Package 'esDesign'

October 13, 2022

Type Package

Title Adaptive Enrichment Designs with Sample Size Re-Estimation

Version 1.0.3

Date 2021-07-13

Author Zhao Yang, Ruitao Lin, Guosheng Yin and Ying Yuan

Maintainer Zhao Yang <yangz98@connect.hku.hk>

Description Software of 'esDesign' is developed to implement the adaptive enrichment designs with sample size re-estimation presented in Lin et al. (2021) <doi:10.1016/j.cct.2020.106216>. In details, three-proposed trial designs are provided, including the AED1-SSR (or ES1-SSR), AED2-SSR (or ES2-SSR) and AED3-SSR (or ES3-SSR). In addition, this package also contains several widely used adaptive designs, such as the Marker Sequential Test (MaST) design proposed Freidlin et al. (2014) <doi:10.1177/1740774513503739>, the adaptive enrichment designs without early stopping (AED or ES), the sample size re-estimation procedure (SSR) based on the conditional power proposed by Proschan and Hunsberger (1995), and some useful functions. In details, we can calculate the futility and/or efficacy stopping boundaries, the sample size required, calibrate the value of the threshold of the difference between subgroup-specific test statistics, conduct the simulation studies in AED, SSR, AED1-SSR, AED2-SSR and AED3-SSR.

Depends R (>= 3.2.0) Imports stats License GPL-2 Encoding UTF-8 LazyData false RoxygenNote 7.1.1 Suggests knitr, rmarkdown NeedsCompilation no Repository CRAN Date/Publication 2021-07-13 05:50:02 UTC

R topics documented:

AED.boundary	2
	3
AED1_SSR.boundary	5
AED1_SSR.CP	5
AED1_SSR.N2	6
AED1_SSR.sim	7
AED2_SSR.boundary	9
AED2_SSR.CP	10
AED2_SSR.sim	11
AED3_SSR.boundary	13
AED3_SSR.CP	14
AED3_SSR.sim	15
MaST.sim	16
SD.sim	18
SigP	
sSize.norm	19
SSR.boundary	20
SSR.CP	21
SSR.sim	22
2	24

Index

AED.boundary

Calculate the critical value used at the final analysis in AED

Description

AED.boundary() is used to calculate the critical value used at the final analysis in AED design, meanwhile preserving the overall type I error rate at α level

Usage

AED.boundary(rho, alpha, Info, epsilon)

Arguments

rho	The proportion of subgroup 1
alpha	The overall type I error rate
Info	The infromation fraction
epsilon	The threshold of difference between the subgroup-specific test statistics

Value

The critical value used at the final analysis

AED.sim

References

Lin, R., Yang, Z., Yuan, Y. and Yin, G., 2021. Sample size re-estimation in adaptive enrichment design. Contemporary Clinical Trials, 100, p.106216. <doi: 10.1016/j.cct.2020.106216>

Examples

```
AED.boundary(rho = 0.5, alpha = 0.05, Info = 0.5, epsilon = 0.5)
```

AED.sim

Conduct the simulation studies of the Adaptive Enrichment Design without early stopping boundary

Description

The AED.sim() is used to conduct the simulation studies of the Adaptive Enrichment Design without early stopping boundary. The AED design is quite similar with the AED1_SSR design. But, in the AED design, the futility stopping boundary and the Sample Size Re-estimation Procedure are removed. On the contrary, a fixed sample size is used to replace the sample size re-estimated procedure. In addition, an ϵ -rule is also introduced to select the subgroup with larger subgroup-specific test statistic.

Usage

AED.sim(N1, N2, rho, alpha, beta, theta, theta, theta0, K, Info, epsilon, sigma0, nSim, Seed)

N1	The sample size used at the first stage
N2	The sample size used at the second stage
rho	The proportion of the subgroup 1
alpha	The overall Type I error rate
beta	The (1 - Power)

theta	The sizes of treatment effects in subgroups 1 and 2 among the experimental arm
theta0	The size of treatment effect in standard arm
К	The number of subgroups
Info	The observed information
epsilon	The threshold of difference between the subgroup-specific test statistics
sigma0	The variance of the treatment effect
nSim	The number of simulated studies
Seed	The random Seed

Value

A list contains

- nTotal The average expected sample size
- H00 The probability of rejecting the null hypothesis of H_{00}
- H01 The probability of rejecting the null hypothesis of H_{01}
- H02 The probability of rejecting the null hypothesis of H_{02}
- H0 The probabilities of rejecting at least one of the null hypothesis
- Enrich01 The prevalence of adaptive enrichment of subgroup 1
- Enrich02 The prevalence of adaptive enrichment of subgroup 2

References

• Lin, R., Yang, Z., Yuan, Y. and Yin, G., 2021. Sample size re-estimation in adaptive enrichment design. Contemporary Clinical Trials, 100, p.106216. <doi: 10.1016/j.cct.2020.106216>

```
N1 <- 310
N2 <- 310
rho <- 0.5
alpha <- 0.05
beta <- 0.20
theta <- c(0,0)
theta0 <- 0
K <- 2
Info <- 0.5
epsilon <- 0.5
sigma0 <- 1
nSim <- 1000
Seed <- 6
AED.sim(N1 = N1, N2 = N2, rho = rho, alpha = alpha,
        beta = beta, theta = theta, theta0 = theta0,
        K = K, Info = Info, epsilon = epsilon,
        sigma0 = sigma0, nSim = nSim, Seed = Seed)
```

AED1_SSR.boundary Calculate the critical value used at the final analysis of the Adaptive Enrichment Design (Strategy 1) with Sample Size Re-estimation Procedure

Description

The AED1_SSR.boundary() is used to calculate the critical value required at the final analysis of the Adaptive Enrichment Design (Strategy 1) with sample size re-estimation procedure. In the AED1-SSR design, the adaptive enrichment strategy is guided by a pre-specified futility stopping boundary and a threshold of the difference between the subgroup-specific test statistics.

Usage

AED1_SSR.boundary(rho, alpha, pstar, Info, epsilon)

Arguments

rho	The proportion of subgroup 1.
alpha	The overall Type I error rate.
pstar	The (1 - power) of accepting the null hypothesis at the interim analysis.
Info	The observation information, which is commonly calculated through the sample size used at each stage of the trial.
epsilon	The threshold of the difference between subgroup-specific test statistics.

References

Lin, R., Yang, Z., Yuan, Y. and Yin, G., 2021. Sample size re-estimation in adaptive enrichment design. Contemporary Clinical Trials, 100, p.106216. <doi: 10.1016/j.cct.2020.106216>

Examples

```
AED1_SSR.boundary(rho = 0.5, alpha = 0.05, pstar = 0.2, Info = 0.5, epsilon = 0.5)
```

AED1_SSR.CP	Calculate the conditional power of the Adaptive Enrichment Design
	with (Strategy 1) Sample Size Re-estimation Procedure

Description

The AED1_SSR.CP() is used to calculate the conditional power of the Adaptive Enrichment Design (Strategy 1) with sample size re-estimation procedure

Usage

AED1_SSR.CP(c, Z1, N1, N2)

Arguments

С	The critical value used at the final analysis
Z1	The test statistic obtained at the interim analysis
N1	The sample size used at the first stage
N2	The sample size used at the second stage

Value

A list contains

- Critical.Value The critical value used at the final analysis
- Conditional.Power The value of conditional power given the observed data

References

Lin, R., Yang, Z., Yuan, Y. and Yin, G., 2021. Sample size re-estimation in adaptive enrichment design. Contemporary Clinical Trials, 100, p.106216. <doi: 10.1016/j.cct.2020.106216>

Examples

```
c <- 2.258
Z1 <- 1.975
N1 <- 248
N2 <- 200
AED1_SSR.CP(c = 2.258, Z1 = 1.974, N1 = 248, N2 = 200)
```

AED1_SSR.N2	Calculate the sample size required at the second stage of the adaptive
	enrichment design (Strategy1) with Sample Size Re-estimation Proce-
	dure

Description

The AED1_SSR.N2() is used to calculated the sample size required at the second stage of the Adaptive Enrichment Design (Strategy 1) with Sample Size Re-estimation Procedure.

Usage

AED1_SSR.N2(c, z1, N1, beta)

Arguments

С	The critical value used at the final analysis
z1	The test statistic obtained at the interim analysis
N1	The sample size used at the first stage
beta	The (1 - power)

Value

The Value of the re-estimated sample size

References

• Lin, R., Yang, Z., Yuan, Y. and Yin, G., 2021. Sample size re-estimation in adaptive enrichment design. Contemporary Clinical Trials, 100, p.106216. <doi: 10.1016/j.cct.2020.106216>

Examples

```
c <- 2.258
z1 <- 1.974
N1 <- 248
beta <- 0.2
AED1_SSR.N2(c = c, z1 = z1, N1 = N1, beta = beta)
```

AED1_SSR.sim	Conduct the simulation studies of the Adaptive Enrichment Design
	(Strategy 1) with Sample Size Re-estimation Procedure

Description

The AED1_SSR.sim() is used to conduct the simulation study of the Adaptive Enrichment Design (Strategy 1) with Sample Size Re-estimation procedure

Usage

```
AED1_SSR.sim(
   N1,
   rho,
   alpha,
   beta,
   pstar,
   theta,
   theta0,
   Info,
   K = 2,
   epsilon,
   sigma0,
```

nSim, Seed)

Arguments

N1	The sample size used at the first stage
rho	The proportion of subgroup 1 among the overall patients
alpha	The overall Type I error rate
beta	The (1 - Power)
pstar	The (1 - power) of accepting the null hypothesis at the interim analysis.
theta	The sizes of the treatment effect in subgroups 1 and 2 with the experimental arm
theta0	The size of the treatment effect in standard arm
Info	The observation information
К	The number of subgroups. The default value is $K = 2$
epsilon	The threshold of the difference between the subgroup-specific test statistic
sigma0	The variance of the treatment effect
nSim	The number of simulated studies
Seed	The random seed

Value

A list contains

- nTotal The average expected sample size
- H00 The probability of rejecting the null hypothesis of H_{00}
- H01 The probability of rejecting the null hypothesis of H_{01}
- H02 The probability of rejecting the null hypothesis of H_{02}
- H0 The probabilities of rejecting at least one of the null hypothesis
- ESF The probability of early stopping for futility
- ESE The probability of early stopping for efficacy
- Enrich01 The prevalence of adaptive enrichment of subgroup 1
- Enrich02 The prevalence of adaptive enrichment of subgroup 2

References

Lin, R., Yang, Z., Yuan, Y. and Yin, G., 2021. Sample size re-estimation in adaptive enrichment design. Contemporary Clinical Trials, 100, p.106216. <doi: 10.1016/j.cct.2020.106216>

```
res <- AED1_SSR.sim(
   N1 = 310, rho = 0.5,
   alpha = 0.05, beta = 0.2, pstar = 0.2,
   theta = c(0,0), theta0 = 0, Info = 0.5,
   epsilon = 0.5, sigma0 = 1, nSim = 1000, Seed = 6)</pre>
```

AED2_SSR.boundary

Calculate the futility and efficacy stopping boundaries of the Adaptive Enrichment Design (Strategy 2) with Sample Size Re-estimation Procedure

Description

The AED2_SSR.boundary() is used to calculate the futility and efficacy stopping boundaries of the Adaptive Enrichment Design (strategy 2) with Sample Size Re-estimation Procedure. In the AED2-SSR design, an ϵ -rule is introduced to select the subgroup with larger test statistic. In practice, the value of ϵ should be calibrated to fit the requirement of the trial.

Usage

AED2_SSR.boundary(rho, alpha, pstar, epsilon)

Arguments

rho	The proportion of subgroup 1
alpha	The overall Type I error rate
pstar	The (1 - power) of accepting the null hypothesis at the interim analysis.
epsilon	The threshold of difference between the subgroup-specific test statistics

Value

A list contains

- upper.boundary The upper and efficacy stopping boundary
- lower.boundary The lower and futility stopping boundary

```
rho <- 0.5
alpha <- 0.05
pstar <- 0.15
epsilon <- 0.5
AED2_SSR.boundary(rho = rho, alpha = alpha, pstar = pstar, epsilon = epsilon)</pre>
```

AED2_SSR.CP

Calculate the N2 *and the critical value* C *in the Adaptive Enrichment Design (Strategy 2) with Sample Size Re-estimation Procedure*

Description

The AED2_SSR.CP() is used to calculate the sample size required at the second stage and the critical value used at the final analysis in the Adaptive Enrichment Design with Sample Size Re-estimation Procedure. In addition, this function can also used to conduct the conditional power analysis in terms of N_2

Usage

```
AED2_SSR.CP(
  Z1 = NULL,
  delta = NULL,
  N1 = NULL,
  pstar,
  rho,
  epsilon,
  alpha,
  beta,
  N2 = NULL
)
```

Arguments

Z1	The test statistic obtained at the interim analysis
delta	The standardized size of treatment effect, which can be estimated by using $(\mu_X - \mu_Y)/\sqrt{\sigma^2}$.
N1	The sample size used at the first stage
pstar	The (1 - power) of accepting the null hypothesis at the interim analysis.
rho	The proportion of subgroup 1
epsilon	The threshold of the difference between subgroup-specific test statistics.
alpha	The overall Type I error rate
beta	The (1 - Power)
N2	The pre-specified sample size used at the second stage, which is used to conduct the conditional power analysis

Value

A list contains

- upper.boundary The efficacy stopping boundary
- lower.boundary The futility stopping boundary

- N2 The pre-specified sample size used at the second stage, which is used to implement the conditional power analysis
- Conditional.Power The value of conditional power given the value of N2 in the conditional power analysis
- P.Value The corresponding P-Value used at the final analysis in the conditional power analysis
- N2.CP The re-estimated sample size of N2 to ensure an adequate conditional power
- c.CP The estimated the critical value used at the final analysis based the conditional power

Examples

AED2_SSR.sim	Conduct the simulation studies of the Adaptive Enrichment Design
	(Strategy 2) with Sample Size Re-estimation Procedure

Description

The AED2_SSR.sim() is used to conduct the simulation studies of the Adaptive Enrichment Design (Strategy) with sample size re-estimation procedure. The AED2-SSR is different from the AED3-SSR, in which an ϵ -rule is introduced to select the subgroup with larger subgroup-specific test statistic.

Usage

```
AED2_SSR.sim(
   N1,
   rho,
   alpha,
   beta,
   pstar,
   theta,
   theta0,
   sigma0,
   epsilon,
```

nSim, Seed)

Arguments

N1	The sample size used in the first stage
rho	The proportion of subgroup 1
alpha	The overall Type I error rate
beta	The (1 - power)
pstar	The (1 - power) of accepting the null hypothesis at the interim analysis.
theta	The sizes of treatment effect in subgroups 1 and 2 with the experimental treatment
theta0	The size of treatment effect with the standard treatment
sigma0	The variance of the treatment effect
epsilon	The threshold of the difference between subgroup-specific test statistics
nSim	The number of simulated studies
Seed	The random seed

Value

A list contains

- nTotal The average expected sample size
- H00 The probability of rejecting the null hypothesis of H_{00}
- H01 The probability of rejecting the null hypothesis of H_{01}
- H02 The probability of rejecting the null hypothesis of H_{02}
- H0 The probabilities of rejecting at least one of the null hypothesis
- ESF The probability of early stopping for futility
- ESE The probability of early stopping for efficacy
- Enrich01 The prevalence of adaptive enrichment of subgroup 1
- Enrich02 The prevalence of adaptive enrichment of subgroup 2
- Trigger03 The prevalence of no enrichment

```
N <- 310
rho <- 0.5
alpha <- 0.05
beta <- 0.2
theta <- c(0,0)
theta0 <- 0
sigma0 <- 1
epsilon <- 0.5
```

AED3_SSR.boundary	Calculate the futility and efficacy stopping boundaries in Adaptive en-
	richment design (Strategy 3) with Sample Size Re-estimation Proce-
	dure for the continuous endpoint

Description

The AED3_SSR.boundary() is used to calculate the futility and efficacy stopping boundaries in the Adaptive Enrichment Design with Sample Size Re-estimation Procedure.

Usage

AED3_SSR.boundary(rho, alpha, pstar)

Arguments

rho	The proportion of subgroup 1
alpha	The overall Type I error rate
pstar	The (1 – power) of accepting the null hypothesis at the interim analysis.

Value

A list contains

- upper.boundary The upper or the efficacy stopping boundary
- lower.boundary The lower or the futility stopping boundary

```
rho <- 0.5
alpha <- 0.05
pstar <- 0.15
res <- AED3_SSR.boundary(rho = rho, alpha = alpha, pstar = pstar)</pre>
```

AED3_SSR.CP

Calculate the N2 *and the critical value* C *in the Adaptive Enrichment Design (Strategy 3) with Sample Size Re-estimation Procedure*

Description

The AED3_SSR.CP() is used to calculate the sample size required at the second stage and the critical value used at the final analysis in the Adaptive Enrichment Design with Sample Size Re-estimation Procedure. In addition, this function can also used to conduct the conditional power analysis in terms of N2

Usage

```
AED3_SSR.CP(
  Z1 = NULL,
  delta = NULL,
  N1 = NULL,
  pstar,
  rho,
  alpha,
  beta,
  N2 = NULL
)
```

Arguments

Z1	The test statistic obtained at the interim analysis
delta	The standardized size of treatment effect, which can be estimated by using $(\mu_X - \mu_Y)/\sqrt{\sigma^2}$.
N1	The sample size used at the first stage
pstar	The (1 - power) of accepting the null hypothesis at the interim analysis.
rho	The proportion of subgroup 1
alpha	The overall Type I error rate
beta	The (1 - Power)
N2	The pre-specified sample size used at the second stage, which is used to conduct the conditional power analysis

Value

A list contains

- N2 The pre-specified sample size used at the second stage, which is used to implement the conditional power analysis
- Conditional.Power The value of conditional power given the value of N2 in the conditional power analysis

- N2.CP The re-estimated sample size of N2 to ensure an adequate conditional power
- c.CP The estimated the critical value used at the final analysis based the conditional power

Examples

```
Z1 <- 1.974

delta <- 0.355

N1 <- 248

pstar <- 0.15

alpha <- 0.05

rho <- 0.5

beta <- 0.20

N2 <- 108

AED3_SSR.CP(Z1 = Z1, delta = delta, N1 = N1, pstar = pstar,

alpha = alpha, rho = rho, beta = beta, N2 = N2)
```

AED3_SSR.sim	Conduct the simulation studies of the Adaptive Enrichment Design
	(Strategy 3) with Sample Size Re-estimation Procedure based on Fu-
	tility and Efficacy Stopping Boundaries for the continuous endpoint

Description

The AED3_SSR.sim() is used to conduct the adaptive enrichment design with Sample Size Reestimation, in which futility and efficacy stopping boundaries are used to guide the adaptive enrichment process. For the adaptively enriched subgroup, we re-estimate the sample size to maintain an adequate conditional power meanwhile protect the overall Type I error rate.

Usage

AED3_SSR.sim(N1, rho, alpha, beta, theta, theta0, sigma0, pstar, nSim, Seed)

N1	The sample size used at the first stage
rho	The proportion of subgroup 1 among the overall patients
alpha	The overall Type I error rate
beta	The (1 - Power)
theta	The sizes of treatment effect in subgroups 1 and 2 with experimental treatment
theta0	The size of treatment effect in standard treatment
sigma0	The known variance of the treatment effect
pstar	The (1 - power) of accepting the null hypothesis at the interim analysis.
nSim	The number of simulated studies.
Seed	The random seed

Value

A list contains

- nTotal The average expected sample size
- H00 The probability of rejecting the null hypothesis of H_{00}
- H01 The probability of rejecting the null hypothesis of H_{01}
- H02 The probability of rejecting the null hypothesis of H_{02}
- H0 The probabilities of rejecting at least one of the null hypothesis
- Enrich01 The prevalence of adaptive enrichment of subgroup 1
- Enrich02 The prevalence of adaptive enrichment of subgroup 2
- Trigger03 The prevalence of early stopping for the situation, in which the treatment effect in subgroup 1 is superiority, while the treatment effect in subgroup 2 is inconclusive
- Trigger04 The prevalence of early stopping for the situation, in which the treatment effect in subgroup 2 is superiority, while the treatment effect in subgroup 2 is inconclusive
- ESF The probability of early stopping for futility
- ESE The probability of early stopping for efficacy

Examples

MaST.sim

Conduct the simulation studies of the Marker Sequential Test design

Description

The MaST.sim() is used to conduct the simulation studies of the marker sequential test design (MaST).

Usage

MaST.sim(N, rho, alpha, beta, theta, theta0, sigma0, nSim, Seed)

MaST.sim

Arguments

Ν	The total sample size used at the trial
rho	The proportion of subgroup 1 among the overall patients
alpha	The overall Type I error rate
beta	The (1 - Power)
theta	The sizes of treatment effect in subgroups 1 and 2 with the experimental arm
theta0	The size of treatment effect in the standard arm
sigma0	The variance of the treatment effect
nSim	The number of simulated studies
Seed	The random seed

Value

A list contains

- nTotal The average expected sample size
- H00 The probability of rejecting the null hypothesis of H_{00}
- H01 The probability of rejecting the null hypothesis of H_{01}
- H02 The probability of rejecting the null hypothesis of H_{02}
- H0 The probabilities of rejecting at least one of the null hypothesis

References

• Freidlin, B., Korn, E. L., and Gray, R. (2014). Marker sequential test (MaST) design. Clinical trials, 11(1), 19-27. <doi:10.1177/1740774513503739>

SD.sim

Description

The SD.sim() is used to implement the simulation studies of the standard design.

Usage

SD.sim(N, rho, alpha, beta, theta, theta0, sigma0, nSim, Seed)

Arguments

Ν	The total sample size required
rho	The proportion of subgroup 1
alpha	The overall Type I error rate
beta	The (1 -Power)
theta	The sizes of treatment effects for subgroups 1 and 2 in experimental arm
theta0	The size of treatment effect for the control arm
sigma0	The variance of the treatment effect
nSim	The number of simulated studies
Seed	The random seed

Value

A list contains,

- nTotal the total sample used
- The power of the specified trial. Here, the power is defined as the probability of rejecting the null hypothesis.

Description

The SigP() is used to calculate the reduced significant level based on several widely used α -spending functions, such as the "Pocock", "Lan-DeMets", "O'Brein-Fleming" and "Power" functions.

Usage

SigP(alpha, Info, esFunction = "Pocock", gamma = 1)

Arguments

alpha	The overall Type I error rate
Info	The fraction of the observed information
esFunction	The specific α -spending function. For example, esFunction = "Pocock" for the Pocock method, esFunction = "LD" for the Lan-Demets method, esFunction = "OF" for the O'Brein-Fleming method, and esFunction = "Power" for the Power method.
gamma	The parameter used in the Power method. The default value is gamma = 1.

Value

The reduced significant level

Examples

```
alpha <- 0.05
Info <- 0.5
esFunction = "OF"
SigP(alpha = alpha, Info = Info, esFunction = esFunction)
```

sSize.norm	Sample size calculation for the standard design with continuous end-
	point

Description

The sSize.norm() is used to calculate the sample size used in the standard design with continuous endpoint.

Usage

```
sSize.norm(alpha, beta, theta, side, r, sigma2)
```

SigP

Arguments

alpha	The Type I error rate or the significant level
beta	beta The (1 -Power)
theta	The size of treatment effect
side	One-sided or two-sided Test
r	The ratio of sample size between the experimental and control arms
sigma2	The variance of the treatment effect

Value

A list contains the total sample size, and the sample sizes required for the experimental and control arms.

Examples

```
alpha <- 0.05
beta <- 0.2
theta <- 0.2
side <- 1
r <- 1
sigma2 <- 0.8
sSize.norm(alpha = alpha, beta = beta, theta = theta,
side = side, r = r, sigma2 = sigma2)
```

SSR.boundary

Calculate the futility and efficacy stopping boundaries for Sample Size Re-estimation Procedure based on the conditional error function

Description

The SSD.boundary() is used to calculate the futility and efficacy stopping boundaries, meanwhile protect the overall Type I error rate at the pre-specified level.

Usage

SSR.boundary(alpha, pstar)

alpha	The overall Type I error rate
pstar	The (1 - power) of accepting the null hypothesis at the interim analysis.

Value

A list contain

- upper.boundary The efficacy stopping boundary at the interim analysis
- lower.boundary The futility stopping boundary at the interim analysis

References

 Proschan MA, Hunsberger SA. Designed extension of studies based on conditional power. Biometrics 1995:1315-24. <doi:10.2307/2533262>

Examples

```
alpha <- 0.05
pstar <- 0.2
res <- SSR.boundary(alpha = alpha, pstar = pstar)
```

SSR.CP

Calculate the N2 and the critical value C in Sample Size Reestimation Procedure

Description

The SSR.CP() is used to calculate the sample size required at the second stage and the critical value used at the final analysis. In addition, this function can also used to conduct the conditional power analysis in terms of N2

Usage

SSR.CP(Z1 = NULL, delta = NULL, N1 = NULL, pstar, alpha, beta, N2 = NULL)

Z1	The test statistic obtained at the interim analysis
delta	The standardized size of treatment effect, which can be estimated by using $(\mu_X - \mu_Y)/\sqrt{\sigma^2}$.
N1	The sample size used at the first stage
pstar	The (1 - power) of accepting the null hypothesis at the interim analysis.
alpha	The overall Type I error rate
beta	The (1 - Power)
N2	The pre-specified sample size used at the second stage, which is used to conduct the conditional power analysis

Value

A list contains

- N2 The pre-specified sample size used at the second stage, which is used to implement the conditional power analysis
- Conditional.Power The value of conditional power given the value of N2 in the conditional power analysis
- P.Value The corresponding P-Value used at the final analysis in the conditional power analysis
- N2.CP The re-estimated sample size of N2 to ensure an adequate conditional power
- c.CP The estimated the critical value used at the final analysis based the conditional power

References

 Proschan MA, Hunsberger SA. Designed extension of studies based on conditional power. Biometrics 1995:1315-1324. <doi:10.2307/2533262>

Examples

```
Z1 <- 1.527

delta <- 0.137

N1 <- 248

pstar <- 0.15

alpha <- 0.05

beta <- 0.2

res <- SSR.CP(Z1 = Z1, delta = delta, N1 = N1,

pstar = pstar, alpha = alpha, beta = beta)
```

SSR.sim

```
Conduct the simulation studies using SSR
```

Description

The SSR.sim() is used to implement the simulation studies based on the Sample Size Re-estimation Procedure.

Usage

```
SSR.sim(N, rho, alpha, beta, theta, theta0, sigma0, pstar, nSim, Seed)
```

Ν	The sample size used at the first stage. Note that this N is not the initial total sample size calculated using the standard design
rho	The proportion of subgroup 1
alpha	The overall Type I error rate

SSR.sim

beta	The (1 - Power)
theta	The sizes of treatment effects for subgroups 1 and 2 in the experimental arm
theta0	The size of treatment effect in the control arm
sigma0	The variance of the treatment effect
pstar	The (1 - power) of accepting the null hypothesis at the interim analysis.
nSim	The number of simulated studies
Seed	The random seed

Value

A list contains

- nTotal The average total sample size used in SSR
- H0 The power of SSR under the specific trial design. Here, the power is defined as the probability of rejecting the null hypothesis
- ESF The percentage of early stopping for futility
- ESE The percentage of early stopping for efficacy

References

• Proschan MA, Hunsberger SA. Designed extension of studies based on conditional power. Biometrics 1995:1315-1324. <doi:10.2307/2533262>

Index

AED.boundary, 2AED.sim, 3 $\texttt{AED1_SSR.boundary, 5}$ AED1_SSR.CP, 5 AED1_SSR.N2,6 $\texttt{AED1_SSR.sim}, \textbf{7}$ $\texttt{AED2_SSR.boundary,9}$ $\texttt{AED2_SSR.CP}, 10$ AED2_SSR.sim, 11 AED3_SSR.boundary, 13 AED3_SSR.CP, 14 $\texttt{AED3_SSR.sim}, 15$ MaST.sim, 16 SD.sim, **18** SigP, 19 sSize.norm, 19 SSR.boundary, 20

SSR.CP, 21 SSR.sim, 22