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Abstract

A short vignette illustrating Cauchy’s integral theorem using numerical integration
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In this very short vignette, I will use contour integration to evaluate

∫
∞

x=−∞

eix

1 + x2
dx (1)

using numerical methods. This document is part of the elliptic package (Hankin 2006).

If f is meromorphic, the residue theorem tells us that the integral of f along any closed
nonintersecting path, traversed anticlockwise, is equal to 2πi times the sum of the residues
inside it.

To evaluate the integral above, we define f(z) = eiz

1+z2
. Then we take a semicircular path P

from −R to +R along the real axis, then following a semicircle in the upper half plane, of
radius R to close the loop (figure 1). Now we make R large. Then P encloses a pole at i
[there is one at −i also, but this is outside P , so irrelevent here] at which the residue is −i/2e.
Thus

∮
P

f(z) dz = 2πi · (−i/2e) = π/e (2)

along P ; the contribution from the semicircle tends to zero as R −→ ∞; thus the integral
along the real axis is the whole path integral, or π/e.

We can now reproduce this result analytically. First, choose R:

> R <- 400

And now define a path P . First, the semicircle:

> u1 <- function(x){R*exp(pi*1i*x)}

> u1dash <- function(x){R*pi*1i*exp(pi*1i*x)}

and now the straight part along the real axis:

> u2 <- function(x){R*(2*x-1)}

> u2dash <- function(x){R*2}
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(R,0)(-R,0)

Figure 1: Contour integration path from (−R, 0) to (R, 0) along the real axis, followed by
a semicircular return path in the positive imaginary half-plane. Poles of eix/ (1 + x+ 2)
symbolised by explosions
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And define the function:

> f <- function(z){exp(1i*z)/(1+z^2)}

Now carry out the path integral. I’ll do it explicitly, but note that the contribution from the
first integral should be small:

> answer.approximate <-

+ integrate.contour(f,u1,u1dash) +

+ integrate.contour(f,u2,u2dash)

And compare with the analytical value:

> answer.exact <- pi/exp(1)

> abs(answer.approximate - answer.exact)

[1] 6.244969e-07

Now try the same thing but integrating over a triangle instead of a semicircle, using inte-

grate.segments(). Use a path P ′ with base from −R to +R along the real axis, closed by
two straight segments, one from +R to iR, the other from iR to −R:

> abs(integrate.segments(f,c(-R,R,1i*R))- answer.exact)

[1] 5.157772e-07

Observe how much better one can do by integrating over a big square instead:

> abs(integrate.segments(f,c(-R,R,R+1i*R, -R+1i*R))- answer.exact)

[1] 2.319341e-08

The residue theorem for function evaluation

If f(·) is holomorphic within C, Cauchy’s residue theorem states that

∮
C

f(z)

z − z0
= f(z0). (3)

Function residue() is a wrapper that takes a function f(z) and integrates f(z)/ (z − z0)
around a closed loop which encloses z0. We can test this numerically by evaluating sin(1):

> f <- function(z){sin(z)}

> numerical <- residue(f,z0=1,r=1)

> exact <- sin(1)

> abs(numerical-exact)
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[1] 3.91766e-18

which is unreasonably accurate, IMO.
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