Package 'enmpa'

June 12, 2025

Title Ecological Niche Modeling using Presence-Absence Data

Version 0.2.1

Maintainer Luis F. Arias-Giraldo <lfarias.giraldo@gmail.com>

Date 2025-06-12

Description A set of tools to perform Ecological Niche Modeling with presence-absence data. It includes algorithms for data partitioning, model fitting, calibration, evaluation, selection, and prediction. Other functions help to explore signals of ecological niche using univariate and multivariate analyses, and model features such as variable response curves and variable importance. Unique characteristics of this package are the ability to exclude models with concave quadratic responses, and the option to clamp model predictions to specific variables. These tools are implemented following principles proposed in Cobos et al., (2022) <doi:10.17161/bi.v17i.15985>, Cobos et al., (2019) <doi:10.7717/peerj.6281>, and Peterson et al., (2008) <doi:10.1016/j.ecolmodel.2007.11.008>.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

URL https://github.com/Luisagi/enmpa

BugReports https://github.com/Luisagi/enmpa/issues

Imports doSNOW, ellipse, foreach, graphics, methods, mgcv, parallel, Rcpp, snow, stats, terra, utils, vegan

LazyData true

Depends R (>= 3.5.0)

LinkingTo Rcpp

NeedsCompilation yes

Author Luis F. Arias-Giraldo [aut, cre] (ORCID:

<https://orcid.org/0000-0003-4861-8064>), Marlon E. Cobos [aut] (ORCID: <https://orcid.org/0000-0002-2611-1767>), A. Townsend Peterson [ctb] (ORCID: <https://orcid.org/0000-0003-0243-2379>) Repository CRAN Date/Publication 2025-06-12 21:30:02 UTC

Contents

calibration_glm	2
cal_res	5
enmpa	5
enmpa_calibration	6
enmpa_fitted_models	7
enm_data	7
evaluation_stats	8
fit_selected	8
get_formulas	9
independent_eval1	11
jackknife	12
kfold_partition	13
model_selection	14
model_validation	15
niche_signal	16
optimize_metrics	17
plot_importance	18
plot_jk	19
plot_niche_signal	20
predict_glm	22
predict_selected	23
print	24
proc_enm	25
resp2var	26
response_curve	27
sel_fit	29
summary	29
test	30
var_importance	30
•	
	32

Index

calibration_glm GLM calibration with presence-absence data

Description

Creates candidate models based on distinct parameter settings, evaluates models, and selects the ones that perform the best.

Usage

```
calibration_glm(data, dependent, independent, weights = NULL,
    response_type = "1", formula_mode = "moderate",
    minvar = 1, maxvar = NULL, user_formulas = NULL,
    cv_kfolds = 5, partition_index = NULL, seed = 1,
    n_threshold = 100, selection_criterion = "TSS",
    exclude_bimodal = FALSE, tolerance = 0.01,
    out_dir = NULL, parallel = FALSE,
    n_cores = NULL, verbose = TRUE)
```

Arguments

data	data.frame or matrix of data to be used in model calibration. Columns represent dependent and independent variables.	
dependent	(character) name of dependent variable.	
independent	(character) vector of name(s) of independent variable(s).	
weights	(numeric) a vector with the weights for observations.	
response_type	(character) a character string that must contain "l", "p", "q" or a combination of them. $l = lineal$, $q = quadratic$, $p = interaction between two variables. Default = "l".$	
formula_mode	(character) a character string to indicate the strategy to create the formulas for candidate models. Options are: "light", "moderate", "intensive", or "complex". Default = "moderate". "complex" returns only the most complex formula defined in response_type.	
minvar	(numeric) minimum number of independent variables in formulas.	
maxvar	(numeric) maximum number of independent variables in formulas.	
user_formulas	(character) vector with formula(s) to test. Default = NULL.	
cv_kfolds	(numeric) number of folds to use for k-fold cross-validation exercises. Default = 5. Ignored if partition_index is defined.	
partition_index		
	list of indices for cross-validation in k-fold. The default, NULL, uses the function ${\tt kfold_partition}.$	
seed	(numeric) a seed for k-fold partitioning.	
n_threshold	(logical) number of threshold values to produce evaluation metrics. Default = 100 .	
selection_criterion		
	(character) criterion used to select best models, options are "TSS" and "ESS". Default = "TSS".	
exclude_bimodal		
	(logical) whether to filter out models with one or more variables presenting con- cave responses. Default = FALSE.	
tolerance	(numeric) value to modify the limit value of the metric used to filter models during model selection if none of the models meet initial considerations. Default = 0.01	

out_dir	(character) output directory name to save the main calibration results. Default = NULL.
parallel	(logical) whether to run on parallel or sequential. Default = FALSE.
n_cores	(numeric) number of cores to use. Default = number of free processors - 1.
verbose	(logical) whether to print messages and show progress bar. Default = TRUE

Details

Model evaluation is done considering the ability to predict presences and absences, as well as model fitting and complexity. Model selection consists of three steps: 1) a first filter to keep the models with ROC AUC >= 0.5 (statistically significant models), 2) a second filter to maintain only models that meet the selection_criterion ("TSS": TSS >= 0.4; or "ESS": maximum Accuracy - tolerance), and 3) from those, pick the ones with delta AIC <= 2.

formula_mode options determine what strategy to iterate the predictors defined in type for creating models:

- light.- returns simple iterations of complex formulas.
- moderate.- returns a comprehensive number of iterations.
- **intensive**.- returns all possible combination. Very time-consuming for 6 or more independent variables.
- complex.- returns only the most complex formula.

Value

An object of the class enmpa_calibration containing: selected models, a summary of statistics for all models, results obtained in cross-validation for all models, original data used, weights, and data-partition indices used.

Examples

cal_res

Description

An object of the class enmpa_calibration storing the results from GLM calibration.

Usage

cal_res

Format

An object of class enmpa_calibration with results from the function \link{calibration_glm}.

Examples

data("cal_res", package = "enmpa")

str(cal_res)

enmpa

enmpa: Ecological Niche Modeling using Presence-Absence Data

Description

enmpa contains a set of tools to perform detailed Ecological Niche Modeling using presence-absence data.

Details

It includes algorithms for data partitioning, model fitting, calibration, evaluation, selection, and prediction. Other functions help to explore model features as such variable response curves and variable importance.

Main functions in enmpa

calibration_glm, evaluation_stats, fit_glms, fit_selected, get_formulas, independent_eval1, kfold_partition, model_selection model_validation, niche_signal, optimize_metrics, predict_glm, predict_selected, response_curve, resp2var, var_importance, jackknife, plot_jk

Author(s)

```
Maintainer: Luis F. Arias-Giraldo <lfarias.giraldo@gmail.com> (ORCID)
Authors:
```

• Marlon E. Cobos <manubio13@gmail.com> (ORCID)

Other contributors:

• A. Townsend Peterson <town@ku.edu> (ORCID) [contributor]

See Also

Useful links:

- https://github.com/Luisagi/enmpa
- Report bugs at https://github.com/Luisagi/enmpa/issues

enmpa_calibration Constructor of S3 objects of class enmpa_calibration

Description

Constructor of S3 objects of class enmpa_calibration

Usage

Arguments

selected	date.frame with information about selected models.
summary	data.frame a summary of statistics for all models.
calibration_res	ults
	data.frame with results obtained from cross-validation for all models.
data	data.frame or matrix with the input data used for calibration.
partitioned_dat	a
	a list of partition indices.
weights	(numeric) a vector with the weights for observations. Default = NULL.

Value

An S3 object of class enmpa_calibration.

enmpa_fitted_models Constructor of S3 objects of class enmpa_fitted_models

Description

Constructor of S3 objects of class enmpa_fitted_models

Usage

```
new_enmpa_fitted_models(glms_fitted, selected, data, weights = NULL)
```

Arguments

glms_fitted	a list of fitted GLMs.
selected	date.frame with information about selected models.
data	data.frame or matrix with the input data used for calibration.
weights	(numeric) a vector with the weights for observations. Default = NULL.

Value

An S3 object of class enmpa_fitted_models.

enm_data

Example data used to run model calibration exercises

Description

A dataset containing information on presence and absence, and independent variables used to fit GLM models.

Usage

enm_data

Format

A data frame with 5627 rows and 3 columns.

Sp numeric, values of 0 = absence and 1 = presence.

bio_1 numeric, temperature values.

bio_12 numeric, precipitation values.

Examples

data("enm_data", package = "enmpa")
head(enm_data)

evaluation_stats

Description

Calculate median and standard deviation of evaluation results for all candidate models considering cross-validation kfolds.

Usage

```
evaluation_stats(evaluation_results, bimodal_toexclude = FALSE)
```

Arguments

evaluation_results

data.frame model evaluation results. These results are the output of the function model_validation.

bimodal_toexclude

(logical) whether models in which binomial variable response curves were detected will be excluded during selection processes.

Value

A data frame with the mean and standard deviation for all metrics considering cross-validation kfolds.

Examples

```
# data
data("cal_res", package = "enmpa")
all_res <- cal_res$calibration_results[, -1]</pre>
```

```
# statistics for all evaluation results
evaluation_stats(all_res, bimodal_toexclude = TRUE)
```

fit_selected Fitting selected GLMs models

Description

Functions to facilitate fitting multiple GLMs.

Usage

fit_selected(glm_calibration)

fit_glms(formulas, data, weights = NULL, id = NULL)

get_formulas

Arguments

glm_calibratio	n
	a list resulting from calibration_glm. Models fitted are those in the slot "se- lected".
formulas	(character) a vector containing the formula(s) for GLM(s).
data	data.frame with the dependent and independent variables.
weights	(numeric) a vector with the weights for observations. Default = NULL.
id	(character) id code for models fitted. Default = NULL.

Value

A list of fitted GLMs.

For fit_selected, an enmpa fitted models object.

Examples

fits\$ModelID_1

get_formulas Get GLM

Get GLM formulas according to defined response types

Description

Generate GLM formulas for independent variables predicting a dependent variable, taking into account response types required. All possible combinations of variables can be created using arguments of the function.

Arguments

dependent	(character) name of dependent variable.
independent	(character) vector of name(s) of independent variable(s).
type	(character) a character string that must contain "l", "p", "q" or a combination of them. $l = lineal$, $q = quadratic$, $p = interaction between two variables. Default = "l".$
mode	(character) (character) a character string to indicate the strategy to create the formulas for candidate models. Options are: "light", "moderate", "intensive", or "complex". Default = "moderate".
minvar	(numeric) minimum number of independent variables in formulas.
maxvar	(numeric) maximum number of independent variables in formulas.
complex	(logical) whether to return the most complex formula.
var_names	sames as independent.
string	same as type.

Details

mode options determine what strategy to iterate the predictors defined in type for creating models:

- light.- returns simple iterations of complex formulas.
- moderate.- returns a comprehensive number of iterations.
- **intensive**.– returns all possible combination. Very time-consuming for 6 or more independent variables.
- complex.- returns only the most complex formula.

Value

A character vector containing the resulting formula(s).

independent_eval1

Examples

```
# example variables
dep <- "sp"
ind <- c("temp", "rain", "slope")
# The most complex formula according to "type"
get_formulas(dep, ind, type = "lqp", mode = "complex")
# mode = 'light', combinations according to type
get_formulas(dep, ind, type = "lqp", mode = "light")
# mode = 'light', combinations according to type
get_formulas(dep, ind, type = "lqp", mode = "intensive")
```

independent_eval1 Evaluate final models using independent data

Description

Final evaluation steps for model predictions using an independent dataset (not used in model calibration).

Usage

```
independent_eval01(prediction, observation, lon_lat = NULL)
```

Arguments

prediction	(numeric) vector or SpatRaster object. If numeric, predicted values in independent data (for independent_eval01), or the entire area of prediction (for independent_eval1). If SpatRaster prediction over the area of interest.	
threshold	(numeric) the lowest predicted probability value for an occurrence point. This value must be defined for presences-only data. Default = NULL.	
test_prediction		
	(numeric) vector of predictions for independent data. Default = NULL.	
lon_lat	matrix or data.frame of coordinates (longitude and latitude, in that order) of independent data. Points must be located within the valid area of prediction. For independent_eval01 they must correspond with values in observation.	
observation	(numeric) vector of observed (known) values of presence or absence to test against prediction (if numeric) or values of prediction in lon_lat.	

Value

A data.frame or list containing evaluation results.

Examples

```
# Independent test data based on coordinates (lon/lat WGS 84) from presence
# and absences records
data("test", package = "enmpa")
head(test)
# Loading a model prediction
pred <- terra::rast(system.file("extdata", "proj_out_wmean.tif",</pre>
                                package = "enmpa"))
terra::plot(pred)
# Evaluation using presence-absence data
independent_eval01(prediction = pred, observation = test$Sp,
                   lon_lat = test[, 2:3])
# Evaluation using presence-only data
test_p_only <- test[test$Sp == 1, ]</pre>
th_maxTSS <- 0.1274123
                                     # threshold based on the maxTSS
independent_eval1(prediction = pred, threshold = th_maxTSS,
                  lon_lat = test_p_only[, 2:3])
```

```
jackknife
```

Jackkniffe test for variable contribution

Description

The Jackknife function providing a detailed reflection of the impact of each variable on the overall model, considering four difference measures: ROC-AUC, TSS, AICc, and Deviance.

Usage

Arguments

data	data.frame or matrix of data to be used in model calibration. Columns represent dependent and independent variables.
dependent	(character) name of dependent variable.
independent	(character) vector of name(s) of independent variable(s).
user_formula	(character) custom formula to test. Default = NULL.
cv	(numeric) number of folds to use for k-fold cross-validation exercises. Default = 3.
response_type	(character) a character string that must contain "l", "p", "q" or a combination of them. $l = lineal$, $q = quadratic$, $p = interaction between two variables. Default = "l".$
weights	(numeric) a vector with the weights for observations.

12

kfold_partition

Value

list including model performance metrics (ROC-AUC, TSS, AICc, and deviance) for the complete model, model performance when excluding a specific predictor, and the independent contribution of that predictor to the model.

Examples

kfold_partition *K-fold data partitioning*

Description

Creates indices to partition available data into k equal-sized subsets or folds, maintaining the global proportion of presence-absences in each fold.

Usage

```
kfold_partition(data, dependent, k = 2, seed = 1)
```

Arguments

data	data.frame or matrix containing at least two columns.
dependent	(character) name of column that contains the presence-absence records (1-0).
k	(numeric) the number of groups that the given data is to be split into.
seed	(numeric) integer value to specify an initial seed. Default = 1.

Value

A list of vectors with the indices of rows corresponding to each fold.

Examples

model_selection Selection of best candidate models considering various criteria

Description

Applies a series of criteria to select best candidate models.

Usage

Arguments

evaluation_stats

	data.frame with the statistics of model evaluation results. These results are the output of the function evaluation_stats.
criterion	(character) metric used as the predictive criterion for model selection.
exclude_bimoda	1
	(logical) whether to exclude models in which binomial variable response curves were detected.
tolerance	(numeric)

Value

A data.frame with one or more selected models.

Examples

```
# data
data("cal_res", package = "enmpa")
eval_stats <- cal_res$summary[, -1]
# selecting best model
selected_mod <- model_selection(eval_stats, exclude_bimodal = TRUE)</pre>
```

14

Description

Model evaluation using entire set of data and a k-fold cross validation approach. Models are assessed based on discrimination power (ROC-AUC), classification ability (accuracy, sensitivity, specificity, TSS, etc.), and the balance between fitting and complexity (AIC).

Usage

```
model_validation(formula, data, family = binomial(link = "logit"),
    weights = NULL, cv = FALSE, partition_index = NULL,
    k = NULL, dependent = NULL, n_threshold = 100,
    keep_coefficients = FALSE, seed = 1)
```

Arguments

formula	(character) expression to be used as a glm formula.	
data	data.frame with dependent and independent variables.	
family	a family object for models used by functions such as glm. Default = bino- mial(link = "logit").	
weights	(numeric) vector with weights for observations. Default = NULL.	
CV	(logical) whether to use a k-fold cross validation for evaluation. Default = FALSE.	
partition_index		
	list of indices for cross validation in k-fold. Obtained with the function kfold_partition. Default = NULL.	
k	(numeric) number of folds for a new k-fold index preparation. Ignored if partition_index is defined or if cv = FALSE. Default = NULL.	
dependent	(character) name of dependent variable. Ignore if cv = FALSE. Default = NULL.	
n_threshold	(numeric) number of threshold values to be used for ROC. Default = 100.	
keep_coefficients		
	(logical) whether to keep model coefficients. Default = FALSE.	
seed	(numeric) a seed number. Default = 1.	

Value

A data.frame with results from evaluation.

Examples

```
# Load species occurrences and environmental data.
data("enm_data", package = "enmpa")
head(enm_data)
# Custom formula
form <- c("Sp ~ bio_1 + I(bio_1^2) + I(bio_12^2)")
# Model evaluation using the entire set of records
model_validation(form, data = enm_data)
# Model evaluation using a k-fold cross-validation (k = 3)
model_validation(form, data = enm_data, cv = TRUE, k = 3, dependent = "Sp")
```

niche_signal Niche Signal detection using one or multiple variables

Description

Identifies whether a signal of niche can be detected using one or multiple variables. This is an implementation of the methods developed by Cobos & Peterson (2022) doi:10.17161/bi.v17i. 15985 that focuses on identifying niche signals in presence-absence data.

Usage

Arguments

data	matrix or data.frame containing at least the following information: a column representing condition (positive = 1 or negative = 0), and one or more columns representing environmental variables.
condition	(character) name of the column with numeric information about detection (positive = 1 or negative = 0).
variables	(character) vector of one or more names of columns to be used as environmental variables. If method = "univariate", only one variable is used; for method = "permanova", multiple variables can be used.
method	(character) name of the method to be used for niche comparison. Default = "univariate".

16

permanova_method

· –	(character) name of the dissimilarity index to be used as method in adonis2. See all options in vegdist. Default = "mahalanobis".
iterations	(numeric) number of iterations to be used in analysis. Default = 1000. If method = "permanova", permutations = iterations - 1.
set_seed	(numeric) integer value to specify a initial seed. Default = 1.
verbose	(logical) whether or not to print messages about the process. Default = TRUE.
	other arguments to be passed to adonis2.
variable	(character) name of the column containing data to be used as environmental variable.
permutations	number of permutations to be performed.

Value

A list with results from analysis depending on method.

Examples

optimize_metrics Find threshold values to produce three optimal metrics

Description

The metrics true skill statistic (TSS), sensitivity, specificity are explored by comparing actual vs predicted values to find threshold values that produce sensitivity = specificity, maximum TSS, and a sensitivity value of 0.9.

Usage

```
optimize_metrics(actual, predicted, n_threshold = 100)
```

Arguments

actual	(numeric) vector of actual values (0, 1) to be compared to predicted values after applying a threshold.
predicted	(numeric) vector of predicted probability values to be thresholded and compared to actual.
n_threshold	(numeric) number of threshold values to be used. Default = 100 .

Value

A list containing a data.frame with the resulting metrics for all threshold values tested, and a second data.frame with the results for the threshold values that produce sensitivity = specificity (ESS), maximum TSS (maxTSS), and a sensitivity value of 0.9 (SEN90).

Examples

```
# example data
act <- c(rep(1, 20), rep(0, 80))
pred <- c(runif(20, min = 0.4, max = 0.7), runif(80, min = 0, max = 0.5))
# run example
om <- optimize_metrics(actual = act, predicted = pred)
om$optimized</pre>
```

plot_importance Plot variable importance

Description

Visualization of the results obtained with the function var_importance.

Usage

Arguments

х	data.frame output from var_importance.
xlab	(character) a label for the x axis.
ylab	(character) a label for the y axis.
main	(character) main title for the plot.
extra_info	(logical) when results are from more than one model, it adds information about the number of models using each predictor and the mean contribution found.
	additional arguments passed to barplot or boxplot.

plot_jk

Value

A plot

Examples

plot_jk

Jackkniffe plot for variable contribution

Description

The jackknife figure shows the impact of each variable on the full model, providing detailed information about the function and significance of each variable. Light blue indicates the impact on the model if the variable is not included, while dark blue indicates the independent contribution of the variable to the model.

Usage

Arguments

х	list output from jackknife.
metric	(character) model metric to plot. Default = "ROC_AUC".
legend	(logical) whether to add legend. Default = TRUE.
colors	(character) vector of colors. Default = c("cyan", "blue", "red").

xlab	(character) a label for the x axis.
main	(character) main title for the plot.

plot_niche_signal Plot Niche Signal results

Description

Plots to interpret results from niche_signal tests (Cobos & Peterson (2022) doi:10.17161/bi. v17i.15985).

Usage

```
plot_niche_signal(niche_signal_list, statistic = "mean",
                  variables = NULL, ellipses = FALSE, level = 0.99,
                  breaks = "Sturges", main = "", xlab = NULL, ylab = NULL,
                  h_col = "lightgray", h_cex = 0.8, lty = 2, lwd = 1,
                  l_col = c("blue", "black"), e_col = c("black", "red"),
                  pch = 19, pt_cex = c(1.3, 0.8), pt_col = c("black", "red"),
                  ...)
plot_niche_signal_univariate(niche_signal_univariate_list, statistic = "mean",
                             breaks = "Sturges", main = "", xlab = NULL,
                             ylab = "Frequency", h_col = "lightgray",
                             h_cex = 0.8, lty = 2, lwd = 1,
                             l_col = c("blue", "black"), ...)
plot_niche_signal_permanova(niche_signal_permanova_list, variables = NULL,
                           ellipses = FALSE, level = 0.99, main = "",
                           xlab = NULL, ylab = NULL,
                           e_col = c("black", "red"), lty = 2, lwd = 1,
                           pch = 19, pt_cex = c(1.3, 0.8),
                           pt_col = c("black", "red"), ...)
```

Arguments

niche_signal_list

	list of results from niche_signal.
statistic	(character) name of the statistic for which results will be explored when results come for univariate analysis. Default = "mean". Options are: "mean", "median", "SD", and "range".
variables	(character) name of variables to used in plots when results come from analysis using the permanova method. The default, NULL, uses the first two variables.
ellipses	(logical) whether to use ellipses to represent all and positive data when results come from PERMANOVA. The default, FALSE, plots points instead.

level	(numeric) value from 0 to 1 representing the limit of the ellipse to be plotted. Default = 0.99 .
breaks	breaks in the histogram as in hist. Default = "Sturges".
main	(character) title for plot. Default = "".
xlab	(character) x axis label. Default = NULL. For results from PERMANOVA, appropriate variable names are used.
ylab	(character) y axis label. Default = NULL. For univariate results, the default turn into "Frequency". For results from PERMANOVA, appropriate variable names are used.
h_col	a color to be used to fill the bars of histograms. Default = "lightgray".
h_cex	(numeric) value by which plotting text and symbols should be magnified relative to the default in histograms. Default = 0.8 .
lty	(numeric) line type. See options in par. Default = 2. A vector of length = 2 can be used, in order, all and positive.
lwd	(numeric) line width. See options in par. Default = 1. A vector of length = 2 can be used, in order, all and positive.
l_col	line color for observed value of positives and confidence intervals. Default = c("blue", "black").
e_col	color of ellipse lines for all and positive data. Default = c("black", "red").
pch	point type. See options in points. Default = 19. A vector of length = 2 can be used, in order, all and positive.
pt_cex	(numeric) value by which points will be magnified. Values for all and positive points are recommended. Default = $c(1.3, 0.8)$.
pt_col	color for points. Values for all and positive points are recommended. Default = c("black", "red").
	other plotting arguments to be used.
niche_signal_u	
niche_signal_p	list of results from niche_signal_univariate.
mene_signal_p	list of results from niche_signal_permanova.

Value

A plot.

Examples

predict_glm

Extension of glm predict to generate predictions of different types

Description

Obtains predictions from a fitted generalized linear model objects. It also allows the clamping option to restrict extrapolation in areas outside the calibration area.

Usage

```
predict_glm(
   model,
   newdata,
   data = NULL,
   extrapolation_type = "E",
   restricted_vars = NULL,
   type = "response"
)
```

Arguments

model	a glm object.	
newdata	a data.frame or matrix with the new data to project the predictions.	
data	data.frame or matrix of data used in the model calibration step. Default = NULL.	
extrapolation_t	уре	
	(character) to indicate extrapolation type of model. Models can be transferred with three options: free extrapolation ('E'), extrapolation with clamping ('EC'), and no extrapolation ('NE'). Default = 'E'.	
restricted_vars		
	(character) a vector containing the names of the variables that will undergo clamping or no extrapolation. For clamping, these variables are set to minimum and maximum values established for the max and min values within calibration values. For no extrapolation, the variables outside calibration limits became NA. If no specific names are provided, the value is set to NULL by default, indicat- ing that clamping (EC) or no extrapolation (NE) will be applied to all variables. Ignore if extrapolation_type = 'E'.	

predict_selected

type

(character) the type of prediction required. For a default binomial model the default predictions are of log-odds (probabilities on logit scale). The default, "response", returns predicted probabilities.

Value

A SpatRaster object or a vector with predictions.

Examples

predict_selected Predictions for the models selected after calibration

Description

Wrapper function that facilitates the prediction of those models selected as the most robust. In addition, it allows the calculation of consensus models, when more than one model are selected.

Usage

Arguments

fitted	an enmpa-classfitted models object obtained using the functions fit_selected.	
newdata	a SpatRaster, data.frame, or matrix with the new data on which to predict.	
extrapolation_type		
	(character) to indicate extrapolation type of model. Models can be transferred with three options: free extrapolation ('E'), extrapolation with clamping ('EC'), and no extrapolation ('NE'). Default = 'E'.	
restricted_vars		
	(character) a vector containing the names of the variables that will undergo clamping or no extrapolation. For clamping, these variables are set to minimum and maximum values established for the max and min values within calibration values. For no extrapolation, the variables outside calibration limits became NA.	

	If no specific names are provided, the value is set to NULL by default, indicat- ing that clamping (EC) or no extrapolation (NE) will be applied to all variables. Ignore if extrapolation_type = 'E'.
type	(character) the type of prediction required. For a default binomial model the default predictions are of log-odds (probabilities on logit scale). The default, "response", returns predicted probabilities.
consensus	(logical) valid if newdata is a SpatRaster, whether to produce consensus re- sults obtained by combining the predictions from the collection of selected mod- els. By default consensuses are calculated using the mean, median, variance, and weighted average using the AIC weights. Default = TRUE.

Value

A list with predictions of selected models on the newdata and fitted selected model(s). Consensus predictions are added if multiple selected models exits and if newdata is a SpatRaster object.

Examples

```
# Load a fitted selected model
data(sel_fit, package = "enmpa")
# Load raster layers to be projected
env_vars <- terra::rast(system.file("extdata", "vars.tif", package = "enmpa"))
# Predictions (only one selected mode, no consensus required)
preds <- predict_selected(sel_fit, newdata = env_vars, consensus = FALSE)
# Plot prediction
terra::plot(preds$predictions)
```

print

Print a short version of elements in 'calibration' and 'fitted models' objects

Description

Print a short version of elements in 'calibration' and 'fitted models' objects

Usage

```
## S3 method for class 'enmpa_calibration'
print(x, ...)
## S3 method for class 'enmpa_fitted_models'
print(x, ...)
```

proc_enm

Arguments

x	object of enmpa_fitted_models or enmpa_calibration
	additional arguments affecting the summary produced. Ignored in these func- tions.

proc_enm

Partial ROC calculation

Description

proc applies partial ROC tests to model predictions.

Usage

Arguments

test_prediction		
	(numeric) vector of model predictions for testing data.	
prediction	SpatRaster or numeric vector of model predictions to be evaluated.	
threshold	(numeric) value from 0 to 100 to represent the percentage of potential error (E) that the data could have due to any source of uncertainty. Default = 5 .	
sample_percentage		
	(numeric) percentage of testing data to be used in each bootstrapped process for calculating the partial ROC. Default = 50.	
iterations	(numeric) number of bootstrap iterations to be performed; default = 500.	

Details

Partial ROC is calculated following Peterson et al. (2008) doi:10.1016/j.ecolmodel.2007.11. 008.

Value

A list with the summary of the results and a data.frame containing the AUC values and AUC ratios calculated for all iterations.

Examples

resp2var

Two-Way interaction response plot

Description

A view of the species probability into a two-dimensional environmental space.

Usage

```
resp2var(model, variable1 , variable2, modelID = NULL, data = NULL, n = 1000,
    new_data = NULL, extrapolate = FALSE, add_bar = TRUE,
    add_limits = FALSE, color.palette = NULL, xlab = NULL, ylab = NULL,
    ...)
```

Arguments

model	an object of class glm or enmpa_fitted_models.
variable1	(character) name of the variable to be plotted in x axis.
variable2	(character) name of the variable to be plotted in y axis.
modelID	(character) name of the ModelID if inputed model is in the enmpa_fitted_models object. Default = NULL.
data	data.frame or matrix of data to be used in model calibration. Default = NULL.
n	(numeric) an integer guiding the number of breaks. Default = 100
new_data	a SpatRaster, data.frame, or matrix of variables representing the range of vari- able values in an area of interest. Default = NULL.
extrapolate	(logical) whether to allow extrapolation to study the behavior of the response outside the calibration limits. Ignored if new_data is defined. Default = TRUE.
add_bar	(logical) whether to add bar legend. Default = TRUE.
add_limits	(logical) whether to add calibration limits if extrapolate = TRUE. Default = FALSE.
color.palette	(function) a color palette function to be used to assign colors in the plot. Default = function(n) rev(hcl.colors(n, "terrain")).

26

response_curve

27

xlab	(character) a label for the x axis. The default, NULL, uses the name defined in variable1.
ylab	(character) a label for the y axis. The default, NULL, uses the name defined in variable2.
	additional arguments passed to image.

Details

The function calculates probabilities by focusing on each combination of the two supplied environmental variable while keeping all other variables constant at their mean values.

Value

A plot with the response interaction of two environmental dimensions for variable1 and variable2, and don't return anything.

Examples

```
# Load a fitted selected model
data(sel_fit, package = "enmpa")
# Two-Way interaction response plot in the calibration limits
resp2var(sel_fit, variable1 = "bio_1", variable2 = "bio_12", xlab = "BIO-1",
ylab = "BIO-12", modelID = "ModelID_7")
# Two-Way interaction response plot allowing extrapolation
resp2var(sel_fit, variable1 = "bio_1", variable2 = "bio_12", xlab = "BIO-1",
ylab = "BIO-12", modelID = "ModelID_7", extrapolate = TRUE)
```

response_curve Variable response curves for GLMs

Description

A view of variable responses in models. Responses based on single or multiple models can be provided.

Usage

Arguments

fitted	an object of class glm, a list of GLMs obtained using the function fit_glms, or an object enmpa_fitted_models from fit_selected.
variable	(character) name of the variables to be plotted.
data	data.frame or matrix of data used in the model calibration step. Default = NULL.
modelID	(character) vector of ModelID(s) to be considered when the fitted models is an enmpa_fitted_object. By default all models are included. Default = NULL.
n	(numeric) an integer guiding the number of breaks. Default = 100
new_data	a SpatRaster, data.frame, or matrix of variables representing the range of variable values in an area of interest. Default = NULL. It must be defined in case the model entered does not explicitly include a data component.
extrapolate	(logical) whether to allow extrapolation to study the behavior of the response outside the calibration limits. Ignored if new_data is defined. Default = TRUE.
xlab	(character) a label for the x axis. The default, NULL, uses the name defined in variable.
ylab	(character) a label for the y axis. Default = "Probability".
col	(character) color for lines. Default = "red".
•••	additional arguments passed to plot.

Details

The function calculates these probabilities by focusing on a single environmental variable while keeping all other variables constant at their mean values.

When responses for multiple models are to be plotted, the mean and confidence intervals for the set of responses are calculated using a GAM.

Value

A plot with the response curve for a variable.

Examples

```
# Load a fitted selected model
data(sel_fit, package = "enmpa")
```

```
# Response curve for single models
response_curve(sel_fit$ModelID_7, variable = "bio_1")
```

```
# Response curve when model(s) are in a list (only one model in this one)
response_curve(sel_fit, variable = "bio_12")
```

sel_fit

Description

An object of the class enmpa_fitted_models containing fitted selected model(s) and the information from model evaluation for such model(s).

Usage

sel_fit

Format

A list with four elements.

glms_fitted a fitted glm (ModelID_7).

selected a data.frame with results from evaluation of ModelID_7

data a data.frame containing information on presence and absence, and independent variables used to fit GLM models.

weights a vector with the weights for observations.

Examples

data("sel_fit", package = "enmpa")

summary

Summary of 'calibration' and 'fitted models'

Description

Summary of 'calibration' and 'fitted models'

Usage

S3 method for class 'enmpa_calibration'
summary(object, ...)

```
## S3 method for class 'enmpa_fitted_models'
summary(object, ...)
```

Arguments

object	of class enmpa_calibration or enmpa_fitted_models
	additional arguments affecting the summary produced. Ignored in these func-
	tions.

Value

A printed summary.

test

Example data used to test models

Description

A dataset containing information on presence and absence, and independent variables used to fit GLM models.

Usage

test

Format

A data frame with 100 rows and 3 columns.

Sp numeric, values of 0 = absence and 1 = presence.

lon numeric, longitude values.

lat numeric, latitude values.

Examples

data("test", package = "enmpa")
head(test)

var_importance Variable importance for GLMs

Description

Calculates the relative importance of predictor variables based on the concept of explained deviance. This is achieved by fitting a GLMs multiple times, each time leaving out a different predictor variable to observe its impact on the model's performance.

Usage

```
var_importance(fitted, modelID = NULL, data = NULL)
```

var_importance

Arguments

fitted	an object of class glm, a list of GLMs obtained using the function fit_glms, or an object enmpa_fitted_models from fit_selected .
modelID	(character) vector of ModelID(s) to be considered when the fitted input is of the class enmpa_fitted_models. By default all models are included. Default = NULL.
data	data.frame or matrix of data used in the model calibration step. It must be defined in case the model entered does not explicitly include a data component. Default = NULL.

Details

The process begins by fitting the full GLM model, which includes all predictor variables. Subsequently, separate GLM models are fitted, excluding one variable at a time to assess the influence of its absence on the model's performance. By systematically evaluating the effect of removing each predictor variable, the function provides valuable insights into their individual contributions to the model's overall performance and explanatory power.

Value

A data.frame containing the relative contribution of each variable. An identification for distinct models is added if fitted contains multiple models.

Examples

```
# Load a fitted selected model
data(sel_fit, package = "enmpa")
```

Variable importance for single models
var_importance(sel_fit, modelID = "ModelID_7")

```
# Variable importance for multiple models (only one model in this list)
var_importance(sel_fit)
```

Index

* datasets cal_res, 5 enm_data, 7 sel_fit, 29 test, 30 adonis2.17 aux_string_comb (get_formulas), 9 aux_var_comb (get_formulas), 9 barplot, 18 boxplot, 18 cal_res, 5 calibration_glm, 2, 5, 9 enm_data, 7 enmpa, 5 enmpa-package (enmpa), 5 enmpa_calibration, 6 enmpa_fitted_models, 7 evaluation_stats, 5, 8, 14 fit_glms, 5, 28, 31 fit_glms (fit_selected), 8 fit_selected, 5, 8, 23, 28, 31 get_formulas, 5, 9 get_formulas_main(get_formulas), 9 hist, 21 image, 27 independent_eval01, 11 independent_eval01 (independent_eval1), 11 independent_eval1, 5, 11, 11 jackknife, 5, 12, 19 kfold_partition, *3*, *5*, 13, *15*

model_selection, 5, 14 model_validation, 5, 8, 15 new_enmpa_calibration (enmpa_calibration), 6 new_enmpa_fitted_models (enmpa_fitted_models), 7 niche_signal, 5, 16 niche_signal_permanova (niche_signal), 16 niche_signal_univariate (niche_signal), 16 optimize_metrics, 5, 17 par, 21 plot, 28 plot_importance, 18 plot_jk, 5, 19 plot_niche_signal, 20 plot_niche_signal_permanova (plot_niche_signal), 20 plot_niche_signal_univariate (plot_niche_signal), 20 points, 21 predict_glm, 5, 22 predict_selected, 5, 23 print, 24 print,enmpa_calibration-method(print), 24 print,enmpa_fitted_models-method (print), 24 print.enmpa_calibration(print), 24 print.enmpa_fitted_models(print), 24 proc_enm, 25 resp2var, 5, 26 response_curve, 5, 27 sel_fit, 29 summary, 29

INDEX

summary,enmpa_calibration-method
 (summary), 29
summary,enmpa_fitted_models-method
 (summary), 29
summary.enmpa_calibration(summary), 29
summary.enmpa_fitted_models(summary),
 29

test, 30

var_importance, *5*, *18*, 30 vegdist, *17*