
Package ‘editrules’
May 4, 2024

Maintainer Edwin de Jonge <edwindjonge@gmail.com>

License GPL-3

Title Parsing, Applying, and Manipulating Data Cleaning Rules

LazyData no

Type Package

LazyLoad yes

Author Edwin de Jonge, Mark van der Loo

Description Please note: active development has moved to packages 'validate'
and 'errorlocate'. Facilitates reading and manipulating (multivariate) data
restrictions (edit rules) on numerical and categorical data. Rules can be
defined with common R syntax and parsed to an internal (matrix-like format).
Rules can be manipulated with variable elimination and value substitution
methods, allowing for feasibility checks and more. Data can be tested against
the rules and erroneous fields can be found based on Fellegi and Holt's
generalized principle. Rules dependencies can be visualized with using the
'igraph' package.

Version 2.9.5

Depends R (>= 2.12.0), igraph

Imports lpSolveAPI

Suggests testthat

URL https://github.com/data-cleaning/editrules

BugReports https://github.com/data-cleaning/editrules/issues

Collate 'adjacency.R' 'as.igraph.R' 'editset.R' 'editarray.R'
'editmatrix.R' 'as.matrix.R' 'backtracker.R' 'blocks.R' 'c.R'
'cateditmatrix.R' 'checkDatamodel.R' 'checkRows.R' 'contains.R'
'disjunct.R' 'duplicated.R' 'echelon.R' 'editAttr.R'
'editarrayAttr.R' 'editfile.R' 'editmatrixAttr.R'
'editrules-data.R' 'eliminate.R' 'errorLocalizer.R'
'errorLocalizer_mip.R' 'errorLocation.R' 'expandEdits.R'
'generateEdits.R' 'getH.R' 'getUpperBounds.R' 'getVars.R'
'is.R' 'isFeasible.R' 'isObviouslyInfeasible.R'

1

https://github.com/data-cleaning/editrules
https://github.com/data-cleaning/editrules/issues

2 R topics documented:

'isObviouslyRedundant.R' 'isSubset.R' 'list2env.R'
'localizeErrors.R' 'mip.R' 'parseCat.R' 'parseEdits.R'
'parseMix.R' 'parseNum.R' 'perturbWeights.R' 'pkg.R' 'plot.R'
'plot_errorLocation.R' 'print.R' 'reduce.R' 'removeRedundant.R'
'softEdits.R' 'str.R' 'subsetting.R' 'substValue.R' 'summary.R'
'violatedEdits.R' 'writeELAsMip.R' 'zzz.R'

RoxygenNote 7.3.1

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2024-05-04 05:50:22 UTC

R topics documented:
adjacency . 3
as.editmatrix . 7
as.editset . 8
as.lp.mip . 8
as.mip . 9
backtracker . 9
blocks . 11
checkDatamodel . 12
condition . 13
datamodel . 13
disjunct . 14
echelon . 15
editarray . 16
editfile . 19
editmatrix . 20
editnames . 22
editrules.plotting . 23
editrules_package . 27
edits . 29
editset . 29
editType . 32
eliminate . 32
errorLocalizer . 35
errorLocalizer_mip . 40
errorLocation . 41
generateEdits . 45
getA . 45
getAb . 47
getb . 48
getH . 49
getOps . 50
getVars . 51

adjacency 3

impliedValues . 52
is.editrules . 53
isFeasible . 53
isNormalized . 54
isObviouslyInfeasible . 54
isObviouslyRedundant . 55
isSubset . 56
localizeErrors . 57
nedits . 61
normalize . 62
reduce . 63
separate . 64
substValue . 65
violatedEdits . 67

Index 70

adjacency Derive adjecency matrix from collection of edits

Description

A set of edits can be represented as a graph where every vertex is an edit. Two vertices are connected
if they have at least one variable in vars in common.

Usage

adjacency(
E,
nodetype = c("all", "rules", "vars"),
rules = rownames(E),
vars = getVars(E),
...

)

S3 method for class 'editmatrix'
adjacency(
E,
nodetype = c("all", "rules", "vars"),
rules = rownames(E),
vars = getVars(E),
...

)

S3 method for class 'editarray'
adjacency(
E,
nodetype = c("all", "rules", "vars"),

4 adjacency

rules = rownames(E),
vars = getVars(E),
...

)

S3 method for class 'editset'
adjacency(
E,
nodetype = c("all", "rules", "vars"),
rules = c(rownames(E$num), rownames(E$mixcat)),
vars = getVars(E),
...

)

S3 method for class 'editmatrix'
as.igraph(
x,
nodetype = c("all", "rules", "vars"),
rules = editnames(x),
vars = getVars(x),
weighted = TRUE,
...

)

S3 method for class 'editarray'
as.igraph(
x,
nodetype = c("all", "rules", "vars"),
rules = editnames(x),
vars = getVars(x),
weighted = TRUE,
...

)

S3 method for class 'editset'
as.igraph(
x,
nodetype = c("all", "rules", "vars"),
rules = editnames(x),
vars = getVars(x),
weighted = TRUE,
...

)

Arguments

E editmatrix, editarray or editset

nodetype adjacency between rules, vars or both?

adjacency 5

rules selection of edits

vars selection of variables

... arguments to be passed to or from other methods

x An object of class editmatrix, editarray or editset

weighted see graph.adjacency

Details

adjacency returns the adjacency matrix. The elements of the matrix count the number of variables
shared by the edits indicated in the row- and column names. The adjacency matrix can be converted
to an igraph object with graph.adjacencyfrom the igraph package.

as.igraph converts a set of edits to an igraph object directly.

Value

the adjacency matrix of edits in E with resect to the variables in vars

See Also

plot.editmatrix, plot.editarray, plot.editset

Examples

Examples with linear (in)equality edits

load predefined edits from package
data(edits)
edits

convert to editmatrix
E <- editmatrix(edits)

Not run:
(Note to reader: the Not run directive only prevents the examle commands from
running when package is built)

Total edit graph
plot(E)

Graph with dependent edits
plot(E, nodetype="rules")

Graph with dependent variables
plot(E, nodetype="vars")

Total edit graph, but with curved lines (option from igraph package)
plot(E, edge.curved=TRUE)

6 adjacency

graph, plotting just the connections caused by variable 't'
plot(E,vars='t')

End(Not run)

here's an example with a broken record.
r <- c(ct = 100, ch = 30, cp = 70, p=30,t=130)
violatedEdits(E,r)
errorLocalizer(E,r)$searchBest()$adapt

we color the violated edits and the variables that have to be adapted

Not run
set.seed(1) # (for reprodicibility)
plot(E,

adapt=errorLocalizer(E,r)$searchBest()$adapt,
violated=violatedEdits(E,r))

End(Not run)

extract total graph (as igraph object)
as.igraph(E)

extract graph with edges related to variable 't' and 'ch'
as.igraph(E,vars=c('t','ch'))

extract total adjacency matrix
adjacency(E)

extract adjacency matrix related to variables t and 'ch'
adjacency(E,vars=c('t','ch'))

Examples with categorical edits

generate an editarray:
E <- editarray(expression(

age %in% c('<15','16-65','>65'),
employment %in% c('unemployed','employed','retired'),
salary %in% c('none','low','medium','high'),
if (age == '<15') employment=='unemployed',
if (salary != 'none') employment != 'unemployed',
if (employment == 'unemployed') salary == 'none'))

Not run:
plot total edit graph
plot(E)

plot with a different layout
plot(E,layout=layout.circle)

plot edit graph, just the connections caused by 'salary'

as.editmatrix 7

plot(E,vars='salary')

End(Not run)

extract edit graph
as.igraph(E)

extract edit graph, just the connections caused by 'salary'
as.igraph(E,vars='salary')

extract adjacency matrix
adjacency(E)

extract adjacency matrix, only caused by 'employment'
adjacency(E,vars='employment')

as.editmatrix Coerce a matrix to an edit matrix.

Description

as.editmatrix interpretes the matrix as an editmatrix. The columns of the matrix are the variables
and the rows are the edit rules (contraints).

Usage

as.editmatrix(A, b = numeric(nrow(A)), ops = rep("==", nrow(A)), ...)

Arguments

A matrix to be transformed into an editmatrix.

b Constant, a numeric of length(nrow(x)), defaults to 0

ops Operators, character of length(nrow(x)) with the equality operators, de-
faults to "=="

... further attributes that will be attached to the resulting editmatrix

Details

If only argument x is given (the default), the resulting editmatrix is of the form Ax = 0. This can
be influenced by using the parameters b and ops.

Value

an object of class editmatrix.

8 as.lp.mip

See Also

editmatrix

as.editset Coerce x to an editset

Description

x may be an editset, editmatrix, editarray or character vector

Usage

as.editset(x, ...)

Arguments

x object or vector to be coerced to an editset

... extra parameters that will be passed to as.character, if necessary

as.lp.mip Coerces a mip object into an lpsolve object

Description

as.lp.mip transforms a mip object into a lpSolveApi object.

Usage

as.lp.mip(mip)

Arguments

mip object of type mip.

See Also

as.mip, make.lp

as.mip 9

as.mip Write an editset into a mip representation

Description

Writes an editset or an object coercable to an editset as a mip problem.

Usage

as.mip(
E,
x = NULL,
weight = NULL,
M = 1e+07,
epsilon = 0.001,
prefix = "delta.",
...

)

Arguments

E an link{editset} or an object that is coerciable to an editset

x named list/vector with variable values

weight reliability weights for values of x

M Constant that is used for allowing the values to differ from x

epsilon Constant that is used for converting ’<’ into ’<=’

prefix prefix for dummy variables that are created

... not used

Value

a mip object containing al information for transforming it into an lp/mip problem

backtracker Backtracker: a flexible and generic binary search program

Description

backtracker creates a binary search program that can be started by calling the $searchNext func-
tion It walks a binary tree depth first. For all left nodes choiceLeft is evaluated, for all right
nodes choiceRight is evaluated. A solution is found if isSolution evaluates to TRUE. In that case
$searchNext will return all variables in the search environment in a list If isSolution evaluates
to NULL it will continue to search deaper. If isSolution evaluates to FALSE it stops at the current
node and goes up the next search node

10 backtracker

Usage

backtracker(
isSolution,
choiceLeft,
choiceRight,
list = NULL,
maxdepth = Inf,
maxduration = Inf,
...

)

Arguments

isSolution expression that should evaluate to TRUE when a solution is found.

choiceLeft expression that will be evaluated for a left node

choiceRight expression that will be evaluated for a right node

list list with variables that will be added to the search environment

maxdepth integer maximum depth of the search tree

maxduration integer Default maximum search time for $searchNext() and $searchAll()

... named variables that will be added to the search environment

Details

Methods:
$searchNext(..., VERBOSE=FALSE) Search next solution, can be called repeatedly until there

is no solution left. Named variables will be added to the search environment, this feature
can be used to direct the search in subsequent calls to searchNext. VERBOSE=TRUE will
print all intermediate search steps and results. It can be used to debug the expressions in the
backtracker

$searchAll(..., VERBOSE=FALSE) Return all solutions as a list
$reset() Resets the backtracker to its initial state.

Value

backtracker object, see Methods for a description of the methods

Examples

bt <- backtracker(isSolution= {
if (y == 0) return(TRUE)
if (x == 0) return(FALSE)

}
, choiceLeft = { x <- x - 1; y <- y}
, choiceRight = { y <- y - 1; x <- x}
starting values for x and y
, x=2

blocks 11

, y=1
)

bt$searchNext(VERBOSE=TRUE)
bt$searchNext(VERBOSE=TRUE)

next search will return NULL because there is no more solution
bt$searchNext()

bt$reset()

blocks Decompose a matrix or edits into independent blocks

Description

blocks returns a list of independent blocks Mi such that M = M1 ⊕M2 ⊕ · · · ⊕Mn.

Usage

blocks(M)

blockIndex(D)

Arguments

M matrix, editmatrix, editarray or editset to be decomposed into independent
blocks

D matrix of type logical

Value

list of independent subobjects of M.

list of row indices in D indicating independent blocks. Empty rows (i.e. every column FALSE) are
ignored.

Examples

three seperate blocks
E <- editmatrix(expression(

x1 + x2 == x3,
x3 + x4 == x5,
x5 + x6 == x7,
y1 + y2 == y3,
z1 + z2 == z3

12 checkDatamodel

))
blocks(E)

four seperate blocks
E <- editmatrix(expression(

x1 + x2 == x3,
x3 + x4 == x5,
x8 + x6 == x7,
y1 + y2 == y3,
z1 + z2 == z3

))
blocks(E)

two categorical blocks
E <- editarray(expression(
x %in% c('a','b','c'),
y %in% c('d','e'),
z %in% c('f','g'),
u %in% c('w','t'),
if (x == 'a') y != 'd',
if (z == 'f') u != 'w'

))
blocks(E)

checkDatamodel Check data against a datamodel

Description

Categorical variables in dat which also occur in E are checked against the datamodel for those
variables. Numerical variables are checked against edits in E that contain only a single variable
(e.g. x > 0). Values violating such edits as well as empty values are set to adapt.

Usage

checkDatamodel(E, dat, weight = rep(1, ncol(dat)), ...)

Arguments

E an object of class editset, editarray, or editmatrix

dat a data.frame

weight vector of weigths for every variable of dat or an array of weight of the same
dimensions as dat.

... arguments to be passed to or from other methods

condition 13

Value

An object of class errorLocation.

See Also

errorLocation, localizeErrors.

condition Get condition matrix from an editset.

Description

Get condition matrix from an editset.

Usage

condition(E)

Arguments

E an editset

Value

an editmatrix, holding conditions under which the editset is relevant.

See Also

disjunct, separate, editset

datamodel Summarize data model of an editarray in a data.frame

Description

Summarize data model of an editarray in a data.frame

Usage

datamodel(E)

Arguments

E editarray

14 disjunct

Value

data.frame describing the categorical variables and their levels.

See Also

checkDatamodel

Examples

E <- editarray(expression(
age %in% c('under aged','adult'),
positionInHouseholda %in% c('marriage partner', 'child', 'other'),
maritalStatus %in% c('unmarried','married','widowed','divorced'),

if (maritalStatus %in% c('married','widowed','divorced')) positionInHousehold != 'child',
if (age == 'under aged') maritalStatus == 'unmarried'
)

)
datamodel(E)

disjunct Decouple a set of conditional edits

Description

An editset is transformed to a list of editsets which do not contain any conditional numeric/categorical
edits anymore. Each editset gains an attribute condition, which holds the series of assumptions
made to decouple the original edits. This attribute will be printed when not NULL. Warning: this
may be slow for large, highly entangled sets of edits.

Usage

disjunct(E, type = c("list", "env"))

Arguments

E Object of class editset

type Return type: list (default) for editlist, env for editenv.

Value

An object of class editlist (editenv), which is nothing more than a list (environment) of
editsets with a class attribute. Each element has an attribute ’condition’ showing which conditions
were assumed to derive the editset.

See Also

separate, condition, blocks

echelon 15

Examples

E <- editset(expression(
x + y == z,
if (x > 0) y > 0,
x >= 0,
y >= 0,
z >= 0,
A %in% letters[1:4],
B %in% letters[1:4],
if (A %in% c('a','b')) y > 0,
if (A == 'c') B %in% letters[1:3]

))

disjunct(E)

echelon Bring an (edit) matrix to reduced row echelon form.

Description

If E is a matrix, a matrix in reduced row echelon form is returned. If E is an editmatrix the
equality part of E is transformed to reduced row echelon form. For an editset, the numerical part
is transformed to reduced row echelon form.

Usage

echelon(E, ...)

S3 method for class 'editmatrix'
echelon(E, ...)

S3 method for class 'matrix'
echelon(E, tol = sqrt(.Machine$double.eps), ...)

S3 method for class 'editset'
echelon(E, ...)

Arguments

E a matrix or editmatrix

... options to pass on to further methods.

tol tolerance that will be used to determine if a coefficient equals zero.

16 editarray

See Also

eliminate, substValue

editarray Parse textual, categorical edit rules to an editarray

Description

An editarray is a boolean array (with some extra attributes) where each row contains an edit
restriction on purely categorical data. The function editarray converts (a vector of) edit(s) in
character or expression from to an editarray object. Edits may also be read from a data.frame,
in which case it must have at least a character column with the name edit. It is not strictly neces-
sary, but hightly recommended that the datamodel (i.e. the possible levels for a variable) is included
explicitly in the edits using an %in% statement, as shown in the examples below. The function
editfile can read categorical edits from a free-form text file.

Usage

editarray(editrules, sep = ":", env = parent.frame())

S3 method for class 'editarray'
as.character(x, useIf = TRUE, datamodel = TRUE, ...)

S3 method for class 'editarray'
as.data.frame(x, ...)

S3 method for class 'editarray'
as.expression(x, ...)

S3 method for class 'editarray'
as.matrix(x, ...)

S3 method for class 'editarray'
c(...)

S3 method for class 'editarray'
summary(object, useBlocks = TRUE, ...)

Arguments

editrules character or expression vector.

sep textual separator, to be used internally for separating variable from category
names.

env environment to evaluate the rhs of ’==’ or ’%in%’ in.

x editarray object

editarray 17

useIf logical. Use if(<condition>) <statement> or !<condition> | <statement> ?

datamodel logical. Include datamodel explicitly?

... further arguments passed to or from other methods

object an R object

useBlocks logical Summarize each block?

Value

editarray : An object of class editarray

as.data.frame: data.frame with columns ’name’, ’edit’ and ’description’.

as.matrix: The boolean matrix part of the editarray.

See Also

editrules.plotting, violatedEdits, localizeErrors, editfile, editset, editmatrix, getVars,
blocks, eliminate, substValue, isFeasible generateEdits, contains, is.editarray, isSubset

Examples

Here is the prototypical categorical edit: men cannot be pregnant.
E <- editarray(expression(

gender %in% c('male','female'),
pregnant %in% c('yes','no'),
if(gender == 'male') pregnant == 'no'
)

)
E

an editarray has a summary method:
summary(E)

A yes/no variable may also be modeled as a logical:
editarray(expression(

gender %in% c('male','female'),
pregnant %in% c(TRUE, FALSE),
if(gender == 'male') pregnant == FALSE
)

)

or, shorter (and using a character vector as input):
editarray(expression(

gender %in% c('male','female'),
pregnant %in% c(TRUE, FALSE),
if(gender == 'male') !pregnant
)

)

the \%in\% statement may be used at will
editarray(expression(

18 editarray

gender %in% c('male','female'),
pregnant %in% c(TRUE, FALSE),
positionInHousehold %in% c('marriage partner', 'child', 'other'),
maritalStatus %in% c('unmarried','married','widowed','divorced'),
if(gender == 'male') !pregnant,
if(maritalStatus %in% c(

'unmarried',
'widowed',
'divorced')

) !positionInHousehold %in% c('marriage partner','child')
)

)

Here is the prototypical categorical edit: men cannot be pregnant.
E <- editarray(expression(

gender %in% c('male','female'),
pregnant %in% c('yes','no'),
if(gender == 'male') pregnant == 'no'
)

)
E

an editarray has a summary method:
summary(E)

A yes/no variable may also be modeled as a logical:
editarray(expression(

gender %in% c('male','female'),
pregnant %in% c(TRUE, FALSE),
if(gender == 'male') pregnant == FALSE
)

)

or, shorter (and using a character vector as input):
editarray(expression(

gender %in% c('male','female'),
pregnant %in% c(TRUE, FALSE),
if(gender == 'male') !pregnant
)

)

the \%in\% statement may be used at will
editarray(expression(

gender %in% c('male','female'),
pregnant %in% c(TRUE, FALSE),
positionInHousehold %in% c('marriage partner', 'child', 'other'),
maritalStatus %in% c('unmarried','married','widowed','divorced'),
if(gender == 'male') !pregnant,
if(maritalStatus %in% c(

editfile 19

'unmarried',
'widowed',
'divorced')

) !positionInHousehold %in% c('marriage partner','child')
)

)

editfile Read edits edits from free-form textfile

Description

This utility function allows for free editrule definition in a file. One can extract only the numerical
(type='num'), only the categorical (type='cat') or all edits (default) in which case an editset is
returned. The function first parses all assignments in the file, so it is possible to compute or read a
list of categories defining a datamodel for example.

Usage

editfile(file, type = c("all", "num", "cat", "mix"), ...)

Arguments

file name of text file to read in

type type of edits to extract. Currently, only ’num’ (numerical), ’cat’ (categorical)
and ’all’ are implemented.

... extra parameters that are currently ignored

Value

editset with all edits if type=all, editarray if type='cat', editmatrix if type='num', editset
with conditional edits if type='mix'. If the return value is a list, the elements are named
numedits and catedits.

20 editmatrix

editmatrix Create an editmatrix

Description

An editmatrix is a numerical matrix and a set of comparison operators representing a linear system
of (in)equations.

Usage

editmatrix(editrules, normalize = TRUE)

S3 method for class 'editmatrix'
as.data.frame(x, ...)

S3 method for class 'editmatrix'
as.character(x, ...)

S3 method for class 'editmatrix'
as.expression(x, ...)

S3 method for class 'editmatrix'
as.matrix(x, ...)

S3 method for class 'editmatrix'
c(...)

S3 method for class 'editmatrix'
str(object, ...)

S3 method for class 'editmatrix'
summary(object, useBlocks = TRUE, ...)

Arguments

editrules A character or expression vecotr with (in)equalities written in R syntax. Al-
ternatively, a data.frame with a column named edits, see details.

normalize logical specifying if all edits should be transformed (see description)

x editmatrix object

... Arguments to pass to or from other methods

object an R object

useBlocks logical Summarize each block?

editmatrix 21

Details

The function editmatrix generates an editmatrix from a character vector, an expression vector
or a data.frame with at least the column edit. The function editfile reads edits from a free-form
textfile, function as.editmatrix converts a matrix, a vector of constants and a vector of operators
to an editmatrix

By default, the editmatrix is normalized, meaning that all comparison operators are converted
to one of <, <=, or ==. Users may specify edits using any of the operators <, <=, ==, >=, > (see
examples below). However it is highly recommended to let editmatrix parse them into normal
form as all functions operating on editmatrices expect or convert it to normal form anyway.

Value

editmatrix : An object of class editmatrix

as.data.frame a 3-column data.frame with columns ’name’ and ’edit’. If the input editmatrix
has a description attribute a third column is returned.

as.matrix: Augmented matrix of editmatrix. (See also getAb).

Note

since version 2.0-0, the behaviour of as.data.frame.editmatrix changed to be more symmetrical
with editmatrix.data.frame and as.data.frame.editarray. Use editrules:::toDataFrame
(unsupported) for the old behaviour.

See Also

editrules.plotting, violatedEdits, localizeErrors, normalize, contains, is.editmatrix,
getA, getAb, getb, getOps getVars, eliminate, substValue, isFeasible

Examples

Using a character vector to define contraints
E <- editmatrix(c("x+3*y==2*z", "x==z"))
print(E)

Using a expression vector to define contraints
E <- editmatrix(expression(x+3*y==2*z, x==z))
print(E)

an editmatrix also has a summary method:
summary(E)

select rows from an editmatrix:
E <- editmatrix(c("x+3*y==2*z", "x >= z"))
E[getOps(E) == "=="]

#Using data.frame to define constraints
E.df <- data.frame(

name =c("A","B","C"),

22 editnames

edit = c("x == y",
"z + w == y + x",
"z == y + 2*w"),

description = c(
"these variables should be equal","","")

)
print(E.df)

E <- editmatrix(E.df)
print(E)
Using a character vector to define contraints
E <- editmatrix(c("x+3*y==2*z", "x==z"))
print(E)

Using a expression vector to define contraints
E <- editmatrix(expression(x+3*y==2*z, x==z))
print(E)

an editmatrix also has a summary method:
summary(E)

select rows from an editmatrix:
E <- editmatrix(c("x+3*y==2*z", "x >= z"))
E[getOps(E) == "=="]

#Using data.frame to define constraints
E.df <- data.frame(

name =c("A","B","C"),
edit = c("x == y",

"z + w == y + x",
"z == y + 2*w"),

description = c(
"these variables should be equal","","")

)
print(E.df)

E <- editmatrix(E.df)
print(E)

editnames Names of edits

Description

Retrieve edit names from editset, -array or -matrix

editrules.plotting 23

Usage

editnames(E)

Arguments

E editset, editarray or editmatrix

editrules.plotting Graphical representation of edits

Description

Plots a graph, showing which variables occur in what edits. By default, squares represent edits,
circles represent variables and an edge connecing a variable with an edit indicates that the edit
contains the variable.

Usage

S3 method for class 'editmatrix'
plot(
x,
nodetype = "all",
rules = editnames(x),
vars = getVars(x),
violated = logical(nedits(x)),
adapt = logical(length(getVars(x))),
nabbreviate = 5,
layout = igraph::layout.fruchterman.reingold,
edgecolor = "steelblue",
rulecolor = "khaki1",
varcolor = "lightblue1",
violatedcolor = "sienna1",
adaptcolor = "sienna1",
...

)

S3 method for class 'editarray'
plot(
x,
nodetype = "all",
rules = editnames(x),
vars = getVars(x),
violated = logical(nedits(x)),
adapt = logical(length(getVars(x))),
nabbreviate = 5,
layout = igraph::layout.fruchterman.reingold,
edgecolor = "steelblue",

24 editrules.plotting

rulecolor = "khaki1",
varcolor = "lightblue1",
violatedcolor = "sienna1",
adaptcolor = "sienna1",
...

)

S3 method for class 'editset'
plot(
x,
nodetype = "all",
rules = editnames(x),
vars = getVars(x),
violated = logical(nedits(x)),
adapt = logical(length(getVars(x))),
nabbreviate = 5,
layout = igraph::layout.fruchterman.reingold,
edgecolor = "steelblue",
rulecolor = "khaki1",
varcolor = "lightblue1",
violatedcolor = "sienna1",
adaptcolor = "sienna1",
...

)

Arguments

x object of class editmatrix

nodetype 'rules', 'vars' or 'all'.

rules selection of edits

vars selection of variables

violated A named logical vector of length nrow(E). Ingnored when nodetype='vars'

adapt A named logical vector of length(getVars(E)). Ignored when nodetype='rules'

nabbreviate integer To how many characters should variable and edit names be abbrevi-
ated?

layout an igraph layout function. See ?igraph::layout

edgecolor Color of edges and node frames

rulecolor Color of rule nodes (ignored when nodetype='vars')

varcolor Color of variable nodes (ignored when nodetype='rules')

violatedcolor Color of nodes corresponding to violated edits (ignored when nodetype='vars')

adaptcolor Color of nodes corresponding to variables to adapt (ignored when nodetype='rules')

... further arguments to be passed to plot.

editrules.plotting 25

Details

Depending on the chosen nodetype, this function can plot three types of graphs based on an edit
set.

• If nodetype="all" (default), the full bipartite graph is plotted. Each variable is represented
by a square node while each edit is represented by a circular node. An edge is drawn when a
variable occurs in an edit.

• If nodetype="vars" the variable graph is drawn. Each node represents a variable, and an
edge is drawn between two nodes if the variables occur together in at least one edit. The edge
width relates to the number of edits connecting two variables.

• If nodetype="rules" the rule graph is drawn. Each node represents an edit rule and an edge
is drawn between two nodes if they share at least one variable. The edge width relates to the
number of edits connecting the two edit rules.

The boolean vectors violated and adapt can be used to color violated edits or variables which
have to be adapted. The vectors must have named elements, so variables and edit names can be
matched.

The function works by coercing an editmatrix to an igraph object, and therefore relies on the plot-
ting capabilities of the igraph package. For more finetuning, use as.igraph and see ?igraph.plotting.

The default layout generated by the Fruchterman-Reingold algorithm. The resulting layout is one of
several optimal layouts, generated randomly (using a attration-repulsion model between the nodes).
To reproduce layouts, use fix a randseed before calling the plot function.

References

Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal,
Complex Systems 1695. 2006. http://igraph.sf.net

See Also

as.igraph, adjacency, igraph.plotting

Examples

Examples with linear (in)equality edits

load predefined edits from package
data(edits)
edits

convert to editmatrix
E <- editmatrix(edits)

Not run:
(Note to reader: the Not run directive only prevents the examle commands from
running when package is built)

Total edit graph

26 editrules.plotting

plot(E)

Graph with dependent edits
plot(E, nodetype="rules")

Graph with dependent variables
plot(E, nodetype="vars")

Total edit graph, but with curved lines (option from igraph package)
plot(E, edge.curved=TRUE)

graph, plotting just the connections caused by variable 't'
plot(E,vars='t')

End(Not run)

here's an example with a broken record.
r <- c(ct = 100, ch = 30, cp = 70, p=30,t=130)
violatedEdits(E,r)
errorLocalizer(E,r)$searchBest()$adapt

we color the violated edits and the variables that have to be adapted

Not run
set.seed(1) # (for reprodicibility)
plot(E,

adapt=errorLocalizer(E,r)$searchBest()$adapt,
violated=violatedEdits(E,r))

End(Not run)

extract total graph (as igraph object)
as.igraph(E)

extract graph with edges related to variable 't' and 'ch'
as.igraph(E,vars=c('t','ch'))

extract total adjacency matrix
adjacency(E)

extract adjacency matrix related to variables t and 'ch'
adjacency(E,vars=c('t','ch'))

Examples with categorical edits

generate an editarray:
E <- editarray(expression(

age %in% c('<15','16-65','>65'),
employment %in% c('unemployed','employed','retired'),
salary %in% c('none','low','medium','high'),
if (age == '<15') employment=='unemployed',

editrules_package 27

if (salary != 'none') employment != 'unemployed',
if (employment == 'unemployed') salary == 'none'))

Not run:
plot total edit graph
plot(E)

plot with a different layout
plot(E,layout=layout.circle)

plot edit graph, just the connections caused by 'salary'
plot(E,vars='salary')

End(Not run)

extract edit graph
as.igraph(E)

extract edit graph, just the connections caused by 'salary'
as.igraph(E,vars='salary')

extract adjacency matrix
adjacency(E)

extract adjacency matrix, only caused by 'employment'
adjacency(E,vars='employment')

editrules_package An overview of the function of package editrules

Description

Please note: active development has moved to packages ’validate’ and ’errorlocate’. Facilitates
reading and manipulating (multivariate) data restrictions (edit rules) on numerical and categorical
data. Rules can be defined with common R syntax and parsed to an internal (matrix-like format).
Rules can be manipulated with variable elimination and value substitution methods, allowing for
feasibility checks and more. Data can be tested against the rules and erroneous fields can be found
based on Fellegi and Holt’s generalized principle. Rules dependencies can be visualized with using
the ’igraph’ package.

NOTE

This package is no longer under active development. The package is superseded by R packages
validate for data validation and errorlocate for error localization. We urge new users to use those
packages instead.

https://CRAN.R-project.org/package=validate
https://CRAN.R-project.org/package=errorlocate

28 editrules_package

The editrules package aims to provide an environment to conveniently define, read and check
recordwise data constraints including

• Linear (in)equality constraints for numerical data,

• Constraints on value combinations of categorical data

• Conditional constraints on numerical and/or mixed data

In literature these constraints, or restrictions are refered to as “edits”. editrules can perform com-
mon rule set manipulations like variable elimination and value substitution, and offers error local-
ization functionality based on the (generalized) paradigm of Fellegi and Holt. Under this paradigm,
one determines the smallest (weighted) number of variables to adapt such that no (additional or
derived) rules are violated. The paradigm is based on the assumption that errors are distributed ran-
domly over the variables and there is no detectable cause of error. It also decouples the detection of
corrupt variables from their correction. For some types of error, such as sign flips, typing errors or
rounding errors, this assumption does not hold. These errors can be detected and are closely related
to their resolution. The reader is referred to the deducorrect package for treating such errors.

I. Define edits

editrules provides several methods for creating edits from a character , expression, data.frame
or a text file.

editfile Read conditional numerical, numerical and categorical constraints from textfile
editset Create conditional numerical, numerical and categorical constraints
editmatrix Create a linear constraint matrix for numerical data
editarray Create value combination constraints for categorical data

II. Check and find errors in data

editrules provides several method for checking data.frames with edits

violatedEdits Find out which record violates which edit.
localizeErrors Localize erroneous fields using Fellegi and Holt’s principle.
errorLocalizer Low-level error localization function using B&B algorithm

Note that you can call plot, summary and print on results of these functions.

IV. Manipulate and check edits

editrules provides several methods for manipulating edits

substValue Substitute a value in a set of rules
eliminate Derive implied rules by variable elimination
reduce Remove unconstraint variables
isFeasible Check for contradictions
duplicated Find duplicated rules
blocks Decompose rules into independent blocks

edits 29

disjunct Decouple conditional edits into disjunct edit sets
separate Decompose rules in blocks and decouple conditinal edits
generateEdits Generate all nonredundant implicit edits (editarray only)

V. Plot and coerce edits

editrules provides several methods for plotting and coercion.

editrules.plotting Plot edit-variable connectivity graph
as.igraph Coerce to edit-variable connectivity igraph object
as.character Coerce edits to character representation
as.data.frame Store character representation in data.frame

See Also

Useful links:

• https://github.com/data-cleaning/editrules

• Report bugs at https://github.com/data-cleaning/editrules/issues

edits Example editrules, used in vignette

Description

Some example editrules

Usage

data(edits)

editset Read general edits

Description

An editset combines numerical (linear), categorical and conditional restrictions in a single object.
Internally, it consists of two editmatrices and an editarray.

https://github.com/data-cleaning/editrules
https://github.com/data-cleaning/editrules/issues

30 editset

Usage

editset(editrules, env = new.env())

S3 method for class 'editset'
as.character(x, datamodel = TRUE, useIf = TRUE, dummies = FALSE, ...)

S3 method for class 'editset'
as.data.frame(x, ...)

S3 method for class 'editset'
c(...)

S3 method for class 'editset'
summary(object, useBlocks = TRUE, ...)

Arguments

editrules character vector, expression vector or data.frame (see details) containing
edits.

env environment to parse categorical edits in (normally, users need not specify this)

x an editset

datamodel include datamodel?

useIf return vectorized version?

dummies return datamodel for dummy variables?

... arguments to be passed to or from other methods

object an R object

useBlocks logical Summarize each block?

Details

The function editset converts a character or expression vector to an editset. Alternatively, a
data.frame with a column called edit can be supplied. Function editfile reads edits from a
free-form textfile.

Value

editset: An object of class editset

as.data.frame: a data.frame with columns ’name’ and ’edit’.

See Also

editrules.plotting, violatedEdits, localizeErrors, getVars, disjunct, eliminate, substValue,
isFeasible, contains, is.editset

editset 31

Examples

edits can be read from a vector of expressions
E <- editset(expression(

if (x > 0) y > 0,
x + y == z,
A %in% letters[1:2],
B %in% letters[2:3],
if (A == 'a') B == 'b',
if (A == 'b') x >= 0,
u + v == w,
if (u >= 0) w >= 0

))
E
summary(E)
as.data.frame(E)
getVars(E)
getVars(E,type='cat')
getVars(E,type='num')

see also editfile
E <- editfile(system.file('script/edits/mixedits.R',package='editrules'))
E
summary(E)
as.data.frame(E)
getVars(E)
getVars(E,type='cat')
getVars(E,type='num')

edits can be read from a vector of expressions
E <- editset(expression(

if (x > 0) y > 0,
x + y == z,
A %in% letters[1:2],
B %in% letters[2:3],
if (A == 'a') B == 'b',
if (A == 'b') x >= 0,
u + v == w,
if (u >= 0) w >= 0

))
E
summary(E)
as.data.frame(E)
getVars(E)
getVars(E,type='cat')
getVars(E,type='num')

32 eliminate

see also editfile
E <- editfile(system.file('script/edits/mixedits.R',package='editrules'))
E
summary(E)
as.data.frame(E)
getVars(E)
getVars(E,type='cat')
getVars(E,type='num')

editType Determine edittypes in editset based on ’contains(E)’

Description

Determines edittypes based on the variables they contain (not on names of edits).

Usage

editType(E, m = NULL)

Arguments

E editset

m if you happen to have contains(E) handy, it needs not be recalculated.

See Also

contains

eliminate Eliminate a variable from a set of edit rules

Description

Eliminating a variable amounts to deriving all (non-redundant) edits not containing that variable.
Geometrically, it can be seen as a projection of the solution space (records obeying all edits) along
the eliminated variable’s axis. If the solution space is non-concex (as is the usually case when
conditional edits are involved), multiple projections of convex subregions are performed.

eliminate 33

Usage

eliminate(E, var, ...)

S3 method for class 'editmatrix'
eliminate(E, var, ...)

S3 method for class 'editarray'
eliminate(E, var, ...)

S3 method for class 'editset'
eliminate(E, var, ...)

S3 method for class 'editlist'
eliminate(E, var, ...)

Arguments

E editmatrix or editarray

var name of variable to be eliminated

... argumemts to be passed to or from other methods

Value

If E is an editmatrix or editarray, an object of the same class is returned. A returned editmatrix
contains an extra history attribute which is used to reduce the number of generated edits in con-
secutive eliminations (see getH). If E is an editset, an object of class editlist is returned.

References

D.A. Kohler (1967) Projections of convex polyhedral sets, Operational Research Center Report ,
ORC 67-29, University of California, Berkely.

H.P. Williams (1986) Fourier’s method of linear programming and its dual, The American Mathe-
matical Monthly 93, 681-695

M.P.J. van der Loo (2012) Variable elimination and edit generation with a flavour of semigroup
algebra (submitted).

See Also

substValue, isObviouslyInfeasible, isObviouslyRedundant, generateEdits

Examples

The following is an example by Williams (1986). Eliminating all variables
except z maximizes -4x1 + 5x2 +3x3:
P <- editmatrix(c(

"4*x1 - 5*x2 - 3*x3 + z <= 0",
"-x1 + x2 -x3 <= 2",

34 eliminate

"x1 + x2 + 2*x3 <= 3",
"-x1 <= 0",
"-x2 <= 0",
"-x3 <= 0"))

eliminate 1st variable
(P1 <- eliminate(P, "x1", fancynames=TRUE))
eliminate 2nd variable. Note that redundant rows have been eliminated
(P2 <- eliminate(P1, "x2", fancynames=TRUE))
finally, the answer:
(P3 <- eliminate(P2, "x3", fancynames=TRUE))

check which original edits were used in deriving the new ones
getH(P3)

check how many variables were eliminated
geth(P3)

An example with an equality and two inequalities
The only thing to do is solving for x in e1 and substitute in e3.
(E <- editmatrix(c(

"2*x + y == 1",
"y > 0",
"x > 0"),normalize=TRUE))

eliminate(E,"x", fancynames=TRUE)

This example has two equalities, and it's solution
is the origin (x,y)=(0,0)
(E <- editmatrix(c(

"y <= 1 - x",
"y >= -1 + x",
"x == y",
"y ==-2*x"),normalize=TRUE))

eliminate(E,"x", fancynames=TRUE)

this example has no solution, the equalities demand (x,y) = (0,2)
while the inequalities demand y <= 1
(E <- editmatrix(c(

"y <= 1 - x",
"y >= -1 + x",
"y == 2 - x",
"y == -2 + x"),normalize=TRUE))

this happens to result in an obviously unfeasable system:
isObviouslyInfeasible(eliminate(E,"x"))

for categorical data, elimination amounts to logical derivartions. For
example
E <- editarray(expression(

age %in% c('under aged','adult'),
positionInHousehold %in% c('marriage partner', 'child', 'other'),
maritalStatus %in% c('unmarried','married','widowed','divorced'),

errorLocalizer 35

if (maritalStatus %in% c('married','widowed','divorced'))
positionInHousehold != 'child',

if (maritalStatus == 'unmarried')
positionInHousehold != 'marriage partner' ,

if (age == 'under aged') maritalStatus == 'unmarried'
)

)
E

by eliminating 'maritalStatus' we can deduce that under aged persones cannot
be partner in marriage.
eliminate(E,"maritalStatus")

E <- editarray(expression(
age %in% c('under aged','adult'),
positionInHousehold %in% c('marriage partner', 'child', 'other'),
maritalStatus %in% c('unmarried','married','widowed','divorced'),
if (maritalStatus %in% c('married','widowed','divorced'))

positionInHousehold != 'child',
if (maritalStatus == 'unmarried')

positionInHousehold != 'marriage partner' ,
if (age == 'under aged')

maritalStatus == 'unmarried'
)

)
E

by eliminating 'maritalStatus' we can deduce that under aged persones cannot
be partner in marriage.
eliminate(E,"maritalStatus")

errorLocalizer Create a backtracker object for error localization

Description

Create a backtracker object for error localization

Usage

errorLocalizer(E, x, ...)

S3 method for class 'editset'
errorLocalizer(E, x, ...)

36 errorLocalizer

S3 method for class 'editmatrix'
errorLocalizer(
E,
x,
weight = rep(1, length(x)),
maxadapt = length(x),
maxweight = sum(weight),
maxduration = 600,
tol = sqrt(.Machine$double.eps),
...

)

S3 method for class 'editarray'
errorLocalizer(
E,
x,
weight = rep(1, length(x)),
maxadapt = length(x),
maxweight = sum(weight),
maxduration = 600,
...

)

S3 method for class 'editlist'
errorLocalizer(
E,
x,
weight = rep(1, length(x)),
maxadapt = length(x),
maxweight = sum(weight),
maxduration = 600,
...

)

Arguments

E an editmatrix or an editarray

x a named numerical vector or list (if E is an editmatrix), a named character
vector or list (if E is an editarray), or a named list if E is an editlist or
editset. This is the record for which errors will be localized.

... Arguments to be passed to other methods (e.g. reliability weights)
weight a lengt(x) positive weight vector. The weights are assumed to be in the same

order as the variables in x.
maxadapt maximum number of variables to adapt
maxweight maximum weight of solution, if weights are not given, this is equal to the maxi-

mum number of variables to adapt.
maxduration maximum time (in seconds), for $searchNext(), $searchAll() (not for $searchBest,

use $searchBest(maxdration=<duration>) in stead)

errorLocalizer 37

tol tolerance passed to link{isObviouslyInfeasible} (used to check for bound
conditions).

Value

an object of class backtracker. Each execution of $searchNext() yields a solution in the form of
a list (see details). Executing $searchBest() returns the lowest-weight solution. When multiple
solotions with the same weight are found, $searchBest() picks one at random.

Details

Generate a backtracker object for error localization in numerical, categorical, or mixed data. This
function generates the workhorse program, called by localizeErrors with method=localizer.

The returned backtracker can be used to run a branch-and-bound algorithm which finds the least
(weighted) number of variables in x that need to be adapted so that all restrictions in E can be
satisfied. (Generalized principle of Fellegi and Holt (1976)).

The B&B tree is set up so that in in one branche, a variable is assumed correct and its value subsi-
tuted in E, while in the other branche a variable is assumed incorrect and eliminated from E. See
De Waal (2003), chapter 8 or De Waal, Pannekoek and Scholtus (2011) for a concise description of
the B&B algorithm.

Every call to <backtracker>$searchNext() returns one solution list, consisting of

• w: The solution weight.

• adapt: logical indicating whether a variable should be adapted (TRUE) or not

Every subsequent call leads either to NULL, in which case either all solutions have been found, or
maxduration was exceeded. The property <backtracker>$maxdurationExceeded indicates if
this is the case. Otherwise, a new solution with a weight w not higher than the weight of the last
found solution is returned.

Alternatively <backtracker>$searchBest() will return the best solution found within maxduration
seconds. If multiple equivalent solutions are found, a random one is returned.

The backtracker is prepared such that missing data in the input record x is already set to adapt, and
missing variables have been eliminated already.

The backtracker will crash when E is an editarray and one or more values are not in the data-
model specified by E. The more user-friendly function localizeErrors circumvents this. See also
checkDatamodel.

Numerical stability issues

For records with a large numerical range (eg 1-1E9), the error locations represent solutions that will
allow repairing the record to within roundoff errors. We highly recommend that you round near-
zero values (for example, everything <= sqrt(.Machine$double.eps)) and scale a record with
values larger than or equal to 1E9 with a constant factor.

Note

This method is potentially very slow for objects of class editset that contain many conditional
restrictions. Consider using localizeErrors with the option method="mip" in such cases.

38 errorLocalizer

References

I.P. Fellegi and D. Holt (1976). A systematic approach to automatic edit and imputation. Journal of
the American Statistical Association 71, pp 17-25

T. De Waal (2003) Processing of unsave and erroneous data. PhD thesis, Erasmus Research institute
of management, Erasmus university Rotterdam. http://www.cbs.nl/nl-NL/menu/methoden/onderzoek-
methoden/onderzoeksrapporten/proefschriften/2008-proefschrift-de-waal.htm

T. De Waal, Pannekoek, J. and Scholtus, S. (2011) Handbook of Statistical Data Editing. Wiley
Handbooks on Survey Methodology.

See Also

errorLocalizer_mip, localizeErrors, checkDatamodel, violatedEdits,

Examples

examples with numerical edits
example with a single editrule
p = profit, c = cost, t = turnover
E <- editmatrix(c("p + c == t"))
cp <- errorLocalizer(E, x=c(p=755, c=125, t=200))
x obviously violates E. With all weights equal, changing any variable will do.
first solution:
cp$searchNext()
second solution:
cp$searchNext()
third solution:
cp$searchNext()
there are no more solution since changing more variables would increase the
weight, so the result of the next statement is NULL:
cp$searchNext()

Increasing the reliability weight of turnover, yields 2 solutions:
cp <- errorLocalizer(E, x=c(p=755, c=125, t=200), weight=c(1,1,2))
first solution:
cp$searchNext()
second solution:
cp$searchNext()
no more solutions available:
cp$searchNext()

A case with two restrictions. The second restriction demands that
c/t >= 0.6 (cost should be more than 60% of turnover)
E <- editmatrix(c(

"p + c == t",
"c - 0.6*t >= 0"))

cp <- errorLocalizer(E,x=c(p=755,c=125,t=200))
Now, there's only one solution, but we need two runs to find it (the 1st one
has higher weight)
cp$searchNext()
cp$searchNext()

errorLocalizer 39

With the searchBest() function, the lowest weifght solution is found at once:
errorLocalizer(E,x=c(p=755,c=125,t=200))$searchBest()

An example with missing data.
E <- editmatrix(c(

"p + c1 + c2 == t",
"c1 - 0.3*t >= 0",
"p > 0",
"c1 > 0",
"c2 > 0",
"t > 0"))

cp <- errorLocalizer(E,x=c(p=755, c1=50, c2=NA,t=200))
(Note that e2 is violated.)
There are two solutions. Both demand that c2 is adapted:
cp$searchNext()
cp$searchNext()

Examples with categorical edits
#
3 variables, recording age class, position in household, and marital status:
We define the datamodel and the rules
E <- editarray(expression(

age %in% c('under aged','adult'),
maritalStatus %in% c('unmarried','married','widowed','divorced'),
positionInHousehold %in% c('marriage partner', 'child', 'other'),
if(age == 'under aged')

maritalStatus == 'unmarried',
if(maritalStatus %in% c('married','widowed','divorced'))

!positionInHousehold %in% c('marriage partner','child')
)

)
E

Let's define a record with an obvious error:
r <- c(

age = 'under aged',
maritalStatus='married',
positionInHousehold='child')

The age class and position in household are consistent, while the marital
status conflicts. Therefore, changing only the marital status (in stead of
both age class and postition in household) seems reasonable.
el <- errorLocalizer(E,r)
el$searchNext()

40 errorLocalizer_mip

errorLocalizer_mip Localize errors using a MIP approach.

Description

Localize errors using a MIP approach.

Usage

errorLocalizer_mip(
E,
x,
weight = rep(1, length(x)),
maxduration = 600L,
verbose = "neutral",
lpcontrol = getOption("er.lpcontrol"),
...

)

Arguments

E an editset, editmatrix, or editarray

x named numeric with data

weight numeric with weights

maxduration number of seconds that is spent on finding a solution

verbose verbosity argument that will be passed on to solve lpSolveAPI

lpcontrol named list of arguments that will be passed on to lp.control. maxduration
will override lpSolve’s timeout argument.

... other arguments that will be passed on to solve.

Value

list with solution weight w, logical adapt stating what to adapt, x_feasible and the lp problem
(an lpExtPtr object)

Details

errorLocalizer_mip uses E and x to define a mixed integer problem and solves this problem
using lpSolveApi. This function can be much faster then errorLocalizer but does not return the
degeneracy of a solution. However it does return an bonus: x_feasible, a feasible solution.

errorLocation 41

References

E. De Jonge and Van der Loo, M. (2012) Error localization as a mixed-integer program in editrules
(included with the package)

lp_solve and Kjell Konis. (2011). lpSolveAPI: R Interface for lp_solve version 5.5.2.0. R package
version 5.5.2.0-5. http://CRAN.R-project.org/package=lpSolveAPI

See Also

localizeErrors, errorLocalizer, errorLocation

errorLocation The errorLocation object

Description

Object storing information on error locations in a dataset.

Usage

S3 method for class 'errorLocation'
plot(x, topn = min(10, ncol(x$adapt)), ...)

S3 method for class 'errorLocation'
summary(object, ...)

Arguments

x errorLocation object

topn Number of variables to show in ’errors per variable plot’. Only the top-n are are
shown. By default the top-20 variables with the most errors are shown.

... other arguments that will be transferred to barplot

object an R object

Details

The errorlocation objects consists of the following slots wich can be accessed with the dollar op-
erator, just like with lists. Right now the only functions creating such objects are localizeErrors
and checkDatamodel.

• adapt a logical array where each row/column shows which record/variable should be adapted.

• status A data.frame with the same number of rows as adapt. It contains the following
columns

– weight weight of the found solution
– degeneracy number of equivalent solutions found
– user user time used to generate solution (as in sys.time)

42 errorLocation

– system system time used to generate solution (as in sys.time)
– elapsed elapsed time used to generate solution (as in sys.time)
– maxDurationExceeded Was the maximum search time reached?
– memfail Indicates whether a branch was broken off due to memory allocation failure

(branch and bound only)

• method The error localization method used, can be "mip", "localizer" or "checkDatamodel".

• call The R calls to the function generating the object.

• user character user who generated the object.

• timestamp character timestamp.

It is possible to plot objects of class errorLocation. An overview containing three or four graphs
will be plotted in a new window. Axes in scatterplots are set to logarithmic if their scales maxima
exceed 50.

See Also

localizeErrors, checkDatamodel

Examples

an editmatrix and some data:
E <- editmatrix(c(

"x + y == z",
"x > 0",
"y > 0",
"z > 0"))

dat <- data.frame(
x = c(1,-1,1),
y = c(-1,1,1),
z = c(2,0,2))

localize all errors in the data
err <- localizeErrors(E,dat)

summary(err)

what has to be adapted:
err$adapt
weight, number of equivalent solutions, timings,
err$status

Not run

Demonstration of verbose processing
construct 2-block editmatrix
F <- editmatrix(c(

"x + y == z",

errorLocation 43

"x > 0",
"y > 0",
"z > 0",
"w > 10"))

Using 'dat' as defined above, generate some extra records
dd <- dat
for (i in 1:5) dd <- rbind(dd,dd)
dd$w <- sample(12,nrow(dd),replace=TRUE)

localize errors verbosely
(err <- localizeErrors(F,dd,verbose=TRUE))

printing is cut off, use summary for an overview
summary(err)

or plot (not very informative in this artificial example)
plot(err)

End(Not run)

for (d in dir("../pkg/R",full.names=TRUE)) dmp <- source(d)
Example with different weights for each record
E <- editmatrix('x + y == z')
dat <- data.frame(

x = c(1,1),
y = c(1,1),
z = c(1,1))

At equal weights, both records have three solutions (degeneracy): adapt x, y
or z:
localizeErrors(E,dat)$status

Set different weights per record (lower weight means lower reliability):
w <- matrix(c(

1,2,2,
2,2,1),nrow=2,byrow=TRUE)

localizeErrors(E,dat,weight=w)

an example with categorical variables
E <- editarray(expression(

age %in% c('under aged','adult'),
maritalStatus %in% c('unmarried','married','widowed','divorced'),
positionInHousehold %in% c('marriage partner', 'child', 'other'),
if(age == 'under aged') maritalStatus == 'unmarried',
if(maritalStatus %in% c('married','widowed','divorced'))

!positionInHousehold %in% c('marriage partner','child')
)

)
E

#

44 errorLocation

dat <- data.frame(
age = c('under aged','adult','adult'),
maritalStatus=c('married','unmarried','widowed'),
positionInHousehold=c('child','other','marriage partner')

)
dat
localizeErrors(E,dat)
the last record of dat has 2 degenerate solutions. Running the last command
a few times demonstrates that one of those solutions is chosen at random.

Increasing the weight of 'positionInHousehold' for example, makes the best
solution unique again
localizeErrors(E,dat,weight=c(1,1,2))

an example with mixed data:

E <- editset(expression(
x + y == z,
2*u + 0.5*v == 3*w,
w >= 0,
if (x > 0) y > 0,
x >= 0,
y >= 0,
z >= 0,
A %in% letters[1:4],
B %in% letters[1:4],
C %in% c(TRUE,FALSE),
D %in% letters[5:8],
if (A %in% c('a','b')) y > 0,
if (A == 'c') B %in% letters[1:3],
if (!C == TRUE) D %in% c('e','f')

))

set.seed(1)
dat <- data.frame(

x = sample(-1:8),
y = sample(-1:8),
z = sample(10),
u = sample(-1:8),
v = sample(-1:8),
w = sample(10),
A = sample(letters[1:4],10,replace=TRUE),
B = sample(letters[1:4],10,replace=TRUE),
C = sample(c(TRUE,FALSE),10,replace=TRUE),
D = sample(letters[5:9],10,replace=TRUE),
stringsAsFactors=FALSE

)

(el <-localizeErrors(E,dat,verbose=TRUE))

generateEdits 45

generateEdits Derive all essentially new implicit edits

Description

Implements the Field Code Forest (FCF) algorithm of Garfinkel et al (1986) to derive all essentially
new implicit edits from an editarray. The FCF is really a single, highly unbalanced tree. This algo-
rithm traverses the tree, pruning many unnecessary branches, uses blocks to divide and conquer,
and optimizes traversing order. See Van der Loo (2012) for a description of the algorithms.

Usage

generateEdits(E)

Arguments

E An editarray

Value

A 3-element named list, where element E is an editarray containing all generated edits. nodes
contains information on the number of nodes in the tree and vs the number of nodes traversed and
duration contains user, system and elapsed time inseconds. The summary method for editarray
prints this information.

References

R.S. Garfinkel, A.S. Kunnathur and G.E. Liepins (1986). Optimal imputation of erroneous data:
categorical data, general edits. Operations Research 34, 744-751.

M.P.J. Van der Loo (2012). Variable elimination and edit generation with a flavour of semigroup
algebra (submitted)

getA Returns the coefficient matrix A of linear (in)equalities

Description

Returns the coefficient matrix A of linear (in)equalities

Usage

getA(E)

46 getA

Arguments

E editmatrix

Value

numeric matrix A

See Also

editmatrix

Examples

E <- editmatrix(c("x+3*y == 2*z"
, "x > 2")
)

print(E)

get editrules, useful for storing and maintaining the rules external from your script
as.data.frame(E)

get coeficient matrix of inequalities
getA(E)

get augmented matrix of linear edit set
getAb(E)

get constants of inequalities (i.e. c(0, 2))
getb(E)

get operators of inequalities (i.e. c("==",">"))
getOps(E)

get variables of inequalities (i.e. c("x","y","z"))
getVars(E)

isNormalized
isNormalized(E)

#normalized E
E <- normalize(E)
E

is het now normalized?
isNormalized(E)

getAb 47

getAb Returns augmented matrix representation of edit set.

Description

For a system of linear (in)equations of the form Ax � b, � ∈ {<,≤,=}, the matrix A|b is called
the augmented matrix.

Usage

getAb(E)

Arguments

E editmatrix

Value

numeric matrix A|b

See Also

editmatrix as.matrix.editmatrix

Examples

E <- editmatrix(c("x+3*y == 2*z"
, "x > 2")
)

print(E)

get editrules, useful for storing and maintaining the rules external from your script
as.data.frame(E)

get coeficient matrix of inequalities
getA(E)

get augmented matrix of linear edit set
getAb(E)

get constants of inequalities (i.e. c(0, 2))
getb(E)

get operators of inequalities (i.e. c("==",">"))
getOps(E)

get variables of inequalities (i.e. c("x","y","z"))
getVars(E)

48 getb

isNormalized
isNormalized(E)

#normalized E
E <- normalize(E)
E

is het now normalized?
isNormalized(E)

getb Returns the constant part b of a linear (in)equality

Description

Returns the constant part b of a linear (in)equality

Usage

getb(E)

Arguments

E editmatrix

Value

numeric vector b

See Also

editmatrix

Examples

E <- editmatrix(c("x+3*y == 2*z"
, "x > 2")
)

print(E)

get editrules, useful for storing and maintaining the rules external from your script
as.data.frame(E)

get coeficient matrix of inequalities
getA(E)

get augmented matrix of linear edit set
getAb(E)

getH 49

get constants of inequalities (i.e. c(0, 2))
getb(E)

get operators of inequalities (i.e. c("==",">"))
getOps(E)

get variables of inequalities (i.e. c("x","y","z"))
getVars(E)

isNormalized
isNormalized(E)

#normalized E
E <- normalize(E)
E

is het now normalized?
isNormalized(E)

getH Returns the derivation history of an edit matrix or array

Description

Function eliminate tracks the history of edits in a logical array H. H has nrow(E) rows and the
number of columns is the number of edits in the editmatrix as it was first defined. If H[i,j1],
H[i,j2],...,H[i,jn] are TRUE, then E[i,] is some (positive, linear) combination of original edits E[j1,],
E[j2,],...,E[jn,]

h records the number of variables eliminated from E by eliminate

Usage

getH(E)

geth(E)

Arguments

E editmatrix

Details

Attributes H and h are used to detect redundant derived edits.

See Also

editmatrix, eliminate

editmatrix, eliminate

50 getOps

getOps Returns the operator part of a linear (in)equality editmatrix E

Description

Returns the operator part of a linear (in)equality editmatrix E

Usage

getOps(E)

Arguments

E editmatrix

Value

character vector with the (in)equality operators.

See Also

editmatrix

Examples

E <- editmatrix(c("x+3*y == 2*z"
, "x > 2")
)

print(E)

get editrules, useful for storing and maintaining the rules external from your script
as.data.frame(E)

get coeficient matrix of inequalities
getA(E)

get augmented matrix of linear edit set
getAb(E)

get constants of inequalities (i.e. c(0, 2))
getb(E)

get operators of inequalities (i.e. c("==",">"))
getOps(E)

get variables of inequalities (i.e. c("x","y","z"))
getVars(E)

isNormalized

getVars 51

isNormalized(E)

#normalized E
E <- normalize(E)
E

is het now normalized?
isNormalized(E)

getVars get names of variables in a set of edits

Description

get names of variables in a set of edits

getr variable names

get variable names

Usage

getVars(E, ...)

S3 method for class 'editset'
getVars(E, type = c("all", "num", "cat", "mix", "dummy"), ...)

S3 method for class '`NULL`'
getVars(E, ...)

Arguments

E editset, editmatrix, or editarray

... Arguments to be passed to or from other methods

type (editset- or list only) select which variables to return. all means all (except
dummies), num means all numericals, cat means all categoricals, mix means
those numericals appearing in a logical constraint and dummy means dummy
variables connecting the logical with numerical constraints.

Value

character vector with the names of the variables.

See Also

getA, getb, getAb, getOps

52 impliedValues

Examples

E <- editmatrix(c("x+3*y == 2*z"
, "x > 2")
)

getVars(E)

E <- editarray(expression(
gender %in% c('male','female'),
pregnant %in% c(TRUE, FALSE),
if(gender == 'male') pregnant == FALSE
)

)

getVars(E)

impliedValues Retrieve values stricktly implied by rules

Description

Retrieve values stricktly implied by rules
Detects cases where two inequalities imply an equality, e.g. x ≤ 0 and x ≥ 0 implies x = 0.
Also detects straight equalities, e.g. x == 0 implies x = 0. Such cases arise frequently when
manipulating edits by value subsitution or variable elimination. The function recursively detects
equalities and combined inequalities that imply fixed values, substitutes those fixed values and
looks for new implied values until no new values are found.

Usage

impliedValues(E, ...)

S3 method for class 'editmatrix'
impliedValues(E, tol = sqrt(.Machine$double.eps), ...)

Arguments

E editmatrix
... Currently unused
tol Maximum deviation for two values to be considered equal.

Value

Numeric vector, whose names are variable names and values are unique values implied by the rules.

See Also

reduce, substValue, eliminate

is.editrules 53

is.editrules Check object class

Description

Check object class

Usage

is.editset(x)

is.editmatrix(x)

is.editarray(x)

Arguments

x object to be checked

Value

logical

isFeasible Check consistency of set of edits

Description

When variables are eliminated one by one from a set of edits, eventually either no edits are left
or an obvious contradiction is encountered. In the case no records can obey all edits in the set
which is therefore inFeasible.

Usage

isFeasible(E, warn = FALSE)

Arguments

E an editmatrix, editarray or editset

warn logical: should a warning be emitted when system is infeasible?

Value

TRUE or FALSE

54 isObviouslyInfeasible

Note

This function can potentially take a long time to complete, especially when many connected (con-
ditional) edits are present. Consider using blocks to check feasibility of indendent blocks.

See Also

isObviouslyInfeasible, isObviouslyRedundant

isNormalized Check if an editmatrix is normalized

Description

Check if an editmatrix is normalized

Usage

isNormalized(E)

Arguments

E editmatrix

Value

TRUE when all comparison operators of E are in {<,<=,==}

See Also

editmatrix

isObviouslyInfeasible Check for obvious contradictions in a set of edits

Description

Obvious contradictions are edits of the form 1 < 0, or categorical edits defining that a record fails
for any value combination If this function evaluates to TRUE, the set of edits is guaranteed infeasible.
If it evaluates to FALSE this does not garuantee feasibility. See isFeasible for a complete test.

isObviouslyRedundant 55

Usage

isObviouslyInfeasible(E, ...)

S3 method for class 'editmatrix'
isObviouslyInfeasible(E, tol = sqrt(.Machine$double.eps), ...)

S3 method for class 'editarray'
isObviouslyInfeasible(E, ...)

S3 method for class 'editset'
isObviouslyInfeasible(E, ...)

S3 method for class 'editlist'
isObviouslyInfeasible(E, ...)

S3 method for class 'editenv'
isObviouslyInfeasible(E, ...)

Arguments

E An editset, editmatrix, editarray, editlist or editenv

... Arguments to be passed to or from other methods.

tol Tolerance for checking against zero.

Value

A logical for objects of class editset, editarray or editmatrix. A logical vector in the case
of an editlist or editset.

See Also

isObviouslyRedundant, isFeasible

eliminate editmatrix

isObviouslyRedundant Find obvious redundancies in set of edits

Description

Detect simple redundancies such as duplicates or edits of the form 0 < 1 or 0 == 0. For categorical
edits, simple redundancies are edits that define an empty subregion of the space of all possible
records (no record can ever be contained in such a region).

56 isSubset

Usage

isObviouslyRedundant(E, duplicates = TRUE, ...)

S3 method for class 'editmatrix'
isObviouslyRedundant(E, duplicates = TRUE, ...)

S3 method for class 'editarray'
isObviouslyRedundant(E, duplicates = TRUE, ...)

S3 method for class 'editset'
isObviouslyRedundant(E, duplicates = rep(TRUE, 2), ...)

S3 method for class 'editlist'
isObviouslyRedundant(E, duplicates = rep(TRUE, 2), ...)

S3 method for class 'editenv'
isObviouslyRedundant(E, duplicates = rep(TRUE, 2), ...)

Arguments

E An editset, editmatrix, editarray, editlist or editenv

duplicates logical: check for duplicate edits? For an editset, editlist or editenv this
should be a logical 2-vector indicating which of the numerical or categorical
edits should be checked for duplicates.

... parameters to be passed to or from other methods.

Value

logical vector indicating which edits are (obviously) redundant

See Also

isObviouslyInfeasible, isSubset

isSubset Check which edits are dominated by other ones.

Description

An edit defines a subregion of the space of all possible value combinations of a record. Records in
this region are interpreted as invalid. An edit rule which defines a region equal to or contained in
the region defined by another edit is redundant. (In data editing literature, this is often referred to
as a domination relation.)

Usage

isSubset(E)

localizeErrors 57

Arguments

E editarray

Value

logical vector indicating if an edit is a subset of at least one other edit.

localizeErrors Localize errors on records in a data.frame.

Description

For each record in a data.frame, the least (weighted) number of fields is determined which can be
adapted or imputed so that no edit in E is violated. Anymore.

Usage

localizeErrors(
E,
dat,
verbose = FALSE,
weight = rep(1, ncol(dat)),
maxduration = 600,
method = c("bb", "mip", "localizer"),
useBlocks = TRUE,
retrieve = c("best", "first"),
...

)

Arguments

E an object of class editset editmatrix or editarray

dat a data.frame with variables in E.

verbose print progress to screen?

weight Vector of positive weights for every variable in dat, or an array or data.frame
of weights with the same dimensions as dat.

maxduration maximum time for $searchBest() to find the best solution for a single record.

method should errorlocalizer ("bb") or mix integer programming ("mip") be used?

useBlocks DEPRECATED. Process error localization seperatly for independent blocks in E
(always TRUE)?

retrieve Return the first found solution or the best solution? ("bb" method only).

... Further options to be passed to errorLocalizer or errorLocalizer_mip. Specif-
ically, when method='mip', the parameter lpcontrol is a list of options passed
to lpSolveAPI.

58 localizeErrors

Details

For performance purposes, the edits are split in independent blocks which are processed sepa-
rately. Also, a quick vectorized check with checkDatamodel is performed first to exclude variables
violating their one-dimensional bounds from further calculations.

By default, all weights are set equal to one (each variable is considered equally reliable). If a vector
of weights is passed, the weights are assumed to be in the same order as the columns of dat. By
passing an array of weights (of same dimensions as dat) separate weights can be specified for each
record.

In general, the solution to an error localization problem need not be unique, especially when no
weights are defined. In such cases, localizeErrors chooses a solution randomly. See errorLocalizer
for more control options.

Error localization can be performed by the Branch and Bound method of De Waal (2003) (option
method="localizer", the default) or by rewriting the problem as a mixed-integer programming
(MIP) problem (method="mip") which is parsed to the lpsolve library. The former case uses
errorLocalizer and is very reliable in terms of numerical stability, but may be slower in some
cases (see note below). The MIP approach is much faster, but requires that upper and lower bounds
are set on each numerical variable. Sensible bounds are derived automatically (see the vignette on
error localization as MIP), but could cause instabilities in very rare cases.

Value

an object of class errorLocation

Note

As of version 2.8.1 method ’bb’ is not available for conditional numeric (e.g: if (x>0) y>0) or
conditional edits of mixed type (e.g. if (A=='a') x>0).

References

T. De Waal (2003) Processing of Erroneous and Unsafe Data. PhD thesis, University of Rotterdam.

E. De Jonge and Van der Loo, M. (2012) Error localization as a mixed-integer program in editrules
(included with the package)

lp_solve and Kjell Konis. (2011). lpSolveAPI: R Interface for lp_solve version 5.5.2.0. R package
version 5.5.2.0-5. http://CRAN.R-project.org/package=lpSolveAPI

See Also

errorLocalizer

Examples

an editmatrix and some data:
E <- editmatrix(c(

"x + y == z",
"x > 0",
"y > 0",

localizeErrors 59

"z > 0"))

dat <- data.frame(
x = c(1,-1,1),
y = c(-1,1,1),
z = c(2,0,2))

localize all errors in the data
err <- localizeErrors(E,dat)

summary(err)

what has to be adapted:
err$adapt
weight, number of equivalent solutions, timings,
err$status

Not run

Demonstration of verbose processing
construct 2-block editmatrix
F <- editmatrix(c(

"x + y == z",
"x > 0",
"y > 0",
"z > 0",
"w > 10"))

Using 'dat' as defined above, generate some extra records
dd <- dat
for (i in 1:5) dd <- rbind(dd,dd)
dd$w <- sample(12,nrow(dd),replace=TRUE)

localize errors verbosely
(err <- localizeErrors(F,dd,verbose=TRUE))

printing is cut off, use summary for an overview
summary(err)

or plot (not very informative in this artificial example)
plot(err)

End(Not run)

for (d in dir("../pkg/R",full.names=TRUE)) dmp <- source(d)
Example with different weights for each record
E <- editmatrix('x + y == z')
dat <- data.frame(

x = c(1,1),
y = c(1,1),
z = c(1,1))

At equal weights, both records have three solutions (degeneracy): adapt x, y

60 localizeErrors

or z:
localizeErrors(E,dat)$status

Set different weights per record (lower weight means lower reliability):
w <- matrix(c(

1,2,2,
2,2,1),nrow=2,byrow=TRUE)

localizeErrors(E,dat,weight=w)

an example with categorical variables
E <- editarray(expression(

age %in% c('under aged','adult'),
maritalStatus %in% c('unmarried','married','widowed','divorced'),
positionInHousehold %in% c('marriage partner', 'child', 'other'),
if(age == 'under aged') maritalStatus == 'unmarried',
if(maritalStatus %in% c('married','widowed','divorced'))

!positionInHousehold %in% c('marriage partner','child')
)

)
E

#
dat <- data.frame(

age = c('under aged','adult','adult'),
maritalStatus=c('married','unmarried','widowed'),
positionInHousehold=c('child','other','marriage partner')

)
dat
localizeErrors(E,dat)
the last record of dat has 2 degenerate solutions. Running the last command
a few times demonstrates that one of those solutions is chosen at random.

Increasing the weight of 'positionInHousehold' for example, makes the best
solution unique again
localizeErrors(E,dat,weight=c(1,1,2))

an example with mixed data:

E <- editset(expression(
x + y == z,
2*u + 0.5*v == 3*w,
w >= 0,
if (x > 0) y > 0,
x >= 0,
y >= 0,
z >= 0,
A %in% letters[1:4],
B %in% letters[1:4],
C %in% c(TRUE,FALSE),
D %in% letters[5:8],

nedits 61

if (A %in% c('a','b')) y > 0,
if (A == 'c') B %in% letters[1:3],
if (!C == TRUE) D %in% c('e','f')

))

set.seed(1)
dat <- data.frame(

x = sample(-1:8),
y = sample(-1:8),
z = sample(10),
u = sample(-1:8),
v = sample(-1:8),
w = sample(10),
A = sample(letters[1:4],10,replace=TRUE),
B = sample(letters[1:4],10,replace=TRUE),
C = sample(c(TRUE,FALSE),10,replace=TRUE),
D = sample(letters[5:9],10,replace=TRUE),
stringsAsFactors=FALSE

)

(el <-localizeErrors(E,dat,verbose=TRUE))

nedits Number of edits Count the number of edits in a collection of edits.

Description

Number of edits Count the number of edits in a collection of edits.

Usage

nedits(E)

Arguments

E editset, editarray or editmatrix

62 normalize

normalize Normalizes an editmatrix

Description

An set of linear edits of the form a · x� b with is called normalized when all � ∈ {==,≤, <}

Usage

normalize(E)

Arguments

E editmatrix

Value

If E was normalized, the original editmatrix is returned, otherwise a new normalized editmatrix will
be returned

See Also

editmatrix

Examples

E <- editmatrix(c("x+3*y == 2*z"
, "x > 2")
)

print(E)

get editrules, useful for storing and maintaining the rules external from your script
as.data.frame(E)

get coeficient matrix of inequalities
getA(E)

get augmented matrix of linear edit set
getAb(E)

get constants of inequalities (i.e. c(0, 2))
getb(E)

get operators of inequalities (i.e. c("==",">"))
getOps(E)

get variables of inequalities (i.e. c("x","y","z"))
getVars(E)

reduce 63

isNormalized
isNormalized(E)

#normalized E
E <- normalize(E)
E

is het now normalized?
isNormalized(E)

reduce Remove redundant variables and edits.

Description

Remove variables which are not contained in any edit and remove edits which are obviously
redundant.

Usage

reduce(E, ...)

S3 method for class 'editmatrix'
reduce(E, tol = sqrt(.Machine$double.eps), ...)

S3 method for class 'editarray'
reduce(E, ...)

S3 method for class 'editset'
reduce(E, ...)

Arguments

E editmatrix or editarray

... arguments to pass to other methods

tol elements of E with absolute value < tol are considered 0.

See Also

contains, eliminate, substValue

64 separate

separate Separate an editset into its disconnected blocks and simplify

Description

The input edits are separated into disjunct blocks, and simplified to editmatrix or editarray
where possible. Remaining editsets are separated into disjunct editlists.

Usage

separate(E)

Arguments

E An editset

Value

A list where each element is either an editmatrix, an editarray or an object of class editlist
which cannot be simplified further.

References

M. van der Loo and De Jonge, E. (2012). Manipulation of conditional restrictions and error lo-
calization with the editrules package. Discussion paper 2012xx, Statistics Netherlands, The Hague
(included with the package).

See Also

blocks, disjunct, condition

Examples

E <- editset(expression(
x + y == z,
2*u + 0.5*v == 3*w,
w >= 0,
if (x > 0) y > 0,
x >= 0,
y >= 0,
z >= 0,
A %in% letters[1:4],
B %in% letters[1:4],
C %in% c(TRUE,FALSE),
D %in% letters[5:8],
if (A %in% c('a','b')) y > 0,
if (A == 'c') B %in% letters[1:3],

substValue 65

if (!C == TRUE) D %in% c('e','f')
))

(L <- separate(E))

sapply(L,class)

substValue Replace a variable by a value in a set of edits.

Description

Replace a variable by a value in a set of edits.

Usage

substValue(E, var, value, ...)

S3 method for class 'editmatrix'
substValue(E, var, value, reduce = FALSE, removeredundant = TRUE, ...)

S3 method for class 'editarray'
substValue(E, var, value, reduce = FALSE, ...)

S3 method for class 'editset'
substValue(E, var, value, simplify = TRUE, ...)

S3 method for class 'editlist'
substValue(E, var, value, ...)

S3 method for class 'editenv'
substValue(E, var, value, ...)

Arguments

E editset, editmatrix, editarray, editlist or editenv

var character with name(s) of variable(s) to substitute

value vector with value(s) of variable(s)

... arguments to be passed to or from other methods

66 substValue

reduce logical should the result be simplified? For editmatrix this has the same
effect as calling the function reduce. For editarray, the datamodel of the
substituted variable is reduced to a single value, and the variable itself is not
removed.

removeredundant

logical. Should empty rows be removed?

simplify Simplify editset by moving logical edits containing a single numerical statement
to the pure numerical part? (This is mostly for internal purposes and overwriting
the default should normally not be necessary for package users).

Value

E, with variables replaced by values

Note

At the moment, objects of class editenv are converted to list prior to processing (so no perfor-
mance is gained there) and reconverted afterwards.

References

Value substitution is extensively described in the package vignettes.

See Also

eliminate

Examples

E <- editmatrix(expression(
x + y == z,
2*y < 10,
3*x + 1.5*u < 7,
z >= 0
)

)

single value
substValue(E,'z',10)
multiple values
substValue(E,c('x','y'),c(1,3))
remove substituted variable from edits
substValue(E,'z',10,reduce=TRUE)
do not remove redundant row:
substValue(E,'z',10,removeredundant=FALSE)

example with an editset
E <- editset(expression(

violatedEdits 67

x + y == z,
x >= 0,
y >= 0,
A %in% c('a1','a2'),
B %in% c('b1','b2'),
if (x > 0) y > 0,
if (y > 0) x > 0,
if (A == 'a') B == 'b',
if (A == 'b') y > 3
)

)

substitute pure numerical variable
substValue(E,'z',10)
substitute pure categorical variable
substValue(E,'A','a1')
substitute variable appearing in logical constraints
substValue(E,'x',3)

violatedEdits Check data against constraints

Description

Determine which record violates which edits. Returns NA when edits cannot be checked because of
missing values in the data.

• For rules of the form Ax == b |Ax - b| <= tol is returned.

• For rules of the form Ax < b, Ax - b < tol is returned.

• For rules of the form Ax <= b Ax- b <= tol is returned.

For numerical records, the default tolerance is 0. When working with doubles, the square root of
machina accuracy is a resonable alternative (sqrt(.Machine\$double.eps)). The editmatrix is
normalized before checks are performed.

Usage

violatedEdits(E, dat, ...)

S3 method for class 'character'
violatedEdits(E, dat, name = NULL, ...)

S3 method for class 'editmatrix'
violatedEdits(E, dat, tol = 0, ...)

68 violatedEdits

S3 method for class 'editarray'
violatedEdits(E, dat, datamodel = TRUE, ...)

S3 method for class 'editset'
violatedEdits(E, dat, datamodel = TRUE, ...)

S3 method for class 'violatedEdits'
plot(x, topn = min(10, ncol(x)), ...)

S3 method for class 'violatedEdits'
summary(object, E = NULL, minfreq = 1, ...)

S3 method for class 'violatedEdits'
as.data.frame(x, ...)

Arguments

E character vector with constraintsm, editset, editmatrix or editarray.

dat data.frame with data that should be checked, if a named vector is supplied it
will converted internally to a data.frame

... further arguments that can be used by methods implementing this generic func-
tion

name name of edits

tol tolerance to check rules against.

datamodel Also check against datamodel?

x violatedEdits object.

topn Top n edits to be plotted.

object violatedEdits object

minfreq minimum freq for edit to be printed

Value

An object of class violatedEdits, which is a logical nrow(dat)Xnedits(E) matrix with an extra
class attribute for overloading purposes.

Note

When summarizing an object of class violatedEdits, every empty value is counted as one edit
violation when counting violations per record.

See Also

checkDatamodel

violatedEdits 69

Examples

Using character vector to define contraints
E <- editmatrix(c("x+3*y==2*z"

, "x==z"
)

)

dat <- data.frame(x = c(0,2,1)
, y = c(0,0,1)
, z = c(0,1,1)
)

print(dat)

ve <- violatedEdits(E,dat)

print(ve)
summary(ve, E)
plot(ve)

An example with categorical data:

E <- editarray(expression(
gender %in% c('male','female'),
pregnant %in% c(TRUE, FALSE),
if(gender == 'male') !pregnant
)

)
print(E)

dat <- data.frame(
gender=c('male','male','female','cylon'),
pregnant=c(TRUE,FALSE,TRUE,TRUE)

)

print(dat)
Standard, the datamodel is checked as well,
violatedEdits(E,dat)

but we may turn this of
violatedEdits(E,dat,datamodel=FALSE)

Index

∗ data
edits, 29

adjacency, 3, 25
as.character.editarray (editarray), 16
as.character.editmatrix (editmatrix), 20
as.character.editset (editset), 29
as.data.frame.editarray (editarray), 16
as.data.frame.editmatrix (editmatrix),

20
as.data.frame.editset (editset), 29
as.data.frame.violatedEdits

(violatedEdits), 67
as.editmatrix, 7, 21
as.editset, 8
as.expression.editarray (editarray), 16
as.expression.editmatrix (editmatrix),

20
as.igraph, 25, 29
as.igraph.editarray (adjacency), 3
as.igraph.editmatrix (adjacency), 3
as.igraph.editset (adjacency), 3
as.lp.mip, 8
as.matrix.editarray (editarray), 16
as.matrix.editmatrix, 47
as.matrix.editmatrix (editmatrix), 20
as.mip, 8, 9

backtracker, 9, 37
blockIndex (blocks), 11
blocks, 11, 14, 17, 28, 45, 54, 58, 64

c.editarray (editarray), 16
c.editmatrix (editmatrix), 20
c.editset (editset), 29
character, 68
checkDatamodel, 12, 14, 37, 38, 41, 42, 58, 68
choicepoint (backtracker), 9
condition, 13, 14, 64
contains, 17, 21, 30, 32, 63

data.frame, 16
datamodel, 13
disjunct, 13, 14, 29, 30, 64
duplicated, 28

echelon, 15
editarray, 4, 5, 12, 13, 16, 19, 23, 28, 29, 33,

36, 37, 40, 45, 51, 53, 55–57, 61,
63–66, 68

editenv, 55, 56, 65, 66
editfile, 16, 17, 19, 21, 28, 30
editlist, 33, 36, 55, 56, 64, 65
editlists, 64
editmatrices, 29
editmatrix, 4, 5, 7, 8, 11–13, 15, 17, 19, 20,

23, 24, 28, 33, 36, 40, 46–51, 53–57,
61–66, 68

editnames, 22
editrules (editrules_package), 27
editrules-package (editrules_package),

27
editrules.plotting, 17, 21, 23, 29, 30
editrules_package, 27
edits, 29
editset, 4, 5, 12–15, 17, 19, 23, 28, 29, 30,

33, 36, 37, 40, 51, 53, 55–57, 61, 64,
65, 68

editsets, 64
editType, 32
eliminate, 16, 17, 21, 28, 30, 32, 49, 52, 55,

63, 66
eliminated, 37, 53
errorLocalizer, 28, 35, 40, 41, 57, 58
errorLocalizer_mip, 38, 40, 57
errorLocation, 13, 41, 41, 58

generateEdits, 17, 29, 33, 45
getA, 21, 45, 51
getAb, 21, 47, 51
getb, 21, 48, 51

70

INDEX 71

getH, 33, 49
geth (getH), 49
getOps, 21, 50, 51
getVars, 17, 21, 30, 51
graph.adjacency, 5

impliedValues, 52
is.editarray, 17
is.editarray (is.editrules), 53
is.editmatrix, 21
is.editmatrix (is.editrules), 53
is.editrules, 53
is.editset, 30
is.editset (is.editrules), 53
isFeasible, 17, 21, 28, 30, 53, 54, 55
isNormalized, 54
isObviouslyInfeasible, 33, 54, 54, 56
isObviouslyRedundant, 33, 54, 55, 55
isSubset, 17, 56, 56

localizeErrors, 13, 17, 21, 28, 30, 37, 38,
41, 42, 57

lp.control, 40

make.lp, 8

nedits, 61
normalize, 21, 62
normalized, 67

plot.editarray, 5
plot.editarray (editrules.plotting), 23
plot.editmatrix, 5
plot.editmatrix (editrules.plotting), 23
plot.editset, 5
plot.editset (editrules.plotting), 23
plot.errorLocation (errorLocation), 41
plot.violatedEdits (violatedEdits), 67

reduce, 28, 52, 63, 66

separate, 13, 14, 29, 64
str.editmatrix (editmatrix), 20
substValue, 16, 17, 21, 28, 30, 33, 52, 63, 65
summary, 45
summary.editarray (editarray), 16
summary.editmatrix (editmatrix), 20
summary.editset (editset), 29
summary.errorLocation (errorLocation),

41

summary.violatedEdits (violatedEdits),
67

violatedEdits, 17, 21, 28, 30, 38, 67

	adjacency
	as.editmatrix
	as.editset
	as.lp.mip
	as.mip
	backtracker
	blocks
	checkDatamodel
	condition
	datamodel
	disjunct
	echelon
	editarray
	editfile
	editmatrix
	editnames
	editrules.plotting
	editrules_package
	edits
	editset
	editType
	eliminate
	errorLocalizer
	errorLocalizer_mip
	errorLocation
	generateEdits
	getA
	getAb
	getb
	getH
	getOps
	getVars
	impliedValues
	is.editrules
	isFeasible
	isNormalized
	isObviouslyInfeasible
	isObviouslyRedundant
	isSubset
	localizeErrors
	nedits
	normalize
	reduce
	separate
	substValue
	violatedEdits
	Index

