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Abstract

The empirical best prediction (EBP) approach proposed by Molina and Rao (2010),
and generalized in Guadarrama et al. (2016) as the census EBP, is implemented in the ebp
function of the R package emdi. A first version of the function allowed for the estimation
of point and MSE estimates under non-informative sampling. The log and Box-Cox trans-
formations were provided to make the distribution of the error terms closer to normal. For
the latter, the transformation parameter can be estimated from the data as suggested in
Rojas-Perilla et al. (2020). Their evaluation study further shows that the transformations
log-shift and Dual transformation perform well. Furthermore, Guadarrama et al. (2018)
reveal the benefits of considering the sampling design in the EBP under informative sam-
pling. Therefore, the second version of the ebp function includes two new functionalities:
(a) additional data-driven transformations for the EBP under non-informative sampling,
the log-shift and Dual transformation, (b) the inclusion of sampling weights to consider
informative sampling. The functionality of these extensions is demonstrated by examples
based on synthetic data included in the package.

Keywords: Official statistics, survey statistics, small area estimation.

1. Introduction

The empirical best prediction (EBP) by Molina and Rao (2010) is one of the most popular
unit-level models in the field of small area estimation (SAE) along with e.g., the World Bank
method also known as ELL by Elbers et al. (2003). Therefore, it is one of the small area
estimation methods implemented in the R package emdi (Kreutzmann et al. 2019). However,
the approach provided by function ebp relies, among others, on the following assumptions: 1.
normality of the error terms, and 2. a non-informative sampling design.
Several studies address the first aspect. While Diallo and Rao (2014) relax the normality
assumption by allowing for skew-normal error terms, Graf et al. (2019) propose the usage of
the more flexible distribution generalized beta of the second kind (GB2). Marino et al. (2019)
investigate a semi-parametric empirical best predictor that estimates the distribution of the
random effects from the data. Another, more straightforward approach is transforming the
dependent variable. Extensive evaluation studies in Rojas-Perilla et al. (2020) find that data-
driven transformations help to achieve at least symmetric distributions. The transformations
compared are the Box-Cox (Box and Cox 1964), Dual (Yang 2006) and log-shift (Feng et al.
2016) transformation. Therefore, the Dual and log-shift transformations have been added
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to the ebp function complementing the log and Box-Cox transformation that were already
implemented in the first version of the package.
The second point affects the estimation when the sampling design of the survey used in the
EBP is informative. Guadarrama et al. (2018) propose the incorporation of sampling weights
by using the Pseudo empirical best linear unbiased predictor (PEBLUP) (You and Rao 2002)
for the estimation of the model parameters. They show that the weighted EBP estimator has
a lower bias than the unweighted EBP estimator under informative sampling and comparable
results under non-informative sampling. The new version of the ebp function includes both
options.
The first version of the ebp function is explained in detail in Kreutzmann et al. (2019). There-
fore, this vignette will focus only on short introductions to the newly implemented features
and will further show how to use the functionality. Throughout the vignette, it is assumed
that a finite population of size N is partitioned into D domains of sizes N1, . . . , ND. The
index i = 1, . . . , D refers to an ith domain and j = 1, . . . , Ni to the jth household/individ-
ual. From the population, a random sample is drawn of size n with n1, . . . , nD observations
belonging to that domain.

2. Additional data-driven transformations
The underlying model in the EBP is the nested error linear regression model that is a unit-level
mixed model with a random intercept (Battese et al. 1988). One way to make the data better
conform with the assumptions imposed by linear and linear mixed models is transforming the
dependent variable. The transformation may help to achieve linearity, homoscedasticity and
normality. The EBP crucially depends on the latter since the random domain-specific effect
and the unit-level error term are drawn from a normal distribution in the Monte Carlo simu-
lation. Therefore, we will focus on normality in this vignette even though the transformations
may also improve the model in other aspects (Rojas-Perilla 2018, pp. 9-45).

2.1. Methodology

The most common transformation to achieve normality in the error terms is the log transfor-
mation, especially when the distribution of the dependent variable is right-skewed which is
often observed for e.g., income. Since the logarithm cannot be applied for negative values, a
deterministic shift can be added as follows:

y∗ij = log(yij + s),

where yij is the variable of interest of domain i and unit j and s is a deterministic shift chosen
such that yij + s > 0.
While the log transformation is especially beneficial for practitioners that are interested in the
interpretation of parameters, it does not need to be the best option in a predictive model due
to the missing ability to adapt to the data. In contrast, transformations with a transformation
parameter λ can be fitted to the data. Rojas-Perilla et al. (2020) compare the log-shift (Feng
et al. 2016), Box-Cox (Box and Cox 1964), and Dual transformation (Yang 2006) in the EBP
context.
The log-shift transformation is the simplest way to make the log transformation more flexible
and adpatable to the data. Instead of a deterministic shift, the data is shifted by an optimal
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shift before the logarithm is applied:

y∗ij = log(yij + λ),

where yij is the variable of interest of domain i and unit j and λ >= s is an estimated shift.
When λ = s, this transformation equals the implemented log transformation with determin-
istic shift.
The Box-Cox transformation is a famous transformation in the family of power transforma-
tions (Box and Cox 1964). Since the Box-Cox transformation is not suitable for negative
values, a deterministic shift can be added as for the log transformation. Its shifted version is
defined by:

y∗ij(λ) =


(yij+s)λ−1

λ if λ 6= 0;
log(yij + s) if λ = 0,

where yij is the variable of interest of domain i and unit j and s is a deterministic shift chosen
such that yij + s > 0. One characteristic of the Box-Cox transformation is that the cases of
no transformation when λ = 1 (the data is only shifted) and applying the log transformation
with a deterministic shift when λ = 0 are covered. A known drawback is the truncation of
y∗ij . The transformed variable y∗ij is bounded from below by 1

λ when λ > 0, and bounded from
above by −1

λ when λ < 0.
The Dual transformation overcomes this issue. It is originally only defined for strictly positive
values, but Rojas-Perilla et al. (2020) include a deterministic shift as follows:

y∗ij(λ) =
{

((yij + s)λ − (yij + s)−λ)/2λ λ > 0;
log(yij + s) λ = 0,

where yij is the variable of interest of domain i and unit j and s is a deterministic shift chosen
such that yij + s > 0. The transformation parameter λ cannot be negative.
For the estimation of the transformation parameter in linear mixed regression models, Gurka
et al. (2006) propose maximum likelihood and residual maximum likelihood (REML) methods.
Rojas-Perilla et al. (2020) investigate the maximum likelihood based methods as well as
alternative approaches. So far, the package emdi only provides the REML approach for the
model fitting and the estimation of the transformation parameter. For the explanation of how
the transformations are included in the EBP, we refer to Kreutzmann et al. (2019, Section
2.2) and Rojas-Perilla et al. (2020).

2.2. Functionality

In the following, we will show how the new transformations can be used in the ebp function
of package emdi. The argument transformation is determining the chosen transformation.
In the new version of function ebp following options will be available:

• no: No transformation

• log: Log transformation with a deterministic shift

• box.cox: Box-Cox transformation with a deterministic shift

• dual: Dual transformation with a deterministic shift
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Transformation Default interval
box.cox c(-1, 2)
dual c(0, 2)
log.shift c(a, b) with a = max(0, |min(y)|+ 1), b = (max(y)−min(y)

2

Table 1: Default values for the estimation of the transformation parameter λ.

• log.shift: Log transformation with an optimized shift

The Box-Cox transformation is chosen to be the default transformation since it covers the
options of no transformation and the logarithm. For the REML estimation of the transforma-
tion parameter λ, an interval needs to be specified. To simplify the usage, a default interval is
defined for all data-driven transformations, Box-Cox, Dual and log-shift, if no specific values
are chosen. Table 1 shows the default intervals implemented for function ebp. In the follow-
ing, the different data-driven transformations are applied with the data of Austrian districts
provided in the package (Kreutzmann et al. 2019).

R> library("emdi")
R> # Load sample data set
R> data("eusilcA_smp")
R> data('eusilcA_pop')

Box-Cox transformation

The Box-Cox transformation remains the default transformation. The following code produces
the same results that are shown in Kreutzmann et al. (2019). The estimated transformation
parameter equals to 0.6046901. The summary also shows residual diagnostics that suggest a
normally distributed random effect, while the Shapiro-Wilk test for the unit-level error rejects
normality. A look at the kurtosis and the QQ-plots reveals that the problem lies in the tails.
Outlying observations could be one driving factor for these observations.

R> ebp_bc <- ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben +
+ rent + fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ threshold = 10885.33)
R> summary(ebp_bc)

Empirical Best Prediction

Call:
ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl + unempl_ben +

age_ben + surv_ben + sick_ben + dis_ben + rent + fam_allow +
house_allow + cap_inv + tax_adj, pop_data = eusilcA_pop,
pop_domains = "district", smp_data = eusilcA_smp, smp_domains = "district",
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threshold = 10885.33)

Out-of-sample domains: 24
In-sample domains: 70

Sample sizes:
Units in sample: 1945
Units in population: 25000

Min. 1st Qu. Median Mean 3rd Qu. Max.
Sample_domains 14 17.0 22.5 27.78571 29.00 200
Population_domains 5 126.5 181.5 265.95745 265.75 5857

Explanatory measures:
Marginal_R2 Conditional_R2

0.6325942 0.709266

Residual diagnostics:
Skewness Kurtosis Shapiro_W Shapiro_p

Error 0.7523871 9.646993 0.9619824 3.492626e-22
Random_effect 0.4655324 2.837176 0.9760574 1.995328e-01

ICC: 0.2086841

Transformation:
Transformation Method Optimal_lambda Shift_parameter

box.cox reml 0.6046901 0

R> qqnorm(ebp_bc)
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Figure 1: QQ-plots of the error term and random effect using the Box-Cox transformation.
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Dual transformation
The Dual transformation in this case is similar to the Box-Cox transformation. Therefore,
the estimated transformation parameter differs only slightly with a value of 0.6047161 and
also the diagnostics are comparable, with the conclusion of a normally distributed random
effect and a distribution of the unit-level error that shows fat tails.

R> ebp_dual <- ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben +
+ rent + fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ threshold = 10885.33, transformation = 'dual')
R> summary(ebp_dual)

Empirical Best Prediction

Call:
ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl + unempl_ben +

age_ben + surv_ben + sick_ben + dis_ben + rent + fam_allow +
house_allow + cap_inv + tax_adj, pop_data = eusilcA_pop,
pop_domains = "district", smp_data = eusilcA_smp, smp_domains = "district",
threshold = 10885.33, transformation = "dual")

Out-of-sample domains: 24
In-sample domains: 70

Sample sizes:
Units in sample: 1945
Units in population: 25000

Min. 1st Qu. Median Mean 3rd Qu. Max.
Sample_domains 14 17.0 22.5 27.78571 29.00 200
Population_domains 5 126.5 181.5 265.95745 265.75 5857

Explanatory measures:
Marginal_R2 Conditional_R2

0.6325965 0.7092674

Residual diagnostics:
Skewness Kurtosis Shapiro_W Shapiro_p

Error 0.752435 9.647438 0.9619800 3.487023e-22
Random_effect 0.465552 2.837214 0.9760562 1.995026e-01

ICC: 0.2086831

Transformation:
Transformation Method Optimal_lambda Shift_parameter

dual reml 0.6047161 0
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R> qqnorm(ebp_dual)
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Figure 2: QQ-plots of the error term and random effect using the Dual transformation.

Log-shift transformation

In contrast to the Box-Cox and Dual transformation, the transformation parameter of the
log-shift transformation is on the scale of the dependent variable. In this example, λ equals
27907.57. The diagnostics in the summary show that the log-shift transformation slightly
improves the kurtosis. From the QQ-plots, it can be concluded that the normality of the
unit-level error is most likely rejected because of two outliers.

R> ebp_ls <- ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben +
+ rent + fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ threshold = 10885.33, transformation = 'log.shift')
R> summary(ebp_ls)

Empirical Best Prediction

Call:
ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl + unempl_ben +

age_ben + surv_ben + sick_ben + dis_ben + rent + fam_allow +
house_allow + cap_inv + tax_adj, pop_data = eusilcA_pop,
pop_domains = "district", smp_data = eusilcA_smp, smp_domains = "district",
threshold = 10885.33, transformation = "log.shift")

Out-of-sample domains: 24
In-sample domains: 70

Sample sizes:
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Units in sample: 1945
Units in population: 25000

Min. 1st Qu. Median Mean 3rd Qu. Max.
Sample_domains 14 17.0 22.5 27.78571 29.00 200
Population_domains 5 126.5 181.5 265.95745 265.75 5857

Explanatory measures:
Marginal_R2 Conditional_R2

0.6233538 0.7054886

Residual diagnostics:
Skewness Kurtosis Shapiro_W Shapiro_p

Error 0.6222910 7.607189 0.9706711 1.705890e-19
Random_effect 0.4788713 2.726898 0.9737695 1.487627e-01

ICC: 0.2180689

Transformation:
Transformation Method Optimal_lambda

log.shift reml 27907.57

R> qqnorm(ebp_ls)
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Figure 3: QQ-plots of the error term and random effect using the log-shift transformation.

Summary

While the transformations help to achieve normality for the random effect but not for the
unit-level error term in this specific example, they all lead to almost symmetric distributions
and show better results compared to an application without transformation.
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3. Empirical Best Prediction under informative sampling

3.1. Methodology

Point Estimation

The EBP proposed by Molina and Rao (2010) assumes non-informative sampling, which
means that the inclusion probability of the sample is correlated with the outcome variable of
interest. The sampling design is said to be non-informative when

P (smp | y) = P (smp), ∀y ∈ RN , ∀smp,

where P (smp | y) is the probability of sample smp.
In many applications, the first stage of the sample is selected with probability proportional
to its population size. In these cases, the sampling design is very likely to be informative. In
these cases, sampling weights should be included in the estimation of the model parameters
in order to avoid biased results. Please note, that the inclusion of sample weights only avoid
biased results in target domains that are included in the sample (Pfeffermann and Sverchkov
2007). Guadarrama et al. (2018) transfer the conditioning idea of the unweighted EBP to the
EBP under informative sampling. Instead of conditioning on the unweighted sample mean
ȳis during prediction, they condition on the weighted sample mean ȳij = w−1

i·
∑
j∈smpi wijyij .

wij is the sampling weight for the jth unit in domain i and wi· = ∑
j∈smpi wij is the sum of

sampling weights within domain i.
The pseudo best (PB) estimator for Iij = i(yij) is therefore ĨPBij (θ) = E[i(yij) | ȳiw; θ] with
model parameters θ and the estimator of the additive domain parameter Ii is defined as

ĨPBi (θ) = 1
Ni

 ∑
j∈smpi

i(yij) +
∑

j∈nsmpi
ĨPBij (θ)

 .
The abbreviation nsmp stands for the non-sampled observations in the census. In emdi, the
PB is implemented as the census PB (CPB) and given by

ĨCPBi (θ) = 1
Ni

∑
j∈i

ĨPBij (θ).

This means that the indicator is predicted for all observations in the census and not just for the
out-of-sample elements. The reason behind the implementation is that sample observations
can very rarely be identified in the census. This procedure is also mentioned in of Guadarrama
et al. (2018).
As with the EBP, the PB estimator depends on the true values of the model parameters
θ = (β, σ2

u, σ
2
e), which are not known and therefore need to be estimated. θ in the pseudo

EB predictor is replaced by a consistent estimator. The resulting predictor is called the
pseudo empirical best predictor (PEBP). The authors mention two ways of estimating the
model parameters. One feasible approach of Pfeffermann and Sverchkov (2007) is based on
the sample likelihood. The likelihood is used to find the maximum likelihood (ML) estimates
of the regression coefficients β and of the variances σ2

u and σ2
e . In the second approach, β

is estimated using the weighted method of moments of You and Rao (2002). The needed



10 Data-driven transformations and EBP under informative sampling

variance parameters σ2
u and σ2

e are estimated using ML (or REML). In emdi, the second
approach is implemented and the variance parameters are estimated by REML.
For out-of-sample observations, the following relationships hold under the nested error pop-
ulation model:

yij |ȳiw
ind.∼ N (µwij|smp, σ2w

ij|smp),
µwij|smp = x>ijβ + γiw(ȳiw − x̄>iwβ), σ2w

ij|smp = σ2
u(1− γiw) + σ2

e .

The mean µwij|smp is obtained by replacing the unweighted best predictor of the domain effect
ui by its weighted version, given by ũiw = γiw(ȳiw − x̄>iwβ). This approach of conditioning on
the weighted sample mean ȳiw protects against bias due to informative sampling in sampled
areas.
In emdi, a Monte Carlo procedure is applied to approximate the predictor for all indicators
using the following algorithm:

1. The dependent variable is transformed according to chosen transformation (’no’, ’log’)
to obtain T (yij) = y∗ij .

2. The sample data is used to estimate the nested error linear regression model

y∗ij = x>ijβ + ui + eij , ui
iid∼ N (0, σ2

u), eij iid∼ N (0, σ2
e)

with the lme function from the package Pinheiro et al. (2021). Please note, that no
weights are included within the estimation of the above model using the lme function.
The shrinkage parameter γ̂iw = σ̂2

u/(σ̂2
u + σ̂2

e δ̂
2
i ), for δ̂2

i = w−2
i·
∑
j∈smpi w

2
ij is also com-

puted and the coefficients for the fixed effects (following You and Rao 2002) are then
obtained as:

β̂ =

 D∑
i=1

ni∑
j=1

wijxij(xij − γ̂iwx̄iw)>
−1 D∑

i=1

ni∑
j=1

wij(xij − γ̂iwx̄iw)yij

 ,
where x̄iw = w−1

i·
∑
j∈smpi wijxij .

3. For l = 1, ..., L:

(a) For in-sample domains (domains that are part of the sample data set), a synthetic
population of the target variable is generated by y∗(l)ij = x>ij β̂+ ûi+ν(l)

ij +e(l)
ij , where

ν
(l)
i

iid∼ N (0, σ̂2
u(1− γ̂iw)), eij iid∼ N (0, σ̂2

e) and ûi = γ̂iw(ȳiw − x̄>iwβ̂)
For out-of-sample domains (domains with no data in the sample), the conditional
expectation of ui cannot be computed, hence for these domains a synthetic popu-
lation is generated by using y∗(l)ij = xij>β̂ + ν

(l)
ij + e

(l)
ij , where ν

(l)
i

iid∼ N (0, σ̂2
u)) and

eij
iid∼ N (0, σ̂2

e).
(b) The predicted dependent variable is back-transformed to the original scale y(l)

ij =
T−1(y∗(l)ij ) and the target indicator I(l),PEBP

i = Ii(y(l)
ij ) is calculated in each domain.

4. Final estimates are computed by taking the mean over the L Monte Carlo simulations
in each domain, ÎPEBPi = 1

L

∑L
l=1 I

(l),PEBP
i
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Parametric bootstrap MSE estimator

Guadarrama et al. (2018) moreover propose a parametric bootstrap MSE estimator that
ist very similar to the procedure in Molina and Rao (2010), which is based on the method
developed by González-Manteiga et al. (2008). The bootstrap implemented in emdi takes
into account, that in applications the sample can can rarely be identified within the census:

1. The same nested error model is fit to the sample data (possibly under transformation)
as for the point estimates and the model parameters are obtained (β̂, σ̂2

u, σ̂
2
e).

2. For b = 1, ..., B, with large B, u(b)
i ∼ N (0, σ̂2

u) and e
(b)
ij ∼ N (0, σ̂2

e), j = 1, ..., Ni,
i = 1, ..., D are generated independently.

3. B bootstrap populations are generated as

y
∗(b)
ij = x>ij β̂ + u

(b)
i + e

(b)
ij , j = 1, ..., Ni, i = 1, ..., D.

4. From each bootstrap population the true value of the domain indicator
I

(b)
i = N−1

i

∑Ni
j=1 I(y(b)

ij ), b = 1, ..., B is calculated.

5. Additionally a bootstrap sample is generated as

y
∗(b)
ij = x>ij β̂ + u

(b)
i + e

(b)
ij , j = 1, ..., ni, i = 1, ..., D.

This sample is used in conjunction with the known population vectors xij , j ∈ Ui to
calculate the bootstrap PEBP of Ii, denoted ÎPEBP (b)

i , b = 1, ..., B.

6. A bootstrap estimator of MSE(ÎPEBPi ) is then given by

mse(ÎPEBPi ) = 1
B

B∑
b=1

(
Î
PEBP (b)
i − I(b)

i

)2
.

3.2. Functionality

Overall, there are only slight changes for the user from the first version of the function ebp.
Since the Pseudo EBP method uses survey weights in the estimation part, the ebp function
has a new argument weights. The argument defaults to NULL and is to be used like the
argument smp_domains, when the sampling design is informative. The function expects a
character string as input for the argument that indicates the name of the weights variable in
the sample dataset. The variable itself has to be numeric.
Since Rojas-Perilla et al. (2020) find that the usage of data-driven transformations can be
favourable for the estimation of the EBP under non-informative sampling, the transformation
argument of the ebp function in emdi is set to "box.cox" implying that the dependent variable
is transformed with the Box-Cox transformation. Users of the weighted version of the EBP
will have to choose "no" for no transformation or "log" for a logarithmic transformation, be-
cause data-driven transformations for the PEBP are still a topic for research. If the argument
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is not changed an informative message will be displayed and the estimation process will be
halted.
While two options to estimate the MSE are provided for the unweighted EBP, the MSE
estimation for PEBP allows only for a parametric bootstrap which is the default for both
estimation approaches (boot_type="parametric").

Model estimation

The original version of the EBP can still be used without any changes to the arguments of the
function.The following function call almost equals the shown example in Kreutzmann et al.
(2019):

R> ebp_noweights <- ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben +
+ rent + fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ threshold = 10885.33, MSE = TRUE)

Bootstrap started
10 of 50 Bootstrap iterations completed Approximately 00:00:02:06 remaining

20 of 50 Bootstrap iterations completed Approximately 00:00:01:33 remaining

30 of 50 Bootstrap iterations completed Approximately 00:00:01:02 remaining

40 of 50 Bootstrap iterations completed Approximately 00:00:00:31 remaining

Bootstrap completed

When using the PEBP, the aforementioned changes to two arguments are necessary in order
to run the model:

• weights: Adding the name of the variable that indicates the sampling weights

• transformation: Since the default transformation, Box-Cox, is not yet available for
the weighted EBP, it needs to be changed to "no" or "log"

R> ebp_weights <- ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben +
+ rent + fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ threshold = 10885.33, MSE = TRUE,
+ weights = "weight", transformation = "log")
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Bootstrap started
10 of 50 Bootstrap iterations completed Approximately 00:00:01:42 remaining

20 of 50 Bootstrap iterations completed Approximately 00:00:01:15 remaining

30 of 50 Bootstrap iterations completed Approximately 00:00:00:49 remaining

40 of 50 Bootstrap iterations completed Approximately 00:00:00:24 remaining

Bootstrap completed

The model component of an ’ebp’ object that considers weights has a new list element with
the weighted coefficients (You and Rao 2002). The other return components for the class
are the same as for the unweighted EBP. After running the model, all the S3 methods that
are available for the unweighted version of the EBP, can also be used to inspect the estima-
tion results of the weighted EBP. An overview of all available methods can be found with
help(emdiObject).

Model diagnostics

The function call returned in the summary indicates if sampling weights are used for the
estimation. Furthermore, the PEBP output clarifies that the returned explanatory measures
and residual diagnostics belong to the mixed model used for the estimation of the variance
components. While the data information as the in- and out-of-sample domains or sample
sizes do not differ between the models, differences can be seen in the model diagnostics which
is due to the different transformation used.

R> # without weights
R> summary(ebp_noweights)

Empirical Best Prediction

Call:
ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl + unempl_ben +

age_ben + surv_ben + sick_ben + dis_ben + rent + fam_allow +
house_allow + cap_inv + tax_adj, pop_data = eusilcA_pop,
pop_domains = "district", smp_data = eusilcA_smp, smp_domains = "district",
threshold = 10885.33, MSE = TRUE)

Out-of-sample domains: 24
In-sample domains: 70

Sample sizes:
Units in sample: 1945
Units in population: 25000
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Min. 1st Qu. Median Mean 3rd Qu. Max.
Sample_domains 14 17.0 22.5 27.78571 29.00 200
Population_domains 5 126.5 181.5 265.95745 265.75 5857

Explanatory measures:
Marginal_R2 Conditional_R2

0.6325942 0.709266

Residual diagnostics:
Skewness Kurtosis Shapiro_W Shapiro_p

Error 0.7523871 9.646993 0.9619824 3.492626e-22
Random_effect 0.4655324 2.837176 0.9760574 1.995328e-01

ICC: 0.2086841

Transformation:
Transformation Method Optimal_lambda Shift_parameter

box.cox reml 0.6046901 0

R> # with weights
R> summary(ebp_weights)

Empirical Best Prediction

Call:
ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl + unempl_ben +

age_ben + surv_ben + sick_ben + dis_ben + rent + fam_allow +
house_allow + cap_inv + tax_adj, pop_data = eusilcA_pop,
pop_domains = "district", smp_data = eusilcA_smp, smp_domains = "district",
threshold = 10885.33, transformation = "log", MSE = TRUE,
weights = "weight")

Out-of-sample domains: 24
In-sample domains: 70

Sample sizes:
Units in sample: 1945
Units in population: 25000

Min. 1st Qu. Median Mean 3rd Qu. Max.
Sample_domains 14 17.0 22.5 27.78571 29.00 200
Population_domains 5 126.5 181.5 265.95745 265.75 5857

Explanatory measures for the mixed model:
Marginal_R2 Conditional_R2

0.5022296 0.5909727

Residual diagnostics for the mixed model:
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Skewness Kurtosis Shapiro_W Shapiro_p
Error -2.1828119 17.863231 0.8670156 8.641339e-38
Random_effect -0.6609709 3.361441 0.9682563 7.261244e-02

ICC: 0.1782811

Transformation:
Transformation Shift_parameter

log 0

The method plot works independent of the usage of weights and plots residual diagnostics
for the mixed model used in the estimation of the variance components.

R> plot(ebp_weights)
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Figure 4: Output of plot(ebp_weights): (a) normal quantile-quantile (Q-Q) plots of the
error term and random effects, (b) and (c): kernel densities of the distribution of the error
term and random effects (blue) in comparison to a standard normal distribution (black), (d):
Cooks distance plot. All results refer to the error terms from the mixed model with log
transformation.

To analyse the model coefficients, we added an additional argument weights to the coef.ebp
method, which defaults to FALSE. When using the default, the coefficients for the mixed model
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are displayed. Setting the argument to TRUE returns the weighted regression coefficients as in
You and Rao (2002).

R> # default
R> head(coef(ebp_weights), 2)

(Intercept) genderfemale eqsize cash
Neusiedl am See 9.259754 -0.01087928 -0.06553293 2.984645e-05
Oberwart 9.079019 -0.01087928 -0.06553293 2.984645e-05

self_empl unempl_ben age_ben surv_ben
Neusiedl am See 2.297232e-05 1.988227e-05 3.017273e-05 2.969203e-05
Oberwart 2.297232e-05 1.988227e-05 3.017273e-05 2.969203e-05

sick_ben dis_ben rent fam_allow
Neusiedl am See 2.640426e-05 3.46888e-05 1.459455e-05 3.068898e-06
Oberwart 2.640426e-05 3.46888e-05 1.459455e-05 3.068898e-06

house_allow cap_inv tax_adj
Neusiedl am See 5.035249e-05 1.752919e-05 -1.194406e-05
Oberwart 5.035249e-05 1.752919e-05 -1.194406e-05

R> # weighted coefficients
R> coef(ebp_weights, weights = TRUE)

(Intercept) genderfemale eqsize cash self_empl
9.150540e+00 3.396113e-03 -6.104507e-02 3.272744e-05 2.486388e-05

unempl_ben age_ben surv_ben sick_ben dis_ben
2.182578e-05 3.355522e-05 3.122066e-05 2.847899e-05 3.778051e-05

rent fam_allow house_allow cap_inv tax_adj
1.514303e-05 3.655281e-07 4.582541e-05 1.807290e-05 -1.191243e-05

Estimation results

The analysis of estimation results does also not differ between the estimation of the EBP or
the PEBP. Exemplarily, we show the first five rows of the head count ratio and the poverty
gap for the Austrian districts for both estimation approaches.

R> # without weights
R> head(estimators(ebp_noweights, indicator = c("Head_Count", "Poverty_Gap")))

Domain Head_Count Poverty_Gap
1 Eisenstadt-Umgebung 0.03252174 0.006666679
2 Eisenstadt (Stadt) 0.02918919 0.007225508
3 Güssing 0.15459459 0.034668361
4 Jennersdorf 0.35877551 0.099130465
5 Mattersburg 0.07908257 0.015634492
6 Neusiedl am See 0.09316129 0.017250369
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R> # with weights
R> head(estimators(ebp_weights, indicator = c("Head_Count", "Poverty_Gap")))

Domain Head_Count Poverty_Gap
1 Eisenstadt-Umgebung 0.04939130 0.00844820
2 Eisenstadt (Stadt) 0.03567568 0.00756965
3 Güssing 0.19216216 0.03653299
4 Jennersdorf 0.39306122 0.09112366
5 Mattersburg 0.10733945 0.01791921
6 Neusiedl am See 0.11122581 0.01800804

The point and uncertainty estimates can also be plotted on maps to analyse the spatial
distribution of e.g., poverty incidence.

R> # load shape file
R> load_shapeaustria()
R> # plot for PEBP (weights) for head count ratio
R> map_plot(object = ebp_weights, CV = TRUE,
+ map_obj = shape_austria_dis, indicator = c("Head_Count"),
+ map_dom_id = "PB")
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Figure 5: Map of predictions (a) and CV (b) of the head count ratio from the EBP using
sampling weights.

Summary

The usage of function ebp changes only slightly for the user when weights are added compared
to the unweighted option. All diagnostic and analysis tools are available for both options.

4. Specifying a level of aggregation
In many practical SAE applications, several spatial variables are available in the dataset. In
these cases, it is possible to specify the random effect at a different level than the target
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areas for which results are output. In other words, this feature relaxes the requirement that
the random effects need to be specified at the target domain level. Marhuenda et al. (2017)
discuss such cases in model- and design-based simulations. A new argument has been added
to the ebp function (aggregate_to) to specify the target domain level.

4.1. Methodology

Point Estimation

For the independent determination of the target domain level additional to the domain level
for the calculation of the random effects, there are changes in Step 3 and 4 of the Monte
Carlo procedure. These changes only apply to the index for the domains. Therefore, we have
two different domain levels and indexes with i the domains on which the random effect is
specified and with iagg the target level on which the results are output. Please note, if no
entry is made in aggregate_to then iagg = i and both levels coincide.

3. For l = 1, ..., L:

(a) For in-sample domains (domains that are part of the sample data set), a synthetic
population of the target variable is generated by y∗(l)ij = x>ij β̂+ ûi+ν(l)

ij +e(l)
ij , where

ν
(l)
i

iid∼ N (0, σ̂2
u(1− γ̂iw)), eij iid∼ N (0, σ̂2

e) and ûi = γ̂iw(ȳiw − x̄>iwβ̂)
For out-of-sample domains (domains with no data in the sample), the conditional
expectation of ui cannot be computed, hence for these domains a synthetic popu-
lation is generated by using y∗(l)ij = xij>β̂ + ν

(l)
ij + e

(l)
ij , where ν

(l)
i

iid∼ N (0, σ̂2
u)) and

eij
iid∼ N (0, σ̂2

e).

(b) The predicted dependent variable is back-transformed to the original scale y(l)
ij =

T−1(y∗(l)ij ) and the target indicator I(l),EBP
iagg = Iiagg(y(l)

iaggj) is calculated for each
target domain (iagg) which can differ from the domain indicated with i for the
random effect.

4. Final estimates are computed by taking the mean over the L Monte Carlo simulations
in each target domain, ÎEBPiagg = 1

L

∑L
l=1 I

(l),EBP
iagg . This methodology for adding the level

of aggregation can also be applied analogously to the PEBP (Section 3).

This extension for the independent specification of the target level is particularly relevant for
non-linear indicators (e.g. the Gini coefficient). For linear indicators such as the mean, it is
convenient, but the respective point estimate for higher levels could also be obtained by a
weighted mean.

Parametric bootstrap MSE estimator

Accordingly, the index for the target domain is also adapted for the MSE parametric bootstrap
procedure starting with step 4:

4. From each bootstrap population, the true value of the target domain indicator
I

(b)
iagg = N−1

iagg
∑Niagg
j=1 I(y(b)

iaggj), b = 1, ..., B is calculated.
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5. Additionally, a bootstrap sample is generated as

y
∗(b)
ij = x>ij β̂ + u

(b)
i + e

(b)
ij , j = 1, ..., ni, i = 1, ..., D.

This sample is used in conjunction with the known population vectors xij , j ∈ Ui to
calculate the bootstrap EBP of Iiagg , denoted ÎEBP (b)

iagg , b = 1, ..., B.

6. A bootstrap estimator of MSE(ÎEBPiagg ) is then given by

mse(ÎEBPiagg ) = 1
B

B∑
b=1

(
Î
EBP (b)
iagg − I(b)

iagg

)2
.

4.2. Functionality

Overall, there are only slight changes for the user from the first version of the function
ebp. Since the independent target domain level must be defined, if wanted, a new argument
(aggregate_to) is added to the ebp function. This argument defaults to NULL and is to be
used like the argument pop_domains. The function expects a character string as input for
the argument that indicates the name of the domain target level variable in the population
data. The variable itself has to be a factor or numeric.

Model estimation

The original version of the EBP can still be used without any changes to the arguments of
the function. The following function call almost equals the shown example in Kreutzmann
et al. (2019):

R> ebp_district <- ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben +
+ dis_ben + rent + fam_allow + house_allow +
+ cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ na.rm = TRUE)

When using an independent target domain level the only change is to give this variable to the
argument aggregate_to. This variable has to be represented in the population data. Here,
we want to get our results on the state level.

R> ebp_state <- ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben +
+ dis_ben + rent + fam_allow + house_allow +
+ cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ na.rm = TRUE, aggregate_to = "state")
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The S3 object for the output does not differ in structure from the one where the level of the
random effect and the target level are the same. When using an independent target domain
level, it must be noted that in the component ind and MSE the indicators are given at the
target level. In the component model, the information about the random effect is specified at
the level as defined in pop_domains.

Estimation results

The estimation results for the EBP with target level state and district are different in the
representation as the target domain level differs.

R> # output on district level
R> estimators(ebp_state, indicator = c("Mean", "Gini"))

Indicator/s: Mean, Gini
Domain Mean Gini

1 Burgenland 20483.68 0.2851968
2 Lower Austria 19872.20 0.2643735
3 Vienna 19971.33 0.2459263
4 Carinthia 20006.25 0.2558451
5 Styria 19401.55 0.2723257
6 Upper Austria 20385.73 0.2698892
7 Salzburg 19210.84 0.2668539
8 Tyrol 18971.87 0.2609626
9 Vorarlberg 22268.24 0.2815550

Instead of showing the output for all 94 districts, we present the results for the first 9 districts,
which together comprise the state Burgenland. In addition, we add a variable proportion to
this table, which describes the proportion of the respective district in the total population of
Burgenland.

R> # output on state level while the random effect is on district level
R> tab_districts_Burgenland <-
+ estimators(ebp_district, indicator = c("Mean", "Gini"))$ind[1:9,]
R> tab_districts_Burgenland$proportion <-
+ table(eusilcA_pop$district)[1:9] / sum(table(eusilcA_pop$district)[1:9])
R> tab_districts_Burgenland

Domain Mean Gini proportion
1 Eisenstadt-Umgebung 27509.02 0.2214688 0.143929912
2 Eisenstadt (Stadt) 53654.42 0.2872751 0.046307885
3 Güssing 17189.34 0.1906263 0.092615770
4 Jennersdorf 13402.65 0.2098103 0.061326658
5 Mattersburg 21260.09 0.2091353 0.136420526
6 Neusiedl am See 19004.31 0.1865026 0.193992491
7 Oberpullendorf 17671.04 0.1951648 0.131414268
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8 Oberwart 13954.69 0.2067836 0.187734668
9 Rust (Stadt) 15457.77 0.1740471 0.006257822

For linear indicators, such as the mean, the indicator at state level can be determined directly
from the corresponding values of the districts using the proportions of the district to the total
state population. For non-linear indicators, this relationship does not exist.

R> sum(tab_districts_Burgenland$Mean * tab_districts_Burgenland$proportion)

[1] 20483.68

R> sum(tab_districts_Burgenland$Gini * tab_districts_Burgenland$proportion)

[1] 0.2059686

The results can be shown on maps on variable levels to analyze spatial distributions of
poverty indicators like the Gini index. To reproduce the map on state level, please download
the Austrian shape file for the states (https://data-synergis.opendata.arcgis.com/maps/
a16c7b8ef72f4ec2b36f7c7ebbcdf2e5) and name it shape_austria_state.

R> # Load shape file
R> load_shapeaustria()

R> # Create map for Gini indicator on district level
R> map_plot(object = ebp_district, map_obj = shape_austria_dis,

indicator = c("Gini"), map_dom_id = "PB")

R> # Create map for Gini indicator on state level using map_tab for assignment
R> map_plot(object = ebp_state, map_obj = shape_austria_state,

indicator = c("Gini"), map_dom_id = "BL", map_tab = map_tab)

Summary

The usage of function ebp changes only slightly for the user when a different aggregation level
for the results is definable. All diagnostic and analysis tools are available. Please note that
the model diagnostics refer to the level at which the random effect is specified. In contrast,
the results are presented at the target level for aggregation.

5. Inclusion of population weights
The EBP is a unit-level SAE model. It is, therefore, calculated at the level about which
you want to find something out. In some cases, this targeted level is not available in the
population or sample data. For example, household data are available and a statement on
the individuals is desired or cluster level data, e.g. grid data, are available and an estimate
on the household or individuals is wanted. In such cases, the household size or the number of
households/inhabitants per grid can be used for weighting (Masaki et al. 2020; Elbers et al.

https://data-synergis.opendata.arcgis.com/maps/a16c7b8ef72f4ec2b36f7c7ebbcdf2e5
https://data-synergis.opendata.arcgis.com/maps/a16c7b8ef72f4ec2b36f7c7ebbcdf2e5
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Figure 6: Map of predictions on district (a) and state (b) level of the Gini indicator from the
EBP with random effects on district level and various output level.

2003). These population weights are utilized when aggregating results to target domains
and are distinct from the survey weights used to estimate the model that were discussed in
Section 3 above. The argument weights indicates a variable in the survey and pop_weights
a variable in the population. If using the argument pop_weights, the indicators within each
Monte-Carlo simulation are calculated as a weighted indicator using population weights. The
changing interpretation of the results will be explained later in detail for the head count ratio.

5.1. Methodology

In terms of methodology, only the calculation of the indicator changes within each Monte
Carlo repetition. The indicator is formed in step 3 (b) for the point estimates. All other
extensions that also affect the indicator, such as (a) using survey weights or (b) defining a
independent level for aggregation can be combined with the population weights. The basic
indicator I(l)

i for each Monte-Carlo l = 1, ..., L and every domain i = 1, ..., D in the population
is defined for the variable of interest y estimated for each unit j = 1, ..., Ni as

I
(l)
i = Ii

(
y

(l)
ij

)
.

In addition, the weights from the population (wpopij ) must now be taken into account in the
calculation of the indicator:

I
(l)
i = Ii

(
y

(l)
ij , w

pop
ij

)
.

Using the head count ratio as an example, this leads to a weighted version for calculating the
indicator

HCR
(l)
i = HCRi

(
y

(l)
ij

)
=
∑Ni
j=1 pij

Ni
HCR

(l)
i = HCRi

(
y

(l)
ij , w

pop
ij

)
=
∑Ni
j=1 pijw

pop
ij∑Ni

j=1w
pop
ij

,

where pij = 1 indicates that the statistics yij form unit j in domain i is underneath the
poverty threshold and pij = 0 that it is above this threshold.
To calculate the bootstrap MSE estimator, the indicator in Step 5 has to be adjusted in the
same way to allow for population weights.
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5.2. Functionality

Model estimation

The original version of the EBP can still be used without any changes to the arguments of
the function. The following function call almost equals the shown example in Kreutzmann
et al. (2019):

R> # EBP without population weights
R> ebp_unit <- ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben +
+ rent + fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ na.rm = TRUE)

When using population weights the only change is to give this variable to the argument
pop_weights. This variable has to be represented in the population data. Here, we want to
take the equivalized household size into account for calculating the indicators.

R> # EBP with population weights
R> ebp_eqsize <- ebp(fixed = eqIncome ~ gender + eqsize + cash + self_empl +
+ unempl_ben + age_ben + surv_ben + sick_ben + dis_ben +
+ rent + fam_allow + house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ na.rm = TRUE, pop_weights = "eqsize")

The S3 object for the output does not differ in structure from the model without population
weights.

Estimation results

In the following, the estimation results without and with population weights are shown for
the head count ratio.

R> head(estimators(ebp_unit, indicator = c("Head_Count")))

Domain Head_Count
1 Eisenstadt-Umgebung 0.03304348
2 Eisenstadt (Stadt) 0.02972973
3 Güssing 0.15648649
4 Jennersdorf 0.36081633
5 Mattersburg 0.07963303
6 Neusiedl am See 0.09445161
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R> head(estimators(ebp_eqsize, indicator = c("Head_Count")))

Domain Head_Count
1 Eisenstadt-Umgebung 0.03600198
2 Eisenstadt (Stadt) 0.02704918
3 Güssing 0.14928450
4 Jennersdorf 0.36713178
5 Mattersburg 0.08422993
6 Neusiedl am See 0.08797319

The results differ slightly, because household size is correlated with poverty status. When
interpreting the results, it should be specified exactly what is being addressed: (1) without
population weights (ebp_unit) the result refers to the share of households below the poverty
threshold and (2) with population weights (ebp_equsize) the result refers to the share of
persons belonging to households below the poverty line.

Custom Indicator

The indicator can now depend on the population weights, so weights must always be indicated
when the indicator is to be determined.

R> ebp_eqsize_custom_indicator <- ebp(
+ fixed = eqIncome ~ gender + eqsize + cash + self_empl + unempl_ben +
+ age_ben + surv_ben + sick_ben + dis_ben + rent + fam_allow +
+ house_allow + cap_inv + tax_adj,
+ pop_data = eusilcA_pop, pop_domains = "district",
+ smp_data = eusilcA_smp, smp_domains = "district",
+ custom_indicator = list(HCR_singleHH =
+ function(y, pop_weights, threshold) {
+ mean(y[pop_weights == 1] < threshold)
+ }),
+ na.rm = TRUE, pop_weights = "eqsize")

R> head(estimators(ebp_eqsize_custom_indicator,
+ indicator = c("Head_Count", "HCR_singleHH")))

Domain Head_Count HCR_singleHH
1 Eisenstadt-Umgebung 0.03600198 0.008571429
2 Eisenstadt (Stadt) 0.02704918 0.000000000
3 Güssing 0.14928450 0.165600000
4 Jennersdorf 0.36713178 0.317500000
5 Mattersburg 0.08422993 0.055833333
6 Neusiedl am See 0.08797319 0.141904762

The argument custom_indicator allows for a customized indicator. For this purpose, a func-
tion must be defined containing the arguments y, and optional can contain threshold, and
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pop_weights. Such a customized indicator allows a variety of statistics to be calculated with
ebp. In the present case, HCR_singleHH is defined to estimate the share of single households
that are below the poverty line respectively the share of persons living in single households
that are below the poverty line. Here, we get the same results regardless of whether we still
include the population weights for a weighted mean, since the eqsize of a single households
is 1.

Summary

The usage of function ebp changes only slightly for the user when population weights are
definable. All diagnostic and analysis tools are available. Please note, that the diagnostic on
weights refer to the survey weights as explained in Chapter 3.

5.3. Conclusion

This vignette shows the most recent changes of function ebp in the R package emdi: (a)
additional data-driven transformations, (b) the inclusion of sampling weights into the esti-
mation procedure of the EBP (c) the option for an independent determination for the level
of aggregation (d) the possibility to include population weights. A topic for further research
is the inclusion of the above described data-driven transformations in the estimation of the
PEBP.
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