Package 'einet'

October 13, 2022

Type Package Title Effective Information and Causal Emergence Version 0.1.0 Description Methods and utilities for causal emergence. Used to explore and compute various information theory metrics for networks, such as effective information, effectiveness and causal emergence. License MIT + file LICENSE URL https://github.com/travisbyrum/einet BugReports https://github.com/travisbyrum/einet/issues **Depends** R (>= 3.2.0) **Encoding** UTF-8 LazyData true Imports assertthat, igraph, magrittr, shiny, entropy Suggests testthat, RColorBrewer, knitr, rmarkdown, bench VignetteBuilder knitr RoxygenNote 7.0.2 NeedsCompilation no Author Travis Byrum [aut, cre], Anshuman Swain [aut], Brennan Klein [aut], William Fagan [aut] Maintainer Travis Byrum <tbyrum@terpmail.umd.edu> **Repository** CRAN Date/Publication 2020-04-23 17:20:03 UTC **R** topics documented:

causal_emergence	е.						•	•		•		•	•	•		•			•	•		2	2
check_network																							

create_macro	3
effective_information	4
einet	5
karate	
mb	6
run_example	
stationary	
update_blanket	7
	Q
	0

Index

causal_emergence Causal Emergence

Description

Given a microscale network, G, this function iteratively checks different coarse-grainings to see if it finds one with higher effective information.

Usage

```
causal_emergence(x, ...)
```

Arguments

х	igraph or matrix object.
	Span, and threshold parameters

Value

A list with letters and numbers.

- g_micro Graph of original micro-scale network.
- g_macro Graph of macro-scale network.
- mapping list mapping from micro to macro scales giving the largest increase in effective information.
- ei_macro Effective information of macro scale network.
- ei_micro Effective information of micro scale network.
- ce Numerical value for causal emergence.

check_network

Examples

```
graph <- matrix(
    cbind(
        c(0.0, 1.0, 0.0, 0.0),
        c(0.0, 0.0, 1.0, 0.0),
        c(0.0, 0.0, 0.0, 1.0),
        c(0.0, 0.0, 0.0, 1.0),
        c(0.0, 0.0, 0.0, 0.0)
    ),
    nrow = 4
) %>%
    igraph::graph.adjacency(mode = "directed")
causal_emergence(graph)
```

```
check_network Check Graph Network
```

Description

check_network returns processed graph.

Usage

check_network(graph)

Arguments

graph igraph

Details

This is a pre-processing function that turns raw input into directed networks with edge weights.

create_macro create_macro

Description

Coarse-grains a network according to the specified macro_mapping and the types of macros that each macro is associated with.

Usage

```
create_macro(graph, mapping, macro_types, ...)
```

Arguments

graph	igraph
mapping	List mapping from micro to macro nodes.
macro_types	List of node distribution types.
	Passed arguments.

Value

Directed igraph graph object corresponding to a coarse-grained network according to the mapping of micro nodes onto macro nodes, given by mapping.

effective_information *Effective Information*

Description

Calculates the effective information (EI) of a network, G, according to the definition provided in Klein & Hoel, 2019. Here, we subtract the average entropies of the out-weights of nodes in a network, WOUT_average from the entropy of the average out-weights in the network, WIN_entropy.

Usage

```
effective_information(graph, effectiveness = FALSE)
```

Arguments

graph	igraph or matrix object.
effectiveness	Logical indicating whether or not to return network effectiveness.

Value

Numeric value indicating the effective information of the network.

Examples

```
graph <- matrix(
    cbind(
        c(0.0, 1.0, 0.0, 0.0),
        c(0.0, 0.0, 1.0, 0.0),
        c(0.0, 0.0, 0.0, 1.0),
        c(0.0, 0.0, 0.0, 0.0)
    ),
    nrow = 4
) %>%
    igraph::graph.adjacency(mode = "directed")
```

effective_information(graph)

4

Description

for calculating effective information in networks. This can then be used to search for macroscale representations of a network such that the coarse grained representation has more effective information than the microscale, a phenomenon known as causal emergence.

Author(s)

Maintainer: Travis Byrum <tbyrum@terpmail.umd.edu>

Authors:

- Anshuman Swain <answain@terpmail.umd.edu>
- Brennan Klein <klein.br@northeastern.edu>
- William Fagan <bfagan@umd.edu>

See Also

Useful links:

- https://github.com/travisbyrum/einet
- Report bugs at https://github.com/travisbyrum/einet/issues

karate

Zachary's karate club

Description

Social network data of university karate club. Used for causal emergence benchmarking and testing.

Usage

karate

Format

Igraph object with 78 edges.

Source

http://www-personal.umich.edu/~mejn/netdata/

Description

Given a graph and a specified vector of internal node(s), returns the parents, the children, and the parents of the children of the internal node(s).

Usage

mb(graph, nodes = igraph::V(graph))

Arguments

graph	igraph or matrix object.
nodes	Numeric vector of vertices.

Value

A list of node descendants, parents, and neighbors.

run_example

Start shiny app

Description

This starts an example shiny app that allows for user inputed graph objects.

Usage

run_example()

mb

stationary

Description

Gives a stationary probability vector of a given network.

Usage

```
stationary(graph, zero_cutoff = 1e-10)
```

Arguments

graph	igraph or matrix object.
zero_cutoff	Numeric threshold for zero value.

Value

A numeric vector corresponding to stationary distribution.

Description

Update Markov Blanket

Usage

```
update_blanket(blanket, removal = NULL)
```

Arguments

blanket	List of previous markov blanket.
removal	Numeric vector for node removal.

Index

* datasets karate, 5 causal_emergence, 2 check_network, 3 create_macro, 3 effective_information, 4 einet, 5 einet-package (einet), 5

karate,5

mb, <mark>6</mark>

run_example, 6

stationary,7

update_blanket,7