
Package ‘epoxy’
September 20, 2023

Title String Interpolation for Documents, Reports and Apps

Version 1.0.0

Description Extra strength 'glue' for data-driven templates. String
interpolation for 'Shiny' apps or 'R Markdown' and 'knitr'-powered
'Quarto' documents, built on the 'glue' and 'whisker' packages.

License MIT + file LICENSE

URL https://pkg.garrickadenbuie.com/epoxy/,

https://github.com/gadenbuie/epoxy

BugReports https://github.com/gadenbuie/epoxy/issues

Depends R (>= 3.6.0)

Imports and, glue (>= 1.5.0), htmltools, knitr (>= 1.37), lifecycle,
purrr, rlang, rmarkdown, scales (>= 1.1.0), tools, whisker

Suggests cleanrmd, commonmark, dbplyr, debugme, dplyr, pandoc, shiny,
shinytest2, testthat

VignetteBuilder cleanrmd, knitr, rmarkdown

Config/Needs/rcmdcheck RSQLite, rstudio/chromote

Config/Needs/website rstudio/rmarkdown, gadenbuie/grkgdown

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Author Garrick Aden-Buie [aut, cre] (<https://orcid.org/0000-0002-7111-0077>),
Kushagra Gour [ctb] (hint.css),
The mustache.js community [ctb] (mustache.js)

Maintainer Garrick Aden-Buie <garrick@adenbuie.com>

Repository CRAN

Date/Publication 2023-09-20 00:00:02 UTC

1

https://pkg.garrickadenbuie.com/epoxy/
https://github.com/gadenbuie/epoxy
https://github.com/gadenbuie/epoxy/issues
https://orcid.org/0000-0002-7111-0077

2 bechdel

R topics documented:
bechdel . 2
engine_pick . 3
epoxy . 4
epoxy_mustache . 7
epoxy_transform . 9
epoxy_transform_html . 12
epoxy_transform_inline . 14
epoxy_transform_one_shot . 19
epoxy_use . 21
render_epoxy . 24
run_epoxy_example_app . 25
ui_epoxy_html . 27
ui_epoxy_markdown . 31
ui_epoxy_mustache . 34
use_epoxy_knitr_engines . 37

Index 39

bechdel Top 10 Highest-Rated, Bechdel-Passing Movies

Description

A small dataset for epoxy demonstrations with the top audience-rated movies that pass the Bechdel
Test.

Usage

bechdel

Format

A data frame with 10 rows and 18 variables:

imdb_id IMDB Movie ID

bechdel_rating Rating (0-3): 0 = unscored; 1 = It has to have at least two (named) women in it; 2
= Who talk to each other; 3 = About something besides a man.

year Year

title Title of movie

budget Budget in $USD as of release year

domgross Domestic gross in $USD in release year

intgross International gross in $USD in release year

plot Plot of the movie

rated Moving rating, e.g. PG, PG-13, R, etc.

https://bechdeltest.com
https://bechdeltest.com

engine_pick 3

language Language of the movie

country Country where the movie was produced

imdb_rating IMDB rating of the movie, 0-10

director Director of the movie

actors Major actors appearing in the movie

genre Genre

awards Awards won by the movie, text description

runtime Movie runtime in minutes

poster URL of movie poster image, sourced from themoviedb.org. Poster images URLs ar pro-
vided from the TMDB API but epoxy is not endorsed or certified by TMDB.

Source

TidyTuesday (2021-03-09), FiveThirtyEight, bechdeltest.com, themoviedb.org

engine_pick Pick an engine-specific value

Description

Set different values that will be used based on the current epoxy or knitr engine (one of md, html,
or latex). The engine-specific value will be used inside epoxy knitr chunks or epoxy functions
matching the source syntax: epoxy() (md), epoxy_html() (html), or epoxy_latex() (latex).

Usage

engine_pick(md, html = md, latex = md)

Arguments

md, html, latex The value to use in a markdown, HTML, or LaTeX context.

Value

The value of md, html or latex depending on the epoxy or knitr currently being evaluated.

Examples

Markdown and HTML are okay with bare `$` character,
but we need to escape it in LaTeX.
engine_pick(md = "$", latex = "\\$")

https://www.themoviedb.org
https://github.com/rfordatascience/tidytuesday/blob/044e769/data/2021/2021-03-09/readme.md
https://github.com/fivethirtyeight/data/tree/master/bechdel
https://bechdeltest.com/
https://www.themoviedb.org

4 epoxy

epoxy Epoxy string interpolation

Description

These functions power the knitr chunk engines and are wrappers around glue::glue(), with a few
extra conveniences provided by epoxy.

• epoxy() is super glue::glue().

• epoxy_html() is super glue::glue() with HTML-specific defaults.

• epoxy_latex() is super glue::glue() with LaTeX-specific defaults.

Each of these functions can be called directly or used as a knitr chunk engine where the chunk text
is handled as if it were a string passed into the function version. When used as a knitr chunk engine,
the function arguments can be passed in as chunk options.

All of epoxy(), epoxy_html() and epoxy_latex() use epoxy_transform_inline() by default.
This transformer brings a concise inline-formatting syntax that you can read more about in ?epoxy_transform_inline.

epoxy_html() also includes an inline transformation syntax that makes it easier to wrap the ex-
pression text in HTML elements with a specific ID or a set of classes. Learn more about this syntax
in ?epoxy_transform_html.

Usage

epoxy(
...,
.data = NULL,
.sep = "",
.envir = parent.frame(),
.open = "{",
.close = "}",
.na = "",
.null = "",
.comment = character(),
.literal = FALSE,
.trim = FALSE,
.transformer = NULL,
.collapse = NULL,
.style = lifecycle::deprecated()

)

epoxy_html(
...,
.data = NULL,
.sep = "",
.envir = parent.frame(),
.open = "{{",

epoxy 5

.close = "}}",

.na = "",

.null = "",

.comment = "",

.literal = FALSE,

.trim = FALSE,

.transformer = NULL,

.collapse = NULL
)

epoxy_latex(
...,
.data = NULL,
.sep = "",
.envir = parent.frame(),
.open = "<<",
.close = ">>",
.na = "",
.null = "",
.comment = "",
.literal = FALSE,
.trim = FALSE,
.transformer = NULL,
.collapse = NULL

)

Arguments

... [expressions]
Unnamed arguments are taken to be expression string(s) to format. Multiple
inputs are concatenated together before formatting. Named arguments are taken
to be temporary variables available for substitution.

.data A data set

.sep [character(1): ‘""’]
Separator used to separate elements.

.envir [environment: parent.frame()]
Environment to evaluate each expression in. Expressions are evaluated from left
to right. If .x is an environment, the expressions are evaluated in that environ-
ment and .envir is ignored. If NULL is passed, it is equivalent to emptyenv().

.open [character(1): ‘\{’]
The opening delimiter around the template variable or expression. Doubling the
full delimiter escapes it.

.close [character(1): ‘\}’]
The closing delimiter around the template variable or expression. Doubling the
full delimiter escapes it.

.na [character(1): ‘NA’]
Value to replace NA values with. If NULL missing values are propagated, that is

6 epoxy

an NA result will cause NA output. Otherwise the value is replaced by the value
of .na.

.null [character(1): ‘character()’]
Value to replace NULL values with. If character() whole output is character().
If NULL all NULL values are dropped (as in paste0()). Otherwise the value is
replaced by the value of .null.

.comment [character(1): ‘#’]
Value to use as the comment character.

.literal [boolean(1): ‘FALSE’]
Whether to treat single or double quotes, backticks, and comments as regular
characters (vs. as syntactic elements), when parsing the expression string. Set-
ting .literal = TRUE probably only makes sense in combination with a custom
.transformer, as is the case with glue_col(). Regard this argument (espe-
cially, its name) as experimental.

.trim [logical(1): ‘TRUE’]
Whether to trim the input template with trim() or not.

.transformer A transformer function or transformer chain created with epoxy_transform().
Alternatively, a character vector of epoxy transformer names, e.g. c("bold",
"collapse") or a list of epoxy transformers, e.g. list(epoxy_transform_bold(),
epoxy_transform_collapse()).
In epoxy, you’ll most likely want to use the defaults or consult epoxy_transform()
for more information. See also glue::glue() for more information on trans-
formers.

.collapse A character string used to collapse a vector result into a single value. If NULL
(the default), the result is not collapsed.

.style [Deprecated] Please use .transformer instead.

Value

Returns a transformed string, using glue::glue() but with the additional transformers provided to
the .transformer argument of epoxy().

See Also

• use_epoxy_knitr_engines() for knitr engines powered by these epoxy functions.

• epoxy_mustache() for more powerful templating needs when you don’t need epoxy’s inline
formatting syntax.

Examples

movie <- bechdel[1,]
movies <- bechdel[2:4,]

A basic example with a single row of data
epoxy("{.emph movie$title} ({movie$year}) was directed by {movie$director}.")

Or vectorized over multiple rows of data

epoxy_mustache 7

epoxy("* {.emph movies$title} ({movies$year}) was directed by {movies$director}.")

You can provide the data frame to `.data` to avoid repeating `data$`
epoxy("{.emph title} ({year}) was directed by {director}.", .data = movie)
epoxy("* {.emph title} ({year}) was directed by {director}.", .data = movies)

Inline transformers can be nested
epoxy("I'd be happy to watch {.or {.italic title}}.", .data = movies)
epoxy("They were directed by {.and {.bold director}}.", .data = movies)

Learn more about inline transformers in ?epoxy_transform_inline
epoxy("The budget for {.emph title} was {.dollar budget}.", .data = movie)

--------- HTML and LaTeX variants ---------
There are also HTML and LaTeX variants of epoxy.
Each uses default options that are most natural for the format.

epoxy_html() uses `{{ expr }}` for delimiters
epoxy_html("I'd be happy to watch {{ title }}.", .data = movie)
It also supports an HTML transformer syntax
epoxy_html("I'd be happy to watch {{em.movie-title title}}.", .data = movie)
Or use the inline transformer syntax, which uses `@` instead of `.` in HTML
epoxy_html("I'd be happy to watch {{@or {{@emph title}} }}.", .data = movies)

epoxy_latex() uses `<< expr >>` for delimiters
epoxy_latex("I'd be happy to watch <<.or <<.emph title >> >>.", .data = movies)

epoxy_mustache Mustache-style string interpolation

Description

[Experimental] A wrapper around the mustache templating language, provided by the whisker
package. Under the hood, epoxy_mustache() uses whisker::whisker.render() to render the
template, but adds a few conveniences:

• The template can be passed in ... as a single string, several strings or as a vector of strings.
If multiple strings are passed, they are collapsed with .sep ("\n" by default).

• epoxy_mustache() can be vectorized over the items in the .data argument. If .data is a
data frame, vectorization is turned on by default so that you can iterate over the rows of the
data frame. The output will be a character vector of the same length as the number of rows in
the data frame.

Usage

epoxy_mustache(
...,
.data = parent.frame(),
.sep = "\n",

http://mustache.github.io/
https://cran.r-project.org/package=whisker

8 epoxy_mustache

.vectorized = inherits(.data, "data.frame"),

.partials = list()
)

Arguments

... A string or a vector of strings containing the template(s). Refer to the mustache
documentation for an overview of the syntax. If multiple strings are passed, they
are collapsed with .sep ("\n" by default).

.data A data frame or a list. If .data is a data frame, epoxy_mustache() will trans-
form the data frame so that the template can be applied to each row of the data
frame. To avoid this transformation, wrap the .data value in I().

.sep The separator to use when collapsing multiple strings passed in ... into a single
template. Defaults to "\n".

.vectorized If TRUE , epoxy_mustache() will vectorize over the items in .data. In other
words, each item or row of .data will be used to render the template once.
By default, .vectorized is set to TRUE if .data is a data frame and FALSE
otherwise.

.partials A named list with partial templates. See whisker::whisker.render() or the
mustache documentation for details.

Value

A character vector of length 1 if .vectorized is FALSE or a character vector of the same length as
the number of rows or items in .data if .vectorized is TRUE.

See Also

Other Mustache-style template functions: ui_epoxy_mustache()

Examples

The canonical mustache example
epoxy_mustache(

"Hello {{name}}!",
"You have just won {{value}} dollars!",
"{{#in_ca}}",
"Well, {{taxed_value}} dollars, after taxes.",
"{{/in_ca}}",
.data = list(
name = "Chris",
value = 10000,
taxed_value = 10000 - (10000 * 0.4),
in_ca = TRUE

)
)

Vectorized over the rows of .data
epoxy_mustache(
"mpg: {{ mpg }}",

http://mustache.github.io/
http://mustache.github.io/
http://mustache.github.io/mustache.5.html#Partials

epoxy_transform 9

"hp: {{ hp }}",
"wt: {{ wt }}\n",
.data = mtcars[1:2,]
)

Non-vectorized
epoxy_mustache(
"mpg: {{ mpg }}",
"hp: {{ hp }}",
"wt: {{ wt }}",
.data = mtcars[1:2,],

.vectorized = FALSE
)

With mustache partials
epoxy_mustache(

"Hello {{name}}!",
"{{> salutation }}",

"You have just won {{value}} dollars!",
"{{#in_ca}}",
"Well, {{taxed_value}} dollars, after taxes.",
"{{/in_ca}}",

.partials = list(
salutation = c("Hope you are well, {{name}}.")
),
.sep = " ",

.data = list(
name = "Chris",
value = 10000,
taxed_value = 10000 - (10000 * 0.4),
in_ca = TRUE

)
)

epoxy_transform epoxy Transformers

Description

These transformers provide additional automatic formatting for the template strings. They are
designed to be used with the .transformer chunk option of in epoxy chunks. You can use
epoxy_transform() to chain several transformers together. epoxy_transform() and individual
epoxy transform functions can be used in epoxy, epoxy_html and epoxy_latex chunks and will
choose the correct engine for each.

Usage

epoxy_transform(..., engine = NULL, syntax = lifecycle::deprecated())

10 epoxy_transform

epoxy_transform_get(engine = c("md", "html", "latex"), inline = FALSE)

epoxy_transform_set(..., engine = NULL, syntax = lifecycle::deprecated())

Arguments

... Transformer functions, e.g. epoxy_transform_bold or the name of an epoxy
transform function, e.g. "bold", or a call to a transform function, e.g. epoxy_transform_bold().
epoxy_transform() chains the transformer functions together, applying the
transformers in order from first to last.
For example, epoxy_transform("bold", "collapse") results in replaced strings
that are emboldened and then collapsed, e.g. **a** and **b**. On the other
hand, epoxy_transform("collapse", "bold") will collapse the vector and
then embolden the entire string.
In epoxy_transform_apply(), the ... are passed to the underlying call the
underlying function call.
In epoxy_transform_collapse(), the ... are ignored.

engine One of "markdown" (or "md"), "html", or "latex". The default is chosen based
on the engine of the chunk where the transform function is called, or accord-
ing to the option epoxy.engine. Caution: invalid options are silently ignored,
falling back to "markdown".

syntax [Deprecated] Use engine instead.

inline In epoxy_transform_get(), whether to return the session-specific inline for-
matting functions for epoxy_transform_inline().

Value

A function of text and envir suitable for the .transformer argument of glue::glue().

Functions

• epoxy_transform(): Construct a chained transformer using epoxy transformers for use as a
glue transformer. The resulting transformers can be passed to the .transformer argument of
epoxy() or glue::glue().

• epoxy_transform_get(): Get the default epoxy .transformer for all epoxy engines or for
a subset of engines.

• epoxy_transform_set(): Set the default epoxy .transformer for all epoxy engines or for
a subset of engines.

Output-specific transformations

The epoxy_transform_ functions will attempt to use the correct engine for transforming the re-
placement text for markdown, HTML and LaTeX. This choice is driven by the chunk engine where
the transformer function is used. The epoxy engine corresponds to markdown, epoxy_html to
HTML, and epoxy_latex to LaTeX.

epoxy_transform 11

Automatic engine selection only works when the epoxy transform functions are used with epoxy
knitr engines and during the knitr rendering process. When used outside of this context, you can
choose the desired engine by setting the engine to one of "markdown", "html" or "latex".

Session-wide settings

To change the transformer used by epoxy() and the HTML and LaTeX variants, use epoxy_transform_set().
This function takes the same values as epoxy_transform(), but makes them the default transformer
for any epoxy() calls that do not specify a transformer. By default, the setting is made for all en-
gines, but you can specify a single engine with the engine argument.

Here’s a small example that applies the bold and collapse transformers to all epoxy chunks:

epoxy_transform_set("bold", "collapse")

Most often, you’ll want to to update the default transformer to customize the formatting functions
used by the inline transformer. You can use epoxy_transform_set() to change settings of existing
formatting functions or to add new one. Pass the new function to an argument with the dot-prefixed
name.

In the next example I’m setting the .dollar transformation to use "K" and "M" to abbreviate large
numbers. I’m also adding my own transformation that truncates long strings to fit in 8 characters.

epoxy_transform_set(
.dollar = scales::label_dollar(
accuracy = 0.01,
scale_cut = scales::cut_short_scale()
),
.trunc8 = function(x) glue::glue_collapse(x, width = 8)
)

epoxy("{.dollar 12345678}")
#> $12.34M
epoxy("{.trunc8 12345678}")
#> 12345...

Note that the engine argument can be used even with inline tranformations, e.g. to apply a change
only for HTML you can use engine = "html".

To unset the session defaults, you have two options:

1. Unset everything by passing NULL to epoxy_transform_set():

epoxy_transform_set(NULL)

2. Unset a single inline transformation by passing rlang::zap() to the named argument:

epoxy_transform_set(.dollar = rlang::zap())

Or you can provide new values to overwrite the current settings. And as before, you can unset
session defaults for a specific engine.

12 epoxy_transform_html

See Also

Other epoxy’s glue transformers: epoxy_transform_html(), epoxy_transform_inline()

Examples

epoxy("{.strong {.and letters[1:3]}}")
epoxy("{.and {.strong letters[1:3]}}")

If you used the development version of epoxy, the above is equivalent to:
epoxy("{letters[1:3]&}", .transformer = epoxy_transform("bold", "collapse"))
epoxy("{letters[1:3]&}", .transformer = epoxy_transform("collapse", "bold"))

In an epoxy_html chunk...
epoxy_html("{{.strong {{.or letters[1:3]}} }}")

Or in an epoxy_latex chunk...
epoxy_latex("<<.and <<.strong letters[1:3]>> >>")

---- Other Transformers ----

Format numbers with an inline transformation
amount <- 123.4234234
epoxy("{.number amount}")
epoxy(

"{.number amount}",
.transformer = epoxy_transform_inline(
.number = scales::label_number(accuracy = 0.01)

)
)

Apply _any_ function to all replacements
epoxy(

"{amount} is the same as {amount}",
.transformer = epoxy_transform_apply(round, digits = 0)

)

epoxy(
"{amount} is the same as {amount}",
.transformer = epoxy_transform(

epoxy_transform_apply(~ .x * 100),
epoxy_transform_apply(round, digits = 2),
epoxy_transform_apply(~ paste0(.x, "%"))

)
)

epoxy_transform_html Concise syntax for expressions inside HTML elements

epoxy_transform_html 13

Description

epoxy_transform_html() provides a pug-like syntax for expressions in HTML that are wrapped
in HTML elements.

Syntax:
You can specify the HTML element and its id and class into which the text of the expression
will be placed. The template is to specify the element using the syntax below, followed by the R
expression, separated by a space:

{{ [<element>][#<id> | .<class>...] expr }}

For example, to place the expression in a element with id = "food" and class = "fruit",
you could write

{{ li#food.fruit fruit_name }}

Each item in the HTML template is optional:
1. If a specific HTML element is desired, the element name must be first. If no element is

specified, the default as set by the element argument of epoxy_transform_html() will be
used.

2. IDs are specified using #<id> and only one ID may be present
3. Classes are written using .<class> and as many classes as desired are allowed.

If the expression is a vector, the same element container will be used for each item in the vector.
Finally, if the expression returns HTML, it will be escaped by default. You can either use
htmltools::HTML() to mark it as safe HTML in R, or you can write !!expr in the inline markup:
{{ li#food.fruit !!fruit_name }}.

Usage

epoxy_transform_html(
class = NULL,
element = "span",
collapse = TRUE,
transformer = glue::identity_transformer

)

Arguments

class [character()]
Additional classes to be added to the inline HTML element.

element [character()
The default HTML element tag name to be used when an element isn’t specified
in the expression.

collapse [logical(1)]
If TRUE, transformed HTML outputs will be collapsed into a single character
string. This is helpful when you’re including the value of a vector within an
outer HTML tag. Use collapse = FALSE to return a vector of HTML character
strings instead, which follows what you’d typically expect from glue::glue(),
i.e. when you want to repeat the outer wrapping text for each element of the
vector.

https://pughtml.com/what-is-pug-html

14 epoxy_transform_inline

transformer The transformer to apply to the replacement string. This argument is used for
chaining the transformer functions. By providing a function to this argument
you can apply an additional transformation after the current transformation. In
nearly all cases, you can let epoxy_transform() handle this for you. The chain
ends when glue::identity_transformer() is used as the transformer.

Value

A function of text and envir suitable for the .transformer argument of glue::glue().

See Also

Used by default in epoxy_html()

Other epoxy’s glue transformers: epoxy_transform_inline(), epoxy_transform()

Examples

epoxy_html("{{ li letters[1:3] }}")
epoxy_html("{{ li.alpha letters[1:3] }}")
epoxy_html("{{ li#my-letter letters[7] }}")

The default element is used if no element is directly requested
epoxy_html("My name starts with {{ .name-letter letters[7] }}")

epoxy_html(
"{{ h3#title title }}",
title = "Epoxy for HTML"
)

If your replacement text contains HTML, it's escaped by default.
hello <- "Hi there!"
epoxy_html("{{ hello }}")

You can use !! inline to mark the text as safe HTML...
epoxy_html("{{ !!hello }}")
epoxy_html("{{ button !!hello }}")

...or you can use htmltools::HTML() to mark it as safe HTML in R.
hello <- htmltools::HTML("Hi there!")
epoxy_html("{{ hello }}")

epoxy_transform_inline

Epoxy Inline Transformer

epoxy_transform_inline 15

Description

This epoxy transformer is heavily inspired by the inline formatters in the cli package. The syntax is
quite similar, but epoxy’s syntax is slightly different to accommodate reporting use cases.

To transform a template expression inline, you include a keyword, prefixed with a dot (.) that is
used to format the value of the template expression in place.

epoxy("It cost {.dollar 123456}.", .transformer = "inline")
#> It cost $123,456.

The formatters, e.g. .dollar in the example above, can be customized using the arguments of
epoxy_transform_inline(). Pass a customized scales::label_dollar() to .dollar to achieve
a different transformation.

dollars_nzd <- scales::label_dollar(suffix = " NZD")

epoxy(
"It cost {.dollar 123456}.",
.transformer = epoxy_transform_inline(.dollar = dollars_nzd)

)
#> It cost $123,456 NZD.

Note that, unlike inline markup with cli, the text within the template expression, other than the
keyword, is treated as an R expression.

money <- 123456
epoxy("It cost {.dollar money}.", .transformer = "inline")
#> It cost $123,456.

You can also nest inline markup expressions.

money <- c(123.456, 234.567)
epoxy("It will cost either {.or {.dollar money}}.", .transformer = "inline")
#> It will cost either $123.46 or $234.57.

Finally, you can provide your own functions that are applied to the evaluated expression. In this
example, I add a .runif inline formatter that generates n random numbers (taken from the template
expression) and sorts them.

set.seed(4242)

epoxy(
"Here are three random percentages: {.and {.pct {.runif 3}}}.",
.transformer = epoxy_transform_inline(
.runif = function(n) sort(runif(n))

)
)
#> Here are three random percentages: 23%, 35%, and 99%.

https://cli.r-lib.org
https://cli.r-lib.org/reference/inline-markup.html

16 epoxy_transform_inline

Usage

epoxy_transform_inline(
...,
transformer = glue::identity_transformer,
.and = and::and,
.or = and::or,
.incr = sort,
.decr = function(x) sort(x, decreasing = TRUE),
.bytes = scales::label_bytes(),
.date = function(x) format(x, format = "%F"),
.time = function(x) format(x, format = "%T"),
.datetime = function(x) format(x, format = "%F %T"),
.dollar = scales::label_dollar(prefix = engine_pick("$", "$", "\\$")),
.number = scales::label_number(),
.comma = scales::label_comma(),
.ordinal = scales::label_ordinal(),
.percent = scales::label_percent(suffix = engine_pick("%", "%", "\\%")),
.pvalue = scales::label_pvalue(),
.scientific = scales::label_scientific(),
.uppercase = toupper,
.lowercase = tolower,
.titlecase = function(x) tools::toTitleCase(as.character(x)),
.sentence = function(x) `substr<-`(x, 1, 1, toupper(substr(x, 1, 1))),
.squote = function(x) sQuote(x, q = getOption("epoxy.fancy_quotes", FALSE)),
.dquote = function(x) dQuote(x, q = getOption("epoxy.fancy_quotes", FALSE)),
.strong = NULL,
.emph = NULL,
.code = NULL

)

Arguments

... Additional named inline transformers as functions taking at least one argument.
The evaluated expression from the template expression is passed as the first
argument to the function. The argument names must include the leading . to
match the syntax used inline.

transformer The transformer to apply to the replacement string. This argument is used for
chaining the transformer functions. By providing a function to this argument
you can apply an additional transformation after the current transformation. In
nearly all cases, you can let epoxy_transform() handle this for you. The chain
ends when glue::identity_transformer() is used as the transformer.

.and The function to apply to x when the template is {.and x}. Default is and::and().

.or The function to apply to x when the template is {.or x}. Default is and::or().

.incr The function to apply to x when the template is {.incr x}. Default is sort().

.decr The function to apply to x when the template is {.decr x}. Default is function(x)
sort(x, decreasing = TRUE).

.bytes The function to apply to x when the template is {.bytes x}. Default is scales::label_bytes().

epoxy_transform_inline 17

.date The function to apply to x when the template is {.date x}. Default is function(x)
format(x, format = "%F").

.time The function to apply to x when the template is {.time x}. Default is function(x)
format(x, format = "%T").

.datetime The function to apply to x when the template is {.datetime x} or {.dttm x}.
Default is function(x) format(x, format = "%F %T").

.dollar The function to apply to x when the template is {.dollar x}. Default is
scales::label_dollar(prefix = engine_pick("$", "$", "\\$")).

.number The function to apply to x when the template is {.number x} or {.num x}.
Default is scales::label_number().

.comma The function to apply to x when the template is {.comma x}. Default is scales::label_comma().

.ordinal The function to apply to x when the template is {.ordinal x}. Default is
scales::label_ordinal().

.percent The function to apply to x when the template is {.percent x} or {.pct x}. De-
fault is scales::label_percent(suffix = engine_pick("%", "%", "\\%")).

.pvalue The function to apply to x when the template is {.pvalue x}. Default is
scales::label_pvalue().

.scientific The function to apply to x when the template is {.scientific x}. Default is
scales::label_scientific().

.uppercase The function to apply to x when the template is {.uppercase x} or {.uc x}.
Default is toupper().

.lowercase The function to apply to x when the template is {.lowercase x} or {.lc x}.
Default is tolower().

.titlecase The function to apply to x when the template is {.titlecase x} or {.tc x}.
Default is function(x) tools::toTitleCase(as.character(x)).

.sentence The function to apply to x when the template is {.sentence x} or {.sc x}.
Default is function(x) `substr<-`(x, 1, 1, toupper(substr(x, 1, 1))).

.squote The function to apply to x when the template is {.squote x}. Default is
function(x) sQuote(x, q = getOption("epoxy.fancy_quotes", FALSE)).

.dquote The function to apply to x when the template is {.dquote x}. Default is
function(x) dQuote(x, q = getOption("epoxy.fancy_quotes", FALSE)).

.strong The function to apply to x when the template is {.strong x} or {.bold x}.
Default is chosen internally based on the output format.

.emph The function to apply to x when the template is {.emph x} or {.italic x}.
Default is chosen internally based on the output format.

.code The function to apply to x when the template is {.code x}. Default is chosen
internally based on the output format.

Value

A function of text and envir suitable for the .transformer argument of glue::glue().

18 epoxy_transform_inline

See Also

epoxy_transform(), epoxy_transform_set()

Other epoxy’s glue transformers: epoxy_transform_html(), epoxy_transform()

Examples

revenue <- 0.2123
sales <- 42000.134

---- Basic Example with Inline Formatting --------------------------------
epoxy(

'{.pct revenue} of revenue generates {.dollar sales} in profits.'
)

With standard {glue} (`epoxy_transform_inline()` is a glue transformer)
glue::glue(

'{.pct revenue} of revenue generates {.dollar sales} in profits.',
.transformer = epoxy_transform_inline()

)

---- Setting Inline Formatting Options ----------------------------------
To set inline format options, provide `scales::label_*()` to the supporting
epoxy_transform_inline arguments.
epoxy(

'{.pct revenue} of revenue generates {.dollar sales} in profits.',
.transformer = epoxy_transform_inline(

.percent = scales::label_percent(accuracy = 0.1),

.dollar = scales::label_dollar(accuracy = 10)
)

)

glue::glue(
'{.pct revenue} of revenue generates {.dollar sales} in profits.',
.transformer = epoxy_transform_inline(

.percent = scales::label_percent(accuracy = 0.1),

.dollar = scales::label_dollar(accuracy = 10)
)

)

---- Custom Inline Formatting --
Add your own formatting functions
search <- "why are cats scared of cucumbers"

epoxy_html(
"https://example.com?q={{ .url_encode search }}>",
.transformer = epoxy_transform_inline(

.url_encode = utils::URLencode
)

)

epoxy_transform_one_shot 19

epoxy_transform_one_shot

One-shot epoxy transformers

Description

These transformers are useful for applying the same transformation to every replacement in the
template.

Usage

epoxy_transform_wrap(
before = "**",
after = before,
engine = NULL,
transformer = glue::identity_transformer,
syntax = lifecycle::deprecated()

)

epoxy_transform_bold(engine = NULL, transformer = glue::identity_transformer)

epoxy_transform_italic(engine = NULL, transformer = glue::identity_transformer)

epoxy_transform_apply(
.f = identity,
...,
transformer = glue::identity_transformer

)

epoxy_transform_code(engine = NULL, transformer = glue::identity_transformer)

epoxy_transform_collapse(
sep = ", ",
last = sep,
language = NULL,
...,
transformer = glue::identity_transformer

)

Arguments

before, after In epoxy_transform_wrap(), the characters to be added before and after vari-
ables in the template string.

engine One of "markdown" (or "md"), "html", or "latex". The default is chosen based
on the engine of the chunk where the transform function is called, or accord-
ing to the option epoxy.engine. Caution: invalid options are silently ignored,
falling back to "markdown".

20 epoxy_transform_one_shot

transformer The transformer to apply to the replacement string. This argument is used for
chaining the transformer functions. By providing a function to this argument
you can apply an additional transformation after the current transformation. In
nearly all cases, you can let epoxy_transform() handle this for you. The chain
ends when glue::identity_transformer() is used as the transformer.

syntax [Deprecated] Use engine instead.

.f A function, function name or purrr::map()-style inline function.

... Transformer functions, e.g. epoxy_transform_bold or the name of an epoxy
transform function, e.g. "bold", or a call to a transform function, e.g. epoxy_transform_bold().
epoxy_transform() chains the transformer functions together, applying the
transformers in order from first to last.
For example, epoxy_transform("bold", "collapse") results in replaced strings
that are emboldened and then collapsed, e.g. **a** and **b**. On the other
hand, epoxy_transform("collapse", "bold") will collapse the vector and
then embolden the entire string.
In epoxy_transform_apply(), the ... are passed to the underlying call the
underlying function call.
In epoxy_transform_collapse(), the ... are ignored.

sep, last The separator to use when joining the vector elements when the expression ends
with a *. Elements are separated by sep, except for the last two elements, which
use last.

language In epoxy_transform_collapse(), language is passed to and::and() or and::or()
to choose the correct and/or phrase and spacing for the language. By default,
will follow the system language. See and::and_languages for supported lan-
guages.

Value

A function of text and envir suitable for the .transformer argument of glue::glue().

Functions

• epoxy_transform_wrap(): Wrap variables with text added before or after the inline expres-
sion.

• epoxy_transform_bold(): Embolden variables using ** in markdown, in HTML,
or \textbf{} in LaTeX.

• epoxy_transform_italic(): Italicize variables using _ in markdown, in HTML, or
\emph{} in LaTeX.

• epoxy_transform_apply(): Apply a function to all replacement expressions.

• epoxy_transform_code(): Code format variables using `` in markdown, <code> in HTML,
or \texttt{} in LaTeX.

• epoxy_transform_collapse(): Collapse vector variables with a succinct syntax (but see
epoxy_transform_inline() for a more readable option).

epoxy_use 21

Examples

abc <- c("a", "b", "c")

epoxy("{abc}", .transformer = epoxy_transform_wrap("'"))

epoxy("{abc}", .transformer = epoxy_transform_bold())

epoxy("{abc}", .transformer = epoxy_transform_italic())

epoxy("{abc}", .transformer = epoxy_transform_code())

epoxy("{abc}", .transformer = epoxy_transform_apply(toupper))

epoxy_use Reuse a Template Chunk

Description

Reuse a template from another chunk or file. By calling epoxy_use_chunk() in an R chunk or
inline R expression, you can reuse a template defined in another chunk in your document.

Alternatively, you can store the template in a separate file and use epoxy_use_file() to reuse it.
When stored in a file, the template file can contain YAML front matter (following the same rules
as pandoc documents) with options that should be applied when calling an epoxy function. The
specific function called by epoxy_use_file() can be set via the engine option in the YAML front
matter; the default is epoxy().

Usage

epoxy_use_chunk(.data = NULL, label, ...)

epoxy_use_file(.data = NULL, file, ...)

Arguments

.data A data set

label The chunk label, i.e. the human-readable name, of the chunk containing the
template string. This chunk should be an epoxy, epoxy_html or other epoxy-
provided chunk type and it must have a label. epoxy_use_chunk() will apply
the options from this chunk to the template, giving preference to arguments in
epoxy_use_chunk() or the chunk options where it is called. See the "Template
Options" section for more details.

... Arguments passed on to epoxy

.transformer A transformer function or transformer chain created with epoxy_transform().
Alternatively, a character vector of epoxy transformer names, e.g. c("bold",
"collapse") or a list of epoxy transformers, e.g. list(epoxy_transform_bold(),
epoxy_transform_collapse()).

https://pandoc.org/MANUAL.html#extension-yaml_metadata_block
https://pandoc.org/MANUAL.html#extension-yaml_metadata_block

22 epoxy_use

In epoxy, you’ll most likely want to use the defaults or consult epoxy_transform()
for more information. See also glue::glue() for more information on
transformers.

.style [Deprecated] Please use .transformer instead.

.open [character(1): ‘\{’]
The opening delimiter around the template variable or expression. Dou-
bling the full delimiter escapes it.

.close [character(1): ‘\}’]
The closing delimiter around the template variable or expression. Doubling
the full delimiter escapes it.

.collapse A character string used to collapse a vector result into a single value.
If NULL (the default), the result is not collapsed.

.sep [character(1): ‘""’]
Separator used to separate elements.

.envir [environment: parent.frame()]
Environment to evaluate each expression in. Expressions are evaluated
from left to right. If .x is an environment, the expressions are evaluated
in that environment and .envir is ignored. If NULL is passed, it is equiva-
lent to emptyenv().

.na [character(1): ‘NA’]
Value to replace NA values with. If NULL missing values are propagated, that
is an NA result will cause NA output. Otherwise the value is replaced by the
value of .na.

.null [character(1): ‘character()’]
Value to replace NULL values with. If character() whole output is character().
If NULL all NULL values are dropped (as in paste0()). Otherwise the value
is replaced by the value of .null.

.comment [character(1): ‘#’]
Value to use as the comment character.

.literal [boolean(1): ‘FALSE’]
Whether to treat single or double quotes, backticks, and comments as reg-
ular characters (vs. as syntactic elements), when parsing the expression
string. Setting .literal = TRUE probably only makes sense in combina-
tion with a custom .transformer, as is the case with glue_col(). Regard
this argument (especially, its name) as experimental.

.trim [logical(1): ‘TRUE’]
Whether to trim the input template with trim() or not.

file The template file, i.e. a plain text file, containing the template. An .md or .txt
file extension is recommended. In addition to the template, the file may also
contain YAML front matter containing options that are used when rendering the
template via epoxy().

Value

A character string of the rendered template based on the label chunk. The results are marked as
"asis" output so that they are treated as regular text rather than being displayed as code results.

epoxy_use 23

Use in R Markdown or Quarto

```{epoxy movie-release}
{.emph title} was released in {year}.
```

```{r}
# Re-using the template we defined above
epoxy_use_chunk(bechdel[1, ], "movie-release")
```

```{r}
# Using in a dplyr pipeline
bechdel |>
dplyr::filter(year == 1989) |>
epoxy_use_chunk("movie-release")

```

Or you can even use it inline:

It's hard to believe that
`r epoxy_use_chunk(bechdel[2,], "movie-release")`.

It’s hard to believe that Back to the Future Part II was released in 1989.

The same template could also be stored in a file, e.g. movie-release.md:

engine: epoxy

{.emph title} was released in {year}.

The YAML front matter is used in template files to set options for the template. You can use the
engine option to choose the epoxy function to be applied to the template, e.g. engine: epoxy_html
or engine: epoxy_latex. By default, engine: epoxy is assumed unless otherwise specified.

Template Options

When rendering a template, epoxy_use_chunk() and epoxy_use_file() will inherit the options
set in a number of different ways. The final template options are determined in the following order,
ranked by importance. Options set in a higher-ranked location will override options set in a lower-
ranked location.

1. The arguments passed to epoxy_use_chunk(), such as .data or any arguments passed in the
.... These options always have preference over options set anywhere else.

2. The chunk options from the chunk where epoxy_use_chunk() or epoxy_use_file() is
called.

3. The chunk options from the template chunk or file. These options typically are relevant to the
template itself, such as the engine used or the opening and closing delimiters.

24 render_epoxy

4. Global knitr chunk options for the document. You can set these with knitr::opts_chunk$set(),
see ?knitr::opts_chunk for more information.

render_epoxy Render Epoxy Output

Description

Server-side render function used to provide values for template items. Use named values matching
the template variable names in the associated ui_epoxy_html() or ui_epoxy_mustache(). When
the values are updated by the app, render_epoxy() will update the values shown in the app’s UI.

Usage

render_epoxy(
...,
.list = NULL,
env = parent.frame(),
outputFunc = ui_epoxy_html,
outputArgs = list()

)

renderEpoxyHTML(..., env = parent.frame())

Arguments

... Named values corresponding to the template variables created with the associ-
ated ui_epoxy_html() UI element.

.list A named list or a shiny::reactiveValues() list with names corresponding
to the template variables created with the associated ui_epoxy_html() UI ele-
ment.

env The environment in which to evaluate the ...

outputFunc Either ui_epoxy_html() or ui_epoxy_mustache(), i.e. the UI function to be
paired with this output. This is only used when calling render_epoxy() in an
Shiny runtime R Markdown document and when you are only providing the
output without an explicit, corresponding UI element.

outputArgs A list of arguments to be passed through to the implicit call to ui_epoxy_html()
when render_epoxy is used in an interactive R Markdown document.

Value

A server-side Shiny render function that should be assigned to Shiny’s output object and named to
match the .id of the corresponding ui_epoxy_html() call.

Functions

• renderEpoxyHTML(): [Deprecated] Deprecated alias, please use render_epoxy().

run_epoxy_example_app 25

See Also

ui_epoxy_html(), ui_epoxy_mustache()

Examples

This small app shows the current time using `ui_epoxy_html()`
to provide the HTML template and `render_epoxy()` to
update the current time every second.

ui <- shiny::fluidPage(
shiny::h2("Current Time"),
ui_epoxy_html(
"time",
shiny::p("The current time is {{strong time}}.")
)
)

server <- function(input, output, session) {
current_time <- shiny::reactive({
shiny::invalidateLater(1000)
strftime(Sys.time(), "%F %T")
})

output$time <- render_epoxy(time = current_time())
}

if (rlang::is_interactive()) {
shiny::shinyApp(ui, server)
}

run_epoxy_example_app("render_epoxy")

run_epoxy_example_app Example epoxy Shiny apps

Description

Run an example epoxy Shiny app showcasing the Shiny UI and server components provided by
epoxy.

Usage

run_epoxy_example_app(
name = c("ui_epoxy_html", "ui_epoxy_markdown", "ui_epoxy_mustache", "render_epoxy"),
display.mode = "showcase",
...

)

26 run_epoxy_example_app

Arguments

name Name of the example, currently one of "ui_epoxy_html", "ui_epoxy_markdown",
"ui_epoxy_mustache", or "render_epoxy".

display.mode The mode in which to display the application. If set to the value "showcase",
shows application code and metadata from a DESCRIPTION file in the application
directory alongside the application. If set to "normal", displays the application
normally. Defaults to "auto", which displays the application in the mode given
in its DESCRIPTION file, if any.

... Arguments passed on to shiny::runApp

appDir The application to run. Should be one of the following:
• A directory containing server.R, plus, either ui.R or a www directory

that contains the file index.html.
• A directory containing app.R.
• An .R file containing a Shiny application, ending with an expression

that produces a Shiny app object.
• A list with ui and server components.
• A Shiny app object created by shinyApp().

port The TCP port that the application should listen on. If the port is not
specified, and the shiny.port option is set (with options(shiny.port =
XX)), then that port will be used. Otherwise, use a random port between
3000:8000, excluding ports that are blocked by Google Chrome for being
considered unsafe: 3659, 4045, 5060, 5061, 6000, 6566, 6665:6669 and
6697. Up to twenty random ports will be tried.

launch.browser If true, the system’s default web browser will be launched
automatically after the app is started. Defaults to true in interactive sessions
only. The value of this parameter can also be a function to call with the
application’s URL.

host The IPv4 address that the application should listen on. Defaults to the
shiny.host option, if set, or "127.0.0.1" if not. See Details.

workerId Can generally be ignored. Exists to help some editions of Shiny
Server Pro route requests to the correct process.

quiet Should Shiny status messages be shown? Defaults to FALSE.
test.mode Should the application be launched in test mode? This is only used

for recording or running automated tests. Defaults to the shiny.testmode
option, or FALSE if the option is not set.

Value

Runs the Shiny example app interactively. Nothing is returned.

See Also

ui_epoxy_html(), ui_epoxy_markdown(), ui_epoxy_mustache(), render_epoxy()

ui_epoxy_html 27

Examples

List examples by passing `name = NULL`
run_epoxy_example_app(name = NULL)

ui_epoxy_html Epoxy HTML Output for Shiny

Description

A glue-like output for Shiny. ui_epoxy_html() lets you use placeholders in your HTML such
as "{{first_name}}", that are provided values from the server by giving render_epoxy() a
first_name value. Unlike ui_epoxy_mustache(), updates are highly targeted: only the regions
where the server-side data have changed are updated in ui_epoxy_html().

Usage

ui_epoxy_html(
.id,
...,
.class = NULL,
.style = NULL,
.item_tag = "span",
.item_class = NULL,
.placeholder = "",
.sep = "",
.open = "{{",
.close = "}}",
.na = "",
.null = "",
.literal = FALSE,
.trim = FALSE,
.aria_live = c("polite", "off", "assertive"),
.aria_atomic = TRUE,
.class_item = deprecated(),
.container = deprecated(),
.container_item = deprecated()

)

epoxyHTML(.id, ...)

Arguments

.id The output id

... UI elements or text (that will be treated as HTML), containing template vari-
ables. Use named values to provide initial placeholder values.

28 ui_epoxy_html

.class, .style Classes and inline style directives added to the <epoxy-html> container into
which the elements in ... are placed.

.item_tag, .item_class

The HTML element tag name and classes used to wrap each template variable.
By default, each template is wrapped in a .

.placeholder Default placeholder if a template variable placeholder isn’t provided.

.sep [character(1): ‘""’]
Separator used to separate elements.

.open [character(1): ‘\{’]
The opening delimiter around the template variable or expression. Doubling the
full delimiter escapes it.

.close [character(1): ‘\}’]
The closing delimiter around the template variable or expression. Doubling the
full delimiter escapes it.

.na [character(1): ‘NA’]
Value to replace NA values with. If NULL missing values are propagated, that is
an NA result will cause NA output. Otherwise the value is replaced by the value
of .na.

.null [character(1): ‘character()’]
Value to replace NULL values with. If character() whole output is character().
If NULL all NULL values are dropped (as in paste0()). Otherwise the value is
replaced by the value of .null.

.literal [boolean(1): ‘FALSE’]
Whether to treat single or double quotes, backticks, and comments as regular
characters (vs. as syntactic elements), when parsing the expression string. Set-
ting .literal = TRUE probably only makes sense in combination with a custom
.transformer, as is the case with glue_col(). Regard this argument (espe-
cially, its name) as experimental.

.trim [logical(1): ‘TRUE’]
Whether to trim the input template with trim() or not.

.aria_live, .aria_atomic

The aria-live and aria-atomic attribute values for the entire template region. By
default, with "polite", any updates within the region will be announced via
screen readers.
If your template includes changes in lots of disparate areas, it would be better to
set "aria-live" = "polite" and "aria-atomic" = "true" on specific regions
that should be announced together. Otherwise, the default is to announce the
entire region within the ui_epoxy_html() whenever any of the values within
change. In other words, set .aria_live = "off" and .aria_atomic = NULL on
the ui_epoxy_html() parent item and then set "aria-live" = "polite" and
"aria-atomic" = "true" on the parent containers of each region in the app that
receives updates. ui_epoxy_html() does targeted updates, changing only the
parts of the UI that have changed.

.class_item [Deprecated] Deprecated in epoxy v1.0.0, please use .item_class instead.

.container [Deprecated] Deprecated in epoxy v1.0.0, where the container is now always
<epoxy-html>.

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-live
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-atomic

ui_epoxy_html 29

.container_item

[Deprecated] Deprecated in epoxy v1.0.0, please use .item_tag instead.

Value

An HTML object.

Functions

• epoxyHTML(): [Deprecated] Deprecated alias, please use ui_epoxy_html().

HTML Markup

By default, placeholders are inserted into a element in your UI, with the classes specified in
.class_item.

ui_epoxy_html() also supports an HTML markup syntax similar to pug (an HTML preprocessor).
As an example, the markup syntax

"{{h3.example.basic#basic-three demo}}"

creates a demo placeholder inside the following tag.

<h3 id="basic-three" class="example basic"></h3>

The placeholder template string follows the pattern {{<markup> <name>}}. The markup syntax
comes first, separated from the placeholder name by a space. The HTML element is first, followed
by classes prefixed with . or and ID prefixed with #. The template markup can contain only one
element and one ID, but many classes can be specified.

By default, the placeholder is assumed to be text content and any HTML in the sent to the place-
holder will be escaped — in other words if you sent "word", you’d see that
exact literal text in your app, rather than an emboldened word. To mark a placeholder as safe to
accept HTML, use !! before the placeholder, e.g. {{<markup> !!<name>}}. So {{h3 !!demo}}
will create an <h3> tag that accepts HTML within it.

See Also

ui_epoxy_mustache(), render_epoxy()

Examples

library(shiny)

ui <- fluidPage(
h2("ui_epoxy_html demo"),
ui_epoxy_html(
.id = "example",
.item_class = "inner",
fluidRow(

tags$div(

https://pughtml.com/what-is-pug-html

30 ui_epoxy_html

class = "col-xs-4",
selectInput(

inputId = "thing",
label = "What is this {{color}} thing?",
choices = c("apple", "banana", "coconut", "dolphin")

)
),
tags$div(

class = "col-xs-4",
selectInput(

inputId = "color",
label = "What color is the {{thing}}?",
c("red", "blue", "black", "green", "yellow")

)
),
tags$div(

class = "col-xs-4",
sliderInput(

inputId = "height",
label = "How tall is the {{color}} {{thing}}?",
value = 5,
min = 0,
max = 10,
step = 0.1,
post = "ft"

)
)

),
tags$p(class = "big", "The {{color}} {{thing}} is {{height}} feet tall."),
Default values for placeholders above.
thing = "THING",
color = "COLOR",
height = "HEIGHT"

),
tags$style(HTML(

".big { font-size: 1.5em; }
.inner { background-color: rgba(254, 233, 105, 0.5);}
.epoxy-item__placeholder { color: #999999; background-color: unset; }"

))
)

server <- function(input, output, session) {
output$example <- render_epoxy(
thing = input$thing,
color = input$color,
height = input$height

)
}

if (interactive()) {
shinyApp(ui, server)

}

ui_epoxy_markdown 31

run_epoxy_example_app("ui_epoxy_html")

ui_epoxy_markdown Epoxy Markdown Template for Shiny

Description

Create reactive HTML from a Markdown template. ui_epoxy_markdown() uses the same template
syntax as ui_epoxy_html(), but rather than requiring HTML inputs, you can write in markdown.
The template is first rendered from markdown to HTML using pandoc::pandoc_convert() (if
pandoc is available) or commonmark::markdown_html() otherwise.

Usage

ui_epoxy_markdown(
.id,
...,
.markdown_fn = NULL,
.markdown_args = list(),
.class = NULL,
.style = NULL,
.item_tag = "span",
.item_class = NULL,
.placeholder = "",
.sep = "",
.open = "{{",
.close = "}}",
.na = "",
.null = "",
.literal = FALSE,
.trim = FALSE,
.aria_live = c("polite", "off", "assertive"),
.aria_atomic = TRUE,
.class_item = deprecated(),
.container = deprecated(),
.container_item = deprecated()

)

Arguments

.id The output id

... Unnamed arguments are treated as lines of markdown text, and named argu-
ments are treated as initial values for templated variables.

32 ui_epoxy_markdown

.markdown_fn The function used to convert the markdown to HTML. This function is passed
the markdown text as a character vector for the first argument and any additional
arguments from the list .markdown_args. By default, we use pandoc::pandoc_convert()
if pandoc is available, otherwise we use commonmark::markdown_html().

.markdown_args A list of arguments to pass to commonmark::markdown_html().

.class, .style Classes and inline style directives added to the <epoxy-html> container into
which the elements in ... are placed.

.item_tag, .item_class

The HTML element tag name and classes used to wrap each template variable.
By default, each template is wrapped in a .

.placeholder Default placeholder if a template variable placeholder isn’t provided.

.sep [character(1): ‘""’]
Separator used to separate elements.

.open [character(1): ‘\{’]
The opening delimiter around the template variable or expression. Doubling the
full delimiter escapes it.

.close [character(1): ‘\}’]
The closing delimiter around the template variable or expression. Doubling the
full delimiter escapes it.

.na [character(1): ‘NA’]
Value to replace NA values with. If NULL missing values are propagated, that is
an NA result will cause NA output. Otherwise the value is replaced by the value
of .na.

.null [character(1): ‘character()’]
Value to replace NULL values with. If character() whole output is character().
If NULL all NULL values are dropped (as in paste0()). Otherwise the value is
replaced by the value of .null.

.literal [boolean(1): ‘FALSE’]
Whether to treat single or double quotes, backticks, and comments as regular
characters (vs. as syntactic elements), when parsing the expression string. Set-
ting .literal = TRUE probably only makes sense in combination with a custom
.transformer, as is the case with glue_col(). Regard this argument (espe-
cially, its name) as experimental.

.trim [logical(1): ‘TRUE’]
Whether to trim the input template with trim() or not.

.aria_live, .aria_atomic

The aria-live and aria-atomic attribute values for the entire template region. By
default, with "polite", any updates within the region will be announced via
screen readers.
If your template includes changes in lots of disparate areas, it would be better to
set "aria-live" = "polite" and "aria-atomic" = "true" on specific regions
that should be announced together. Otherwise, the default is to announce the
entire region within the ui_epoxy_html() whenever any of the values within
change. In other words, set .aria_live = "off" and .aria_atomic = NULL on
the ui_epoxy_html() parent item and then set "aria-live" = "polite" and

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-live
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-atomic

ui_epoxy_markdown 33

"aria-atomic" = "true" on the parent containers of each region in the app that
receives updates. ui_epoxy_html() does targeted updates, changing only the
parts of the UI that have changed.

.class_item [Deprecated] Deprecated in epoxy v1.0.0, please use .item_class instead.

.container [Deprecated] Deprecated in epoxy v1.0.0, where the container is now always
<epoxy-html>.

.container_item

[Deprecated] Deprecated in epoxy v1.0.0, please use .item_tag instead.

Value

An HTML object.

See Also

ui_epoxy_html(), ui_epoxy_mustache(), render_epoxy()

Examples

library(shiny)

Shiny epoxy template functions don't support inline transformations,
so we still have to do some prep work ourselves.
bechdel <- epoxy::bechdel

as_dollars <- scales::label_dollar(
scale_cut = scales::cut_short_scale()

)
bechdel$budget <- as_dollars(bechdel$budget)
bechdel$domgross <- as_dollars(bechdel$domgross)

vowels <- c("a", "e", "i", "o", "u")
bechdel$genre <- paste(

ifelse(substr(tolower(bechdel$genre), 1, 1) %in% vowels, "an", "a"),
tolower(bechdel$genre)

)

movie_ids <- rlang::set_names(
bechdel$imdb_id,
bechdel$title

)

ui <- fixedPage(
fluidRow(
column(

width = 3,
selectInput("movie", "Movie", movie_ids),
uiOutput("poster")

),
column(

34 ui_epoxy_mustache

width = 9,
ui_epoxy_markdown(

.id = "about_movie",
"

{{title}}

Released: {{ year }} \\
Rated: {{ rated }} \\
IMDB Rating: {{ imdb_rating }}

{{ title }} is {{ genre }} film released in {{ year }}.
It was filmed in {{ country }} with a budget of {{ budget }}
and made {{ domgross }} at the box office.
{{ title }} recieved a Bechdel rating of **{{ bechdel_rating }}**
for the following plot:

> {{ plot }}
"

)
)

)
)

server <- function(input, output, session) {
movie <- reactive({

bechdel[bechdel$imdb_id == input$movie,]
})

output$about_movie <- render_epoxy(.list = movie())
output$poster <- renderUI(

img(
src = movie()$poster,
alt = paste0("Poster for ", movie()$title),
style = "max-height: 400px; max-width: 100%; margin: 0 auto; display: block;"

)
)

}

if (interactive()) {
shinyApp(ui, server)

}

run_epoxy_example_app("ui_epoxy_markdown")

ui_epoxy_mustache Epoxy HTML Mustache Template

ui_epoxy_mustache 35

Description

A Shiny output that uses mustache templating to render HTML. Mustache is a powerful template
language with minimal internal logic. The advantage of ui_epoxy_mustache() is that all parts of
the HTML can be templated – including element attributes – whereas ui_epoxy_html() requires
that the dynamic template variables appear in the text portion of the UI. The downside is that the
entire template is re-rendered (in the browser), each time that updated data is sent from the server –
unlike ui_epoxy_html(), whose updates are specific to the parts of the data that have changed.

Usage

ui_epoxy_mustache(
id,
...,
.file = NULL,
.sep = "",
.container = "epoxy-mustache"

)

ui_epoxy_whisker(
id,
...,
.file = NULL,
.sep = "",
.container = "epoxy-mustache"

)

Arguments

id The ID of the output.

... Character strings of HTML or htmltools::tags. All elements should be unnamed.

.file A path to a template file. If provided, no other template lines should be included
in

.sep The separator used to concatenate elements in

.container A character tag name, e.g. "div" or "span", or a function that returns an
htmltools::tag().

Value

Returns a Shiny output UI element.

Functions

• ui_epoxy_whisker(): An alias for ui_epoxy_mustache(), provided because R users are
more familiar with this syntax via the whisker package.

https://mustache.github.io/

36 ui_epoxy_mustache

See Also

ui_epoxy_html(), render_epoxy()

Other Mustache-style template functions: epoxy_mustache()

Examples

library(shiny)

ui <- fluidPage(
fluidRow(
style = "max-width: 600px; margin: 0 auto",
column(

width = 6,
ui_epoxy_mustache(

id = "template",
h2(class = "{{heading_class}}", "Hello, {{name}}!"),
"{{#favorites}}",
p("Your favorite fruits are..."),
tags$ul(HTML("{{#fruits}}{{.}}{{/fruits}}")),
"{{/favorites}}",
"{{^favorites}}<p>Do you have any favorite fruits?</p>{{/favorites}}"

)
),
column(

width = 6,
h2("Inputs"),
textInput("name", "Your name"),
textInput("fruits", "Favorite fruits", placeholder = "apple, banana"),
helpText("Enter a comma-separated list of fruits.")

)
)

)

server <- function(input, output, session) {
user_name <- reactive({

if (!nzchar(input$name)) return("user")
input$name

})

favorites <- reactive({
if (identical(input$fruits, "123456")) {

Errors are equivalent to "empty" values,
the rest of the template will still render.
stop("Bad fruits, bad!")

}

if (!nzchar(input$fruits)) return(NULL)
list(fruits = strsplit(input$fruits, "\\s*,\\s*")[[1]])

})

output$template <- render_epoxy(

use_epoxy_knitr_engines 37

name = user_name(),
heading_class = if (user_name() != "user") "text-success",
favorites = favorites()

)
}

if (interactive()) {
shiny::shinyApp(ui, server)

}

run_epoxy_example_app("ui_epoxy_mustache")

use_epoxy_knitr_engines

Use the epoxy knitr engines

Description

Sets epoxy’s knitr engines for use by knitr in R Markdown and other document formats powered
by knitr. These engines are also set up when loading epoxy with library(), so in general you will
not need to call this function explicitly.

epoxy provides four knitr engines:

• epoxy uses default glue syntax, e.g. {var} for markdown outputs

• epoxy_html uses double brace syntax, e.g. {{var}} for HTML outputs

• epoxy_latex uses double angle brackets syntax, e.g. <<var>> for LaTeX outputs

• whisker uses the whisker package which provides an R-based implementation of the mus-
tache templating language.

For historical reasons, aliases for the HTML and LaTeX engines are also created: glue_html
and glue_latex. You may opt into a third alias — glue for the epoxy engine — by calling
use_epoxy_glue_engine(), but note that this will most likely overwrite the glue engine provided
by the glue package.

Usage

use_epoxy_knitr_engines(
use_glue_engine = "glue" %in% include,
include = c("md", "html", "latex", "mustache")

)

use_epoxy_glue_engine()

https://mustache.github.io/
https://mustache.github.io/

38 use_epoxy_knitr_engines

Arguments

use_glue_engine

If TRUE (default FALSE), uses epoxy’s glue engine, most likely overwriting the
glue engine provided by glue.

include The epoxy knitr engines to include. Defaults to all engines except for the glue
engine (which is just an alias for the epoxy engine).

Value

Silently sets epoxy’s knitr engines and invisible returns knitr::knit_engines as they were prior to the
function call.

Functions

• use_epoxy_glue_engine(): Use epoxy’s epoxy engine as the glue engine.

See Also

epoxy(), epoxy_html(), epoxy_latex(), and epoxy_mustache() for the functions that power
these knitr engines.

Examples

use_epoxy_knitr_engines()

Index

∗ Mustache-style template functions
epoxy_mustache, 7
ui_epoxy_mustache, 34

∗ Templating functions
epoxy_use, 21

∗ datasets
bechdel, 2

∗ epoxy’s glue transformers
epoxy_transform, 9
epoxy_transform_html, 12
epoxy_transform_inline, 14

and::and(), 16, 20
and::and_languages, 20
and::or(), 16, 20

bechdel, 2
bold, 11

collapse, 11
commonmark::markdown_html(), 31, 32

emptyenv(), 5, 22
engine_pick, 3
epoxy, 4, 21
epoxy(), 3, 10, 11, 21, 22, 38
epoxy_html (epoxy), 4
epoxy_html(), 3, 14, 38
epoxy_latex (epoxy), 4
epoxy_latex(), 3, 38
epoxy_mustache, 7, 36
epoxy_mustache(), 6, 38
epoxy_transform, 9, 14, 18
epoxy_transform(), 6, 11, 18, 21, 22
epoxy_transform_apply

(epoxy_transform_one_shot), 19
epoxy_transform_bold, 10, 20
epoxy_transform_bold

(epoxy_transform_one_shot), 19
epoxy_transform_bold(), 10, 20

epoxy_transform_code
(epoxy_transform_one_shot), 19

epoxy_transform_collapse
(epoxy_transform_one_shot), 19

epoxy_transform_get (epoxy_transform), 9
epoxy_transform_html, 12, 12, 18
epoxy_transform_html(), 13
epoxy_transform_inline, 12, 14, 14
epoxy_transform_inline(), 4, 10, 20
epoxy_transform_italic

(epoxy_transform_one_shot), 19
epoxy_transform_one_shot, 19
epoxy_transform_set (epoxy_transform), 9
epoxy_transform_set(), 18
epoxy_transform_wrap

(epoxy_transform_one_shot), 19
epoxy_use, 21
epoxy_use_chunk (epoxy_use), 21
epoxy_use_file (epoxy_use), 21
epoxyHTML (ui_epoxy_html), 27

glue::glue(), 4, 6, 10, 14, 17, 20, 22
glue::identity_transformer(), 14, 16, 20

htmltools::HTML(), 13
htmltools::tag(), 35
htmltools::tags, 35

inline transformer, 11

knitr::knit_engines, 38

pandoc::pandoc_convert(), 31, 32
purrr::map(), 20

render_epoxy, 24
render_epoxy(), 26, 29, 33, 36
renderEpoxyHTML (render_epoxy), 24
run_epoxy_example_app, 25

scales::label_bytes(), 16

39

40 INDEX

scales::label_comma(), 17
scales::label_dollar(), 15
scales::label_number(), 17
scales::label_ordinal(), 17
scales::label_pvalue(), 17
scales::label_scientific(), 17
shiny::reactiveValues(), 24
shiny::runApp, 26
shinyApp(), 26
sort(), 16

tolower(), 17
toupper(), 17
trim(), 6, 22, 28, 32

ui_epoxy_html, 27
ui_epoxy_html(), 24–26, 31, 33, 35, 36
ui_epoxy_markdown, 31
ui_epoxy_markdown(), 26
ui_epoxy_mustache, 8, 34
ui_epoxy_mustache(), 24–27, 29, 33
ui_epoxy_whisker (ui_epoxy_mustache), 34
use_epoxy_glue_engine

(use_epoxy_knitr_engines), 37
use_epoxy_knitr_engines, 37
use_epoxy_knitr_engines(), 6

whisker::whisker.render(), 7, 8

	bechdel
	engine_pick
	epoxy
	epoxy_mustache
	epoxy_transform
	epoxy_transform_html
	epoxy_transform_inline
	epoxy_transform_one_shot
	epoxy_use
	render_epoxy
	run_epoxy_example_app
	ui_epoxy_html
	ui_epoxy_markdown
	ui_epoxy_mustache
	use_epoxy_knitr_engines
	Index

