## ----eval=FALSE--------------------------------------------------------------- # devtools::install_github("YuLab-SMU/enrichit") ## ----------------------------------------------------------------------------- library(enrichit) # Simulate a universe of 1000 genes universe <- paste0("Gene", 1:1000) # Define gene sets gene_sets <- list( PathwayA = paste0("Gene", 1:50), # Genes 1-50 PathwayB = paste0("Gene", 800:850) # Genes 800-850 ) # Select 'significant' genes (e.g., top 20 genes) # PathwayA should be enriched sig_genes <- paste0("Gene", 1:20) # Run ORA ora_result <- ora( gene = sig_genes, gene_sets = gene_sets, universe = universe ) # View results as.data.frame(ora_result) ## ----------------------------------------------------------------------------- # Generate synthetic ranked gene list set.seed(42) geneList <- sort(rnorm(1000), decreasing = TRUE) names(geneList) <- paste0("Gene", 1:1000) # Define gene sets # PathwayTop is enriched at the top (positive ES) # PathwayBottom is enriched at the bottom (negative ES) gene_sets <- list( PathwayTop = names(geneList)[1:50], PathwayBottom = names(geneList)[951:1000], PathwayRandom = sample(names(geneList), 50) ) # Run GSEA using the multilevel method gsea_result <- gsea( geneList = geneList, gene_sets = gene_sets, method = "multilevel", nPerm = 1000, # Base permutations minGSSize = 10, maxGSSize = 500 ) # View results head(gsea_result) ## ----eval=FALSE--------------------------------------------------------------- # # Assuming you have a GSON object 'g' # # result <- gsea_gson(geneList = geneList, gson = g) ## ----------------------------------------------------------------------------- sessionInfo()