higham08.b"
which uses Higham’s 2008 algorithm with additional balancing precondition-
ing, see expm.Higham08.

The versions with "*O" call the original Fortran code, whereas the first ones call
the BLAS-using and partly simplified newer code.
"R_Pade" uses an R-code version of "Pade" for didactical reasons, and
"R_Ward77" uses an R version of "Ward77", still based on LAPACK’s dgebal,
see R interface dgebal. This has enabled us to diagnose and fix the bug in the
original octave implementation of "Ward77". "R_Eigen" tries to diagonalise
the matrix x, if not possible, "R_Eigen" raises an error. "hybrid_Eigen_Ward"
method also tries to diagonalise the matrix x, if not possible, it uses "Ward77"
algorithm.

order an integer, the order of approximation to be used, for the "Pade", incl "R_Ward77",
and "Taylor" methods. The best value for this depends on machine precision
(and slightly on x) but for the current double precision arithmetic, one recom-
mendation (and the Matlab implementations) uses order = 6 unconditionally;
our default, 8, is from Ward(1977, p.606)’s recommendation, but also used for
"AlMohy-Hi09" where a high order order=12 may be more appropriate (and
slightly more expensive).

trySym logical indicating if method = "R_Eigen" should use isSymmetric(x) and take
advantage for (almost) symmetric matrices.

tol a given tolerance used to check if x is computationally singular when method =
"hybrid_Eigen_Ward".

do.sparseMsg logical allowing a message about sparse to dense coercion; setting it FALSE sup-
presses that message.

preconditioning

a string specifying which implementation of Ward(1977) should be used when
method = "Ward77".

expm 7

Details

The exponential of a matrix is defined as the infinite Taylor series

eM =

∞∑
k=1

Mk

k!
.

For the "Pade" and "Taylor" methods, there is an "accuracy" attribute of the result. It is an upper
bound for the L2 norm of the Cauchy error expm(x, *, order + 10) - expm(x, *, order).

Currently, mostly algorithms which are “R-code only” accept sparse matrices (see the "sparseMatrix"
class in package Matrix). Their method names are available from .methSparse.

Similarly only some of the algorithms are available for complex (number) matrices; the correspond-
ing methods are in .methComplex.

Value

The matrix exponential of x.

Note

For a good general discussion of the matrix exponential problem, see Moler and van Loan (2003).

Author(s)

The "Ward77" method:
Vincent Goulet <vincent.goulet@act.ulaval.ca>, and Christophe Dutang, based on code trans-
lated by Doug Bates and Martin Maechler from the implementation of the corresponding Octave
function contributed by A. Scottedward Hodel <A.S.Hodel@eng.auburn.edu>.

The "PadeRBS" method:
Roger B. Sidje, see the EXPOKIT reference.

The "PadeO" and "TaylorO" methods:
Marina Shapira (U Oxford, UK) and David Firth (U Warwick, UK);

The "Pade" and "Taylor" methods are slight modifications of the "*O" ([O]riginal versions) meth-
ods, by Martin Maechler, using BLAS and LINPACK where possible.

The "hybrid_Eigen_Ward" method by Christophe Dutang is a C translation of "R_Eigen" method
by Martin Maechler.

The "Higham08" and "Higham08.b" (current default) were written by Michael Stadelmann, see
expm.Higham08.

The "AlMohy-Hi09" implementation (R code interfacing to stand-alone C) was provided and do-
nated by Drew Schmidt, U. Tennesse.

References

Ward, R. C. (1977). Numerical computation of the matrix exponential with accuracy estimate.
SIAM J. Num. Anal. 14, 600–610.

Roger B. Sidje (1998). EXPOKIT: Software package for computing matrix exponentials. ACM -
Transactions on Mathematical Software 24(1), 130–156.

https://CRAN.R-project.org/package=Matrix

8 expm

Moler, C and van Loan, C (2003). Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM Review 45, 3–49. At doi:10.1137/S00361445024180

Awad H. Al-Mohy and Nicholas J. Higham (2009) A New Scaling and Squaring Algorithm for the
Matrix Exponential. SIAM. J. Matrix Anal. & Appl., 31(3), 970–989. doi:10.1137/S00361445024180

See Also

The package vignette for details on the algorithms and calling the function from external packages.

expm.Higham08 for "Higham08".

expAtv(A,v,t) computes eAtv (for scalar t and n-vector v) directly and more efficiently than
computing eAt.

Examples

x <- matrix(c(-49, -64, 24, 31), 2, 2)
expm(x)
expm(x, method = "AlMohy-Hi09")

Test case 1 from Ward (1977)

test1 <- t(matrix(c(

4, 2, 0,
1, 4, 1,
1, 1, 4), 3, 3))

expm(test1, method="Pade")
Results on Power Mac G3 under Mac OS 10.2.8
[,1] [,2] [,3]
[1,] 147.86662244637000 183.76513864636857 71.79703239999643
[2,] 127.78108552318250 183.76513864636877 91.88256932318409
[3,] 127.78108552318204 163.67960172318047 111.96810624637124
-- these agree with ward (1977, p608)

Compare with the naive "R_Eigen" method:
try(
expm(test1, method="R_Eigen")
) ## platform depently, sometimes gives an error from solve
or is accurate or one older result was
[,1] [,2] [,3]
##[1,] 147.86662244637003 88.500223574029647 103.39983337000028
##[2,] 127.78108552318220 117.345806155250600 90.70416537273444
##[3,] 127.78108552318226 90.384173332156763 117.66579819582827
-- hopelessly inaccurate in all but the first column.
##

Test case 2 from Ward (1977)

test2 <- t(matrix(c(

29.87942128909879, .7815750847907159, -2.289519314033932,
.7815750847907159, 25.72656945571064, 8.680737820540137,
-2.289519314033932, 8.680737820540137, 34.39400925519054),

3, 3))

https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180

expm 9

expm(test2, method="Pade")
[,1] [,2] [,3]
##[1,] 5496313853692357 -18231880972009844 -30475770808580828
##[2,] -18231880972009852 60605228702227024 101291842930256144
##[3,] -30475770808580840 101291842930256144 169294411240859072
-- which agrees with Ward (1977) to 13 significant figures
expm(test2, method="R_Eigen")
[,1] [,2] [,3]
##[1,] 5496313853692405 -18231880972009100 -30475770808580196
##[2,] -18231880972009160 60605228702221760 101291842930249376
##[3,] -30475770808580244 101291842930249200 169294411240850880
-- in this case a very similar degree of accuracy.
##

Test case 3 from Ward (1977)

test3 <- t(matrix(c(

-131, 19, 18,
-390, 56, 54,
-387, 57, 52), 3, 3))

expm(test3, method="Pade")
[,1] [,2] [,3]
##[1,] -1.5096441587713636 0.36787943910439874 0.13533528117301735
##[2,] -5.6325707997970271 1.47151775847745725 0.40600584351567010
##[3,] -4.9349383260294299 1.10363831731417195 0.54134112675653534
-- agrees to 10dp with Ward (1977), p608.
expm(test3, method="R_Eigen")
[,1] [,2] [,3]
##[1,] -1.509644158796182 0.3678794391103086 0.13533528117547022
##[2,] -5.632570799902948 1.4715177585023838 0.40600584352641989
##[3,] -4.934938326098410 1.1036383173309319 0.54134112676302582
-- in this case, a similar level of agreement with Ward (1977).
##

Test case 4 from Ward (1977)

test4 <-

structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-10,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0),

.Dim = c(10, 10))
attributes(expm(test4, method="Pade"))
max(abs(expm(test4, method="Pade") - expm(test4, method="R_Eigen")))
##[1] 8.746826694186494e-08
-- here mexp2 is accurate only to 7 d.p., whereas mexp
is correct to at least 14 d.p.

10 expm.Higham08

##
Note that these results are achieved with the default
settings order=8, method="Pade" -- accuracy could
presumably be improved still further by some tuning
of these settings.

##
example of computationally singular matrix -> is nil-potent -> expm(m) = polynomial(m)
##
m <- matrix(c(0,1,0,0), 2,2)
try(
expm(m, method="R_Eigen")
)
error since m is computationally singular
(em <- expm(m, method="hybrid"))
hybrid use the Ward77 method
I2 <- diag(2)
stopifnot(all.equal(I2 + m, expm(m)))

Try all methods --------------------------------------
(meths <- eval(formals(expm)$method)) # >= 13 ..

all3 <- sapply(meths, simplify = FALSE, function(mtd)
tryCatch(expm(test3, method = mtd), error = conditionMessage))

are all "equal" :
stopifnot(

vapply(all3[-1], function(R) all.equal(all3[[1]], R, check.attributes=FALSE), NA))

all4 <- sapply(meths, simplify = FALSE, function(mtd)
tryCatch(expm(test4, method = mtd), error = conditionMessage))

Try complex matrices --c--c--c--c--c--c--c--c--c--c--c--c--c--c--c
.methComplex
zm <- m*(1+1i) # is also nilpotent :
stopifnot(zm %*% zm == 0, # is nilpotent already for ^2 ==> expm() is linear %

all.equal(I2 + zm, expm(zm)))

--->> more tests in ../tests/{ex,ex2,exact-ex}.R

expm.Higham08 Matrix Exponential [Higham 2008]

Description

Calculation of matrix exponential eA with the ‘Scaling & Squaring’ method with balancing.

Implementation of Higham’s Algorithm from his book (see references), Chapter 10, Algorithm
10.20.

The balancing option is an extra from Michael Stadelmann’s Masters thesis.

expm.Higham08 11

Usage

expm.Higham08(A, balancing = TRUE)

Arguments

A square matrix, may be a "sparseMatrix", currently only if balancing is false.

balancing logical indicating if balancing should happen (before and after scaling and squar-
ing).

Details

The algorithm comprises the following steps

0. Balancing

1. Scaling

2. Padé-Approximation

3. Squaring

4. Reverse Balancing

Value

a matrix of the same dimension as A, the matrix exponential of A.

Note

expm.Higham8() no longer needs to be called directly; rather expm(A, "Higham8b") and expm(A,
"Higham8") correspond to the two options of balancing = TRUE || FALSE.

Author(s)

Michael Stadelmann (final polish by Martin Maechler).

References

Higham, Nicholas J. (2008). Functions of Matrices: Theory and Computation; SIAM (Society for
Industrial and Applied Mathematics), Philadelphia, USA; doi:10.1137/1.9780898717778

Michael Stadelmann (2009). Matrixfunktionen; Analyse und Implementierung. [in German] Mas-
ter’s thesis and Research Report 2009-12, SAM, ETH Zurich; https://math.ethz.ch/sam/research/
reports.html?year=2009, or the pdf directly at https://www.sam.math.ethz.ch/sam_reports/
reports_final/reports2009/2009-12.pdf.

See Also

The other algorithms expm(x, method = *).

expmCond, to compute the exponential-condition number.

https://doi.org/10.1137/1.9780898717778
https://math.ethz.ch/sam/research/reports.html?year=2009
https://math.ethz.ch/sam/research/reports.html?year=2009
https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2009/2009-12.pdf
https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2009/2009-12.pdf

12 expm.Higham08

Examples

The *same* examples as in ../expm.Rd {FIXME} --
x <- matrix(c(-49, -64, 24, 31), 2, 2)
expm.Higham08(x)

Test case 1 from Ward (1977)

test1 <- t(matrix(c(

4, 2, 0,
1, 4, 1,
1, 1, 4), 3, 3))

expm.Higham08(test1)
[,1] [,2] [,3]
[1,] 147.86662244637000 183.76513864636857 71.79703239999643
[2,] 127.78108552318250 183.76513864636877 91.88256932318409
[3,] 127.78108552318204 163.67960172318047 111.96810624637124
-- these agree with ward (1977, p608)

Test case 2 from Ward (1977)

test2 <- t(matrix(c(

29.87942128909879, .7815750847907159, -2.289519314033932,
.7815750847907159, 25.72656945571064, 8.680737820540137,
-2.289519314033932, 8.680737820540137, 34.39400925519054),

3, 3))
expm.Higham08(test2)
expm.Higham08(test2, balancing = FALSE)
[,1] [,2] [,3]
##[1,] 5496313853692405 -18231880972009100 -30475770808580196
##[2,] -18231880972009160 60605228702221760 101291842930249376
##[3,] -30475770808580244 101291842930249200 169294411240850880
-- in this case a very similar degree of accuracy.

Test case 3 from Ward (1977)

test3 <- t(matrix(c(

-131, 19, 18,
-390, 56, 54,
-387, 57, 52), 3, 3))

expm.Higham08(test3)
expm.Higham08(test3, balancing = FALSE)
[,1] [,2] [,3]
##[1,] -1.5096441587713636 0.36787943910439874 0.13533528117301735
##[2,] -5.6325707997970271 1.47151775847745725 0.40600584351567010
##[3,] -4.9349383260294299 1.10363831731417195 0.54134112675653534
-- agrees to 10dp with Ward (1977), p608. ??? (FIXME)

expmCond 13

Test case 4 from Ward (1977)

test4 <-

structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-10,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0),

.Dim = c(10, 10))

E4 <- expm.Higham08(test4)
Matrix(zapsmall(E4))

S4 <- as(test4, "sparseMatrix") # some R based expm() methods work for sparse:
ES4 <- expm.Higham08(S4, bal=FALSE)
stopifnot(all.equal(E4, unname(as.matrix(ES4))))
NOTE: Need much larger sparse matrices for sparse arith to be faster!

##
example of computationally singular matrix
##
m <- matrix(c(0,1,0,0), 2,2)
eS <- expm.Higham08(m) # "works" (hmm ...)

expmCond Exponential Condition Number of a Matrix

Description

Compute the exponential condition number of a matrix, either with approximation methods, or
exactly and very slowly.

Usage

expmCond(A, method = c("1.est", "F.est", "exact"),
expm = TRUE, abstol = 0.1, reltol = 1e-6,
give.exact = c("both", "1.norm", "F.norm"))

Arguments

A a square matrix

method a string; either compute 1-norm or F-norm approximations, or compte these
exactly.

14 expmCond

expm logical indicating if the matrix exponential itself, which is computed anyway,
should be returned as well.

abstol, reltol for method = "F.est", numerical ≥ 0, as absolute and relative error tolerance.

give.exact for method = "exact", specify if only the 1-norm, the Frobenius norm, or both
are to be computed.

Details

method = "exact", aka Kronecker-Sylvester algorithm, computes a Kronecker matrix of dimension
n2 × n2 and hence, with O(n5) complexity, is prohibitely slow for non-small n. It computes
the exact exponential-condition numbers for both the Frobenius and/or the 1-norm, depending on
give.exact.

The two other methods compute approximations, to these norms, i.e., estimate them, using algo-
rithms from Higham, chapt.~3.4, both with complexity O(n3).

Value

when expm = TRUE, for method = "exact", a list with components

expm containing the matrix exponential, expm.Higham08(A).

expmCond(F|1) numeric scalar, (an approximation to) the (matrix exponential) condition num-
ber, for either the 1-norm (expmCond1) or the Frobenius-norm (expmCondF).

When expm is false and method one of the approximations ("*.est"), the condition number is
returned directly (i.e., numeric of length one).

Author(s)

Michael Stadelmann (final polish by Martin Maechler).

References

Awad H. Al-Mohy and Nicholas J. Higham (2009). Computing Fréchet Derivative of the Matrix Ex-
ponential, with an application to Condition Number Estimation; MIMS EPrint 2008.26; Manchester
Institute for Mathematical Sciences, U. Manchester, UK. https://eprints.maths.manchester.
ac.uk/1218/01/covered/MIMS_ep2008_26.pdf

Higham, N.~J. (2008). Functions of Matrices: Theory and Computation; Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA.

Michael Stadelmann (2009) Matrixfunktionen ... Master’s thesis; see reference in expm.Higham08.

See Also

expm.Higham08 for the matrix exponential.

https://eprints.maths.manchester.ac.uk/1218/01/covered/MIMS_ep2008_26.pdf
https://eprints.maths.manchester.ac.uk/1218/01/covered/MIMS_ep2008_26.pdf

expmFrechet 15

Examples

set.seed(101)
(A <- matrix(round(rnorm(3^2),1), 3,3))

eA <- expm.Higham08(A)
stopifnot(all.equal(eA, expm::expm(A), tolerance= 1e-15))

C1 <- expmCond(A, "exact")
C2 <- expmCond(A, "1.est")
C3 <- expmCond(A, "F.est")
all.equal(C1$expmCond1, C2$expmCond, tolerance= 1e-15)# TRUE
all.equal(C1$expmCondF, C3$expmCond)# relative difference of 0.001...

expmFrechet Frechet Derivative of the Matrix Exponential

Description

Compute the Frechet (actually ‘Fréchet’) derivative of the matrix exponential operator.

Usage

expmFrechet(A, E, method = c("SPS", "blockEnlarge"), expm = TRUE)

Arguments

A square matrix (n× n).
E the “small Error” matrix, used in L(A,E) = f(A+ E,A)

method string specifying the method / algorithm; the default "SPS" is “Scaling + Pade +
Squaring” as in the algorithm 6.4 below; otherwise see the ‘Details’ section.

expm logical indicating if the matrix exponential itself, which is computed anyway,
should be returned as well.

Details

Calculation of eA and the Exponential Frechet-Derivative L(A,E).

When method = "SPS" (by default), the with the Scaling - Padé - Squaring Method is used, in an
R-Implementation of Al-Mohy and Higham (2009)’s Algorithm 6.4.

Step 1: Scaling (of A and E)
Step 2: Padé-Approximation of eA and L(A,E)

Step 3: Squaring (reversing step 1)

method = "blockEnlarge" uses the matrix identity of

f([AE; 0A]) = [f(A)Df(A); 0f(A)]

for the 2n × 2n block matrices where f(A) := expm(A) and Df(A) := L(A,E). Note that
"blockEnlarge" is much simpler to implement but slower (CPU time is doubled for n = 100).

16 logm

Value

a list with components

expm if expm is true, the matrix exponential (n× n matrix).

Lexpm the Exponential-Frechet-Derivative L(A,E), a matrix of the same dimension.

Author(s)

Michael Stadelmann (final polish by Martin Maechler).

References

see expmCond.

See Also

expm.Higham08 for the matrix exponential. expmCond for exponential condition number computa-
tions which are based on expmFrechet.

Examples

(A <- cbind(1, 2:3, 5:8, c(9,1,5,3)))
E <- matrix(1e-3, 4,4)
(L.AE <- expmFrechet(A, E))
all.equal(L.AE, expmFrechet(A, E, "block"), tolerance = 1e-14) ## TRUE

logm Matrix Logarithm

Description

This function computes the (principal) matrix logarithm of a square matrix. A logarithm of a matrix
A is L such that A = eL (meaning A == expm(L)), see the documentation for the matrix exponential,
expm, which can be defined as

eL :=

∞∑
r=0

Lr/r!.

Usage

logm(x, method = c("Higham08", "Eigen"),
tol = .Machine$double.eps)

logm 17

Arguments

x a square matrix.

method a string specifying the algorithmic method to be used. The default uses the
algorithm by Higham(2008).

The simple "Eigen" method tries to diagonalise the matrix x; if that is not pos-
sible, it raises an error.

tol a given tolerance used to check if x is computationally singular when method =
"Eigen".

Details

The exponential of a matrix is defined as the infinite Taylor series

eM =

∞∑
k=1

Mk

k!
.

The matrix logarithm of A is a matrix M such that exp(M) = A. Note that there typically are an
infinite number number of such matrices, and we compute the prinicipal matrix logarithm, see the
references.

Method "Higham08" works via “inverse scaling and squaring”, and from the Schur decomposi-
tion, applying a matrix square root computation. It is somewhat slow but also works for non-
diagonalizable matrices.

Value

A matrix ‘as x’ with the matrix logarithm of x, i.e., all.equal(expm(logm(x)), x, tol) is typi-
cally true for quite small tolerance tol.

Author(s)

Method "Higham08" was implemented by Michael Stadelmann as part of his master thesis in math-
ematics, at ETH Zurich; the "Eigen" method by Christophe Dutang.

References

Higham, N.~J. (2008). Functions of Matrices: Theory and Computation; Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA.

The Matrix Logarithm is very nicely defined by Wikipedia, https://en.wikipedia.org/wiki/
Matrix_logarithm.

See Also

expm

https://en.wikipedia.org/wiki/Matrix_logarithm
https://en.wikipedia.org/wiki/Matrix_logarithm

18 matpow

Examples

m <- diag(2)
logm(m)
expm(logm(m))

Here, logm() is barely defined, and Higham08 has needed an amendment
in order for not to loop forever:
D0 <- diag(x=c(1, 0.))
(L. <- logm(D0))
stopifnot(all.equal(D0, expm(L.)))

A matrix for which clearly no logm(.) exists:
(m <- cbind(1:2, 1))
(l.m <- try(logm(m))) ## all NA {Warning in sqrt(S[ij, ij]) : NaNs produced}
on r-patched-solaris-x86, additionally gives
Error in solve.default(X[ii, ii] + X[ij, ij], S[ii, ij] - sumU) :
system is computationally singular: reciprocal condition number = 0
Calls: logm ... logm.Higham08 -> rootS -> solve -> solve -> solve.default
if(!inherits(l.m, "try-error")) stopifnot(is.na(l.m))
The "Eigen" method ``works'' but wrongly :
expm(logm(m, "Eigen"))

matpow Matrix Power

Description

Compute the k-th power of a matrix. Whereas x^k computes element wise powers, x %^% k corre-
sponds to k − 1 matrix multiplications, x %*% x %*% ... %*% x.

Usage

x %^% k

Arguments

x a square matrix, numeric or complex.

k an integer, k ≥ 0.

Details

Argument k is coerced to integer using as.integer.

The algorithm uses O(log2(k)) matrix multiplications.

Value

A matrix of the same dimension as x.

matStig 19

Note

If you think you need x^k for k < 0, then consider instead solve(x %^% (-k)).

Author(s)

Based on an R-help posting of Vicente Canto Casasola, and Vincent Goulet’s C implementation in
actuar.

See Also

%*% for matrix multiplication.

Examples

A <- cbind(1, 2 * diag(3)[,-1])
A
A %^% 2
stopifnot(identical(A, A %^% 1),

A %^% 2 == A %*% A)

also for complex number matrix Z :
Z <- A + 2i*A
Z %^% 2
stopifnot(identical(Z, Z %^% 1),

Z %^% 2 == Z %*% Z)

matStig Stig’s "infamous" Example Matrix

Description

Stig Mortensen wrote on Oct 22, 2007 to the authors of the Matrix package with subject “Strange
result from expm”. There, he presented the following 8 × 8 matrix for which the Matrix expm()
gave a “strange” result. As we later researched, the result indeed was wrong: the correct entries
were wrongly permuted. The reason has been in the underlying source code in Octave from which
it had been ported to Matrix.

Usage

data(matStig)

Author(s)

Martin Maechler

20 sqrtm

Examples

data(matStig)

as(matStig, "sparseMatrix") # since that prints more nicely.

For more compact printing:
op <- options(digits = 4)

E1 <- expm(matStig, "Ward77", preconditioning="buggy") # the wrong result
as(E1, "sparseMatrix")
str(E2 <- expm(matStig, "Pade"))# the correct one (has "accuracy" attribute)
as(E2, "sparseMatrix")
attr(E2,"accuracy") <- NULL # don't want it below
E3 <- expm(matStig, "R_Eigen") # even that is fine here
all.equal(E1,E2) # not at all equal (rel.difference >~= 1.)
stopifnot(all.equal(E3,E2)) # ==

##________ The "proof" that "Ward77" is wrong _________
M <- matStig
Et1 <- expm(t(M), "Ward77", precond= "buggy")
Et2 <- expm(t(M), "Pade"); attr(Et2,"accuracy") <- NULL
all.equal(Et1, t(E1)) # completely different (rel.diff ~ 1.7 (platform dep.))
stopifnot(all.equal(Et2, t(E2))) # the same (up to tolerance)

options(op)

sqrtm Matrix Square Root

Description

This function computes the matrix square root of a square matrix. The sqrt of a matrix A is S such
that A = SS.

Usage

sqrtm(x)

Arguments

x a square matrix.

Details

The matrix square root S of M , S = sqrtm(M) is defined as one (the “principal”) S such that
SS = S2 = M , (in R, all.equal(S %*% S , M)).

The method works from the Schur decomposition.

sqrtm 21

Value

A matrix ‘as x’ with the matrix sqrt of x.

Author(s)

Michael Stadelmann wrote the first version.

References

Higham, N.~J. (2008). Functions of Matrices: Theory and Computation; Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA.

See Also

expm, logm

Examples

m <- diag(2)
sqrtm(m) == m # TRUE

(m <- rbind(cbind(1, diag(1:3)),2))
sm <- sqrtm(m)
sm
zapsmall(sm %*% sm) # Zap entries ~= 2e-16
stopifnot(all.equal(m, sm %*% sm))

Index

∗ algebra
expAtv, 4
expm, 5
expm.Higham08, 10
expmCond, 13
expmFrechet, 15
logm, 16
sqrtm, 20

∗ arith
balance, 2
matpow, 18

∗ array
balance, 2
matpow, 18
matStig, 19

∗ datasets
matStig, 19

∗ math
expAtv, 4
expm, 5
expm.Higham08, 10
expmCond, 13
expmFrechet, 15
logm, 16
sqrtm, 20

.methComplex (expm), 5

.methSparse (expm), 5
%^% (matpow), 18
%*%, 19

as.integer, 18

balance, 2

complex, 7

dgebal, 6
dgebal (balance), 2

eigen, 3
expAtv, 4, 8

expm, 3, 5, 5, 11, 16, 17, 21
expm.Higham08, 6–8, 10, 14, 16
expmCond, 11, 13, 16
expmFrechet, 15
expmv (expAtv), 4

isSymmetric, 6

list, 14
logm, 16, 21

matpow, 18
matrix, 18
matStig, 19
mexp (expm), 5

norm, 4
numeric, 14

sparseMatrix, 7, 11
sqrtm, 20

22

	balance
	expAtv
	expm
	expm.Higham08
	expmCond
	expmFrechet
	logm
	matpow
	matStig
	sqrtm
	Index

