
Package ‘ecpc’
February 27, 2023

Type Package

Title Flexible Co-Data Learning for High-Dimensional Prediction

Version 3.1.1

Date 2023-02-27

Author Mirrelijn M. van Nee [aut, cre],
Lodewyk F.A. Wessels [aut],
Mark A. van de Wiel [aut]

Maintainer Mirrelijn M. van Nee <m.vannee@amsterdamumc.nl>

Depends R (>= 3.5.0)

Imports glmnet, stats, Matrix, gglasso, mvtnorm, CVXR, multiridge (>=
1.5), survival, pROC, mgcv, pracma, JOPS, quadprog, checkmate

Suggests Rsolnp, expm, foreach, doParallel, parallel, ggplot2, ggraph,
igraph, ggpubr, scales, dplyr, magrittr, nnls

Description Fit linear, logistic and Cox survival regression models penalised with adaptive multi-
group ridge penalties.
The multi-group penalties correspond to groups of covariates defined by (multiple) co-
data sources.
Group hyperparameters are estimated with an empirical Bayes method of moments, pe-
nalised with an extra level of hyper shrinkage.
Various types of hyper shrinkage may be used for various co-data.
Co-data may be continuous or categorical.
The method accommodates inclusion of unpenalised covariates, posterior selection of covari-
ates and multiple data types.
The model fit is used to predict for new samples.
The name 'ecpc' stands for Empirical Bayes, Co-data learnt, Prediction and Covariate selection.
See Van Nee et al. (2020) <arXiv:2005.04010>.

License GPL (>= 3)

URL http://dx.doi.org/10.1002/sim.9162

RoxygenNote 7.2.0

NeedsCompilation no

Repository CRAN

Date/Publication 2023-02-27 21:12:30 UTC

1

https://arxiv.org/abs/2005.04010
http://dx.doi.org/10.1002/sim.9162

2 ecpc-package

R topics documented:
ecpc-package . 2
coef.ecpc . 4
createCon . 6
createGroupset . 7
createS . 10
createZforGroupset . 11
createZforSplines . 12
cv.ecpc . 13
ecpc . 14
hierarchicalLasso . 22
obtainHierarchy . 23
plot.ecpc . 24
postSelect . 26
predict.ecpc . 28
print.ecpc . 30
produceFolds . 32
simDat . 33
splitMedian . 34
visualiseGroupset . 35
visualiseGroupsetweights . 36
visualiseGroupweights . 37

Index 39

ecpc-package Flexible Co-Data Learning for High-Dimensional Prediction

Description

Fit linear, logistic and Cox survival regression models penalised with adaptive multi-group ridge
penalties. The multi-group penalties correspond to groups of covariates defined by (multiple) co-
data sources. Group hyperparameters are estimated with an empirical Bayes method of moments,
penalised with an extra level of hyper shrinkage. Various types of hyper shrinkage may be used for
various co-data. Co-data may be continuous or categorical. The method accommodates inclusion
of unpenalised covariates, posterior selection of covariates and multiple data types. The model fit
is used to predict for new samples. The name ’ecpc’ stands for Empirical Bayes, Co-data learnt,
Prediction and Covariate selection. See Van Nee et al. (2020) <arXiv:2005.04010>.

Details

The DESCRIPTION file:

Package: ecpc
Type: Package
Title: Flexible Co-Data Learning for High-Dimensional Prediction
Version: 3.1.1

ecpc-package 3

Date: 2023-02-27
Authors@R: c(person(c("Mirrelijn","M."), "van Nee", role = c("aut", "cre"), email = "m.vannee@amsterdamumc.nl"), person(c("Lodewyk","F.A."), "Wessels", role = "aut"), person(c("Mark","A."), "van de Wiel", role = "aut"))
Author: Mirrelijn M. van Nee [aut, cre], Lodewyk F.A. Wessels [aut], Mark A. van de Wiel [aut]
Maintainer: Mirrelijn M. van Nee <m.vannee@amsterdamumc.nl>
Depends: R (>= 3.5.0)
Imports: glmnet, stats, Matrix, gglasso, mvtnorm, CVXR, multiridge (>= 1.5), survival, pROC, mgcv, pracma, JOPS, quadprog, checkmate
Suggests: Rsolnp, expm, foreach, doParallel, parallel, ggplot2, ggraph, igraph, ggpubr, scales, dplyr, magrittr, nnls
Description: Fit linear, logistic and Cox survival regression models penalised with adaptive multi-group ridge penalties. The multi-group penalties correspond to groups of covariates defined by (multiple) co-data sources. Group hyperparameters are estimated with an empirical Bayes method of moments, penalised with an extra level of hyper shrinkage. Various types of hyper shrinkage may be used for various co-data. Co-data may be continuous or categorical. The method accommodates inclusion of unpenalised covariates, posterior selection of covariates and multiple data types. The model fit is used to predict for new samples. The name ’ecpc’ stands for Empirical Bayes, Co-data learnt, Prediction and Covariate selection. See Van Nee et al. (2020) <arXiv:2005.04010>.
License: GPL (>= 3)
URL: http://dx.doi.org/10.1002/sim.9162
RoxygenNote: 7.2.0

Index of help topics:

coef.ecpc Obtain coefficients from 'ecpc' object
createCon Create a list of constraints for co-data weight

estimation
createGroupset Create a group set (groups) of variables
createS Create a generalised penalty matrix
createZforGroupset Create a co-data matrix Z for a group set
createZforSplines Create a co-data matrix Z of splines
cv.ecpc Cross-validation for 'ecpc'
ecpc Fit adaptive multi-group ridge GLM with

hypershrinkage
ecpc-package Flexible Co-Data Learning for High-Dimensional

Prediction
hierarchicalLasso Fit hierarchical lasso using LOG penalty
obtainHierarchy Obtain hierarchy
plot.ecpc Plot an 'ecpc' object
postSelect Perform posterior selection
predict.ecpc Predict for new samples for 'ecpc' object
print.ecpc Print summary of 'ecpc' object
produceFolds Produce folds
simDat Simulate data
splitMedian Discretise continuous data in multiple

granularities
visualiseGroupset Visualise a group set
visualiseGroupsetweights

Visualise estimated group set weights
visualiseGroupweights Visualise estimated group weights

See ecpc for example code.

Author(s)

Mirrelijn M. van Nee [aut, cre], Lodewyk F.A. Wessels [aut], Mark A. van de Wiel [aut]

Maintainer: Mirrelijn M. van Nee <m.vannee@amsterdamumc.nl>

4 coef.ecpc

coef.ecpc Obtain coefficients from ’ecpc’ object

Description

Obtain regression coefficients or penalties from an existing model fit given in an ’ecpc’ object,
re-estimate regression coefficients for a given ’ecpc’ object and ridge penalties, or obtain ridge
penalties for given prior parameters and co-data.

Usage

S3 method for class 'ecpc'
coef(object, penalties = NULL,

X = NULL, Y = NULL,
unpen = NULL, intrcpt = TRUE,
model = c("linear", "logistic", "cox"),
est_beta_method = c("glmnet", "multiridge"), ...)

penalties(object, tauglobal=NULL, sigmahat=NULL, gamma=NULL, gamma0=NULL, w=NULL,
Z=NULL, groupsets=NULL,
unpen=NULL, datablocks=NULL)

Arguments

object An ’ecpc’ object returned by ecpc.

penalties Ridge penalties; p-dimensional vector. If provided to coef.ecpc, ’X’ and ’Y’
should be provided too.

tauglobal Estimated global prior variance; scalar (or vector with datatype-specific global
prior variances when multiple ‘datablocks’ are given).) If provided to penalties,
’Z’ or ’groupsets’ should be provided too.

sigmahat (linear model) Estimated sigma^2. If provided to penalties, ’Z’ or ’groupsets’
should be provided too.

gamma Estimated co-data variable weights; vector of dimension the total number of
groups. If provided to penalties, ’Z’ or ’groupsets’ should be provided too.

gamma0 Estimated co-data variable intercept; scalar. If provided to penalties, ’Z’ or
’groupsets’ should be provided too.

w Estimated group set weights; m-dimensional vector. If provided to penalties,
’Z’ or ’groupsets’ should be provided too.

X Observed data; (nxp)-dimensional matrix (p: number of covariates) with each
row the observed high-dimensional feature vector of a sample.

Y Response data; n-dimensional vector (n: number of samples) for linear and lo-
gistic outcomes, or Surv object for Cox survival.

Z List with m co-data matrices. Each element is a (pxG)-dimensional co-data
matrix containing co-data on the p variables. Co-data should either be provided
in ‘Z’ or ‘groupsets’.

coef.ecpc 5

groupsets Co-data group sets; list with m (m: number of group sets) group sets. Each
group set is a list of all groups in that set. Each group is a vector containing the
indices of the covariates in that group.

unpen Unpenalised covariates; vector with indices of covariates that should not be pe-
nalised.

intrcpt Should an intercept be included? Included by default for linear and logistic,
excluded for Cox for which the baseline hazard is estimated.

model Type of model for the response; linear, logistic or cox.
est_beta_method

Package used for estimating regression coefficients, either "glmnet" or "multi-
ridge".

datablocks (optional) for multiple data types, the corresponding blocks of data may be given
in datablocks; a list of B vectors of the indices of covariates in ‘X’ that belong to
each of the B data blocks. Unpenalised covariates should not be given as seper-
ate block, but can be omitted or included in blocks with penalised covariates.
Each datatype obtains a datatype-specific ‘tauglobal’ as in multiridge.

... Other parameters

Value

For coef.ecpc, a list with:

intercept If included, the estimated intercept; scalar.

beta Estimated regression coefficients; p-dimensional vector.

For penalties: a p-dimensional vector with ridge penalties.

See Also

penalties for obtaining penalties for given prior parameters and co-data.

Examples

#####################
Simulate toy data
#####################
p<-300 #number of covariates
n<-100 #sample size training data set
n2<-100 #sample size test data set

#simulate all betas i.i.d. from beta_k~N(mean=0,sd=sqrt(0.1)):
muBeta<-0 #prior mean
varBeta<-0.1 #prior variance
indT1<-rep(1,p) #vector with group numbers all 1 (all simulated from same normal distribution)

#simulate test and training data sets:
Dat<-simDat(n,p,n2,muBeta,varBeta,indT1,sigma=1,model='linear')
str(Dat) #Dat contains centered observed data, response data and regression coefficients

6 createCon

###################
Provide co-data
###################
continuousCodata <- abs(Dat$beta)
Z1 <- cbind(continuousCodata,sqrt(continuousCodata))

#setting 2: splines for informative continuous
Z2 <- createZforSplines(values=continuousCodata)
S1.Z2 <- createS(orderPen=2, G=dim(Z2)[2]) #create difference penalty matrix
Con2 <- createCon(G=dim(Z2)[2], shape="positive+monotone.i") #create constraints

#setting 3: 5 random groups
G <- 5
categoricalRandom <- as.factor(sample(1:G,p,TRUE))
#make group set, i.e. list with G groups:
groupsetRandom <- createGroupset(categoricalRandom)
Z3 <- createZforGroupset(groupsetRandom,p=p)
S1.Z3 <- createS(G=G, categorical = TRUE) #create difference penalty matrix
Con3 <- createCon(G=dim(Z3)[2], shape="positive") #create constraints

#fit ecpc for the three co-data matrices with following penalty matrices and constraints
#note: can also be fitted without paraPen and/or paraCon
Z.all <- list(Z1=Z1,Z2=Z2,Z3=Z3)
paraPen.all <- list(Z2=list(S1=S1.Z2), Z3=list(S1=S1.Z3))
paraCon <- list(Z2=Con2, Z3=Con3)

############
Fit ecpc
############
tic<-proc.time()[[3]]
fit <- ecpc(Y=Dat$Y,X=Dat$Xctd,

Z = Z.all, paraPen = paraPen.all, paraCon = paraCon,
model="linear",maxsel=c(5,10,15,20),
Y2=Dat$Y2,X2=Dat$X2ctd)

toc <- proc.time()[[3]]-tic

#estimate coefficients for twice as large penalties
new_coefficients <- coef(fit, penalties=fit$penalties*2, X=Dat$Xctd, Y=Dat$Y)

#change some prior parameters and find penalties
gamma2 <- fit$gamma; gamma2[1:3] <- 1:3
new_penalties <- penalties(fit, gamma=gamma2, Z=Z.all)
new_coefficients2 <- coef(fit, penalties=new_penalties, X=Dat$Xctd, Y=Dat$Y)

createCon Create a list of constraints for co-data weight estimation

createGroupset 7

Description

Create a list of constraints to be used by ecpc in estimating G co-data weights. Combine constraints
with p-splines to estimate shape-constrained functions, e.g. positive, monotone increasing and/or
convex functions.

Usage

createCon(G, shape = "positive+monotone.i+convex")

Arguments

G Number of co-data weights that should be estimated subject to constraints.

shape Common type of shapes, including ‘positive’, ’monotone.i’ (’monotone.d’) for
monotonically increasing (decreasing), ’convex’ (’concave’), or any combina-
tion thereof by attaching multiple with a ’+’ sign.

Value

A list of the form list(M.ineq = M.ineq, b.ineq = b.ineq) with the matrix M.ineq and vector
b.ineq containing the inequality constraints corresponding to the given shape.

See Also

The relation between the prior variance and co-data may be estimated with a shape-constrained
spline, see createZforSplines and createS for creating a spline basis and difference penalty
matrix for a co-data variable. See ecpc for an example.

Examples

#create constraints for positivity
Con1 <- createCon(G=10, shape="positive")
#create constraints for positive and monotonically increasing weights
Con2 <- createCon(G=10, shape="positive+monotone.i")

createGroupset Create a group set (groups) of variables

Description

Create a group set (groups) of variables for categorical co-data (factor, character or boolean input),
or for continuous co-data (numeric). Continuous co-data is discretised in non-overlapping groups.

Usage

createGroupset(values,index=NULL,grsize=NULL,ngroup=10,
decreasing=TRUE,uniform=FALSE,minGroupSize = 50)

8 createGroupset

Arguments

values Factor, character or boolean vector for categorical co-data, or numeric vector for
continuous co-data values.

index Index of the covariates corresponding to the values supplied. Useful if part of
the co-data is missing/seperated and only the non-missing/remaining part should
be discretised.

grsize Numeric. Size of the groups. Only relevant when values is a numeric vector
and uniform=TRUE.

ngroup Numeric. Number of the groups to create. Only relevant when values is a
numeric vector and grsize is NOT specified.

decreasing Boolean. If TRUE then values is sorted in decreasing order.

uniform Boolean. If TRUE the group sizes are as equal as possible.

minGroupSize Numeric. Minimum group size. Only relevant when values is a numeric vector
and uniform=FALSE.

Details

This function is derived from CreatePartition from the GRridge-package, available on Biocon-
ductor. Note that the function name and some variable names have been adapted to match terminol-
ogy used in other functions in the ecpc-package.

A convenience function to create group sets of variables from external information that is stored
in values. If values is a factor then the levels of the factor define the groups. If values is a
character vector then the unique names in the character vector define the groups. If values is a
Boolean vector then the group set consists of two groups for True and False. If values is a numeric
vector, then groups contain the variables corresponding to grsize consecutive values of values.
Alternatively, the group size is determined automatically from ngroup. If uniform=FALSE, a group
with rank r is of approximate size mingr*(r^f), where f>1 is determined such that the total
number of groups equals ngroup. Such unequal group sizes enable the use of fewer groups (and
hence faster computations) while still maintaining a good ‘resolution’ for the extreme values in
values. About decreasing: if smaller values mean ‘less relevant’ (e.g. test statistics, absolute
regression coefficients) use decreasing=TRUE, else use decreasing=FALSE, e.g. for p-values. If
index is defined, then the group set will use these variable indices corresponding to the values.
Useful if the group set should be made for a subset of all variables.

Value

A list with elements that contain the indices of the variables belonging to each of the groups.

Author(s)

Mark A. van de Wiel

See Also

Instead of discretising continuous co-data in a a fixed number of groups, they may be discretised
adaptively to learn a discretisation that fits the data well, see: splitMedian.

createGroupset 9

Examples

#SOME EXAMPLES ON SMALL NR OF VARIABLES

#EXAMPLE 1: group set based on known gene signature (boolean vector)
genset <- sapply(1:100,function(x) paste("Gene",x))
signature <- sapply(seq(1,100,by=2),function(x) paste("Gene",x))
SignatureGroupset <- createGroupset(genset%in%signature) #boolean vector

#EXAMPLE 2: group set based on factor variable
Genetype <- factor(sapply(rep(1:4,25),function(x) paste("Type",x)))
TypeGroupset <- createGroupset(Genetype)

#EXAMPLE 3: group set based on continuous variable, e.g. p-value
pvals <- rbeta(100,1,4)

#Creating a group set of 10 equally-sized groups, corresponding to increasing p-values.
PvGroupset <- createGroupset(pvals, decreasing=FALSE,uniform=TRUE,ngroup=10)

#Alternatively, create a group set of 5 unequally-sized groups,
#with minimal size at least 10. Group size
#increases with less relevant p-values.
Recommended when nr of variables is large.
PvGroupset2 <- createGroupset(pvals, decreasing=FALSE,uniform=FALSE,

ngroup=5,minGroupSize=10)

#EXAMPLE 4: group set based on subset of variables,
#e.g. p-values only available for 50 genes.
genset <- sapply(1:100,function(x) paste("Gene",x))
subsetgenes <- sort(sapply(sample(1:100,50),function(x) paste("Gene",x)))
index <- which(genset%in%subsetgenes)

pvals50 <- rbeta(50,1,6)

#Returns the group set for the subset based on the indices of
#the variables in entire genset.

PvGroupsetSubset <- createGroupset(pvals50, index=index,
decreasing=FALSE,uniform=TRUE, ngroup=5)

#append list with group containing the covariate indices for missing p-values
PvGroupsetSubset <- c(PvGroupsetSubset,

list("missing"=which(!(genset%in%subsetgenes))))

#EXAMPLE 5: COMBINING GROUP SETS

#Combines group sets into one list with named components.
#This can be used as input for the ecpc() function.

GroupsetsAll <- list(signature=SignatureGroupset, type = TypeGroupset,
pval = PvGroupset, pvalsubset=PvGroupsetSubset)

#NOTE: if one aims to use one group set only, then this should also be
provided in a list as input for the ecpc() function.

10 createS

GroupsetsOne <- list(signature=SignatureGroupset)

createS Create a generalised penalty matrix

Description

Create a generalised penalty matrix which can be used as hypershrinkage for co-data matrix Z.

Usage

createS(orderPen=2, G=10, categorical=FALSE)

Arguments

orderPen The order of the difference penalty. If 0, then a ridge penalty matrix is returned.

G Number of co-data variables to be penalised.

categorical If TRUE, a block correlation matrix is returned.

Value

A (GxG)-dimensional penalty matrix.

References

See for an introduction on p-splines and difference penalties:

Eilers, P. H., & Marx, B. D. (2021). Practical Smoothing: The Joys of P-splines. Cambridge
University Press.

See Also

A difference penalty may be applied for p-spline basis functions created with createZforSplines
or for categorical co-data created with createZforGroupset.

Examples

S1 <- createS(orderPen=2,G=10) #second difference penalty matrix
S2 <- createS(orderPen=0,G=10) #zeroth order defined as ridge penalty matrix
S3 <- createS(G=10,categorical=TRUE) #difference penalty for unordered categorical groups

createZforGroupset 11

createZforGroupset Create a co-data matrix Z for a group set

Description

Create a co-data matrix Z for a group set as obtained for instance with createGroupset.

Usage

createZforGroupset(groupset,p=NULL)

Arguments

groupset A list with G elements that contain the indices of the variables belonging to each
of the groups.

p Number of covariates in total. If not given, taken as maximum index in ‘groupset’.
But in cases where some covariates are left unpenalised, the total number of co-
variates may be larger.

Value

A (pxG)-dimensional co-data matrix.

See Also

createGroupset

Examples

#Group set: G random groups
G <- 5 #number of groups
p <- 300 #number of covariates from which last 10 left unpenalised
#sample random categorical co-data:
categoricalRandom <- as.factor(sample(1:G,(p-10),TRUE))
#make group set, i.e. list with G groups
groupsetRandom <- createGroupset(categoricalRandom)
Zcat <- createZforGroupset(groupsetRandom,p=p)

12 createZforSplines

createZforSplines Create a co-data matrix Z of splines

Description

Create a co-data matrix Z of spline basis functions for a continuous co-data variable.

Usage

createZforSplines(values, G=10, bdeg=3, index=NULL, p=NULL)

Arguments

values A vector with continuous co-data values.

G Number of B-splines.

bdeg Degree of the B-spline basis functions.

index Index of the covariates corresponding to the values supplied. Useful when part
of the co-data is missing/seperated and only the non-missing/remaining part
should be modelled with splines.

p Number of covariates in total. If not given, taken as length of ‘values’. But in
cases where some covariates are left unpenalised, the total number of covariates
may be larger.

Value

A (pxG)-dimensional co-data matrix.

References

See for an introduction on p-splines:

Eilers, P. H., & Marx, B. D. (2021). Practical Smoothing: The Joys of P-splines. Cambridge
University Press.

See Also

Use createS to create a difference penalty for p-splines.

Examples

#create co-data with random normally distributed values for 100 covariates
values <- rnorm(n=100)
#suppose that there is one additional covariate (the first) that should not be modelled
ind <- 2:101
p<-101
Z <- createZforSplines(values=values,G=10,index=ind,p=p)

cv.ecpc 13

cv.ecpc Cross-validation for ’ecpc’

Description

Cross-validates ’ecpc’ and returns model fit, summary statistics and cross-validated performance
measures.

Usage

cv.ecpc(Y,X,type.measure=c("MSE","AUC"),outerfolds=10,
lambdas=NULL,ncores=1,balance=TRUE,silent=FALSE,...)

Arguments

Y Response data; n-dimensional vector (n: number of samples) for linear and lo-
gistic outcomes, or Surv object for Cox survival.

X Observed data; (nxp)-dimensional matrix (p: number of covariates) with each
row the observed high-dimensional feature vector of a sample.

type.measure Type of cross-validated performance measure returned.

outerfolds Number of cross-validation folds.

lambdas A vector of global ridge penalties for each fold; may be given, else estimated.

ncores Number of cores; if larger than 1, the outer cross-validation folds are processed
in parallel over ’ncores’ clusters.

balance (logistic, Cox) Should folds be balanced in response?

silent Should output messages be suppressed (default FALSE)?

... Additional arguments used in ecpc.

Value

A list with the following elements:

ecpc.fit List with the ecpc model fit in each fold.

dfPred Data frame with information about out-of-bag predictions.

dfGrps Data frame with information about estimated group and group set weights across
folds.

dfCVM Data frame with cross-validated performance metric.

See Also

Visualise cross-validated group set weights with visualiseGroupsetweights or group weights
with visualiseGroupweights.

14 ecpc

Examples

#####################
Simulate toy data
#####################
p<-300 #number of covariates
n<-100 #sample size training data set
n2<-100 #sample size test data set

#simulate all betas i.i.d. from beta_k~N(mean=0,sd=sqrt(0.1)):
muBeta<-0 #prior mean
varBeta<-0.1 #prior variance
indT1<-rep(1,p) #vector with group numbers all 1 (all simulated from same normal distribution)

#simulate test and training data sets:
Dat<-simDat(n,p,n2,muBeta,varBeta,indT1,sigma=1,model='linear')
str(Dat) #Dat contains centered observed data, response data and regression coefficients

##########################
Make co-data group sets
##########################
#Group set: G random groups
G <- 5 #number of groups
#sample random categorical co-data:
categoricalRandom <- as.factor(sample(1:G,p,TRUE))
#make group set, i.e. list with G groups:
groupsetRandom <- createGroupset(categoricalRandom)

#######################
Cross-validate ecpc
#######################
tic<-proc.time()[[3]]
cv.fit <- cv.ecpc(type.measure="MSE",outerfolds=2,

Y=Dat$Y,X=Dat$Xctd,
groupsets=list(groupsetRandom),
groupsets.grouplvl=list(NULL),
hypershrinkage=c("none"),
model="linear",maxsel=c(5,10,15,20))

toc <- proc.time()[[3]]-tic

str(cv.fit$ecpc.fit) #list containing the model fits on the folds
str(cv.fit$dfPred) #data frame containing information on the predictions
cv.fit$dfCVM #data frame with the cross-validated performance for ecpc
#with/without posterior selection and ordinary ridge

ecpc Fit adaptive multi-group ridge GLM with hypershrinkage

ecpc 15

Description

Fits a generalised linear (linear, logistic) or Cox survival model, penalised with adaptive co-data
learnt ridge penalties. The ridge penalties correspond to normal prior variances which are regressed
on (multiple) co-data sources, e.g. for categorical co-data, each group of variables obtains a group-
specific ridge penalty. Co-data weights are estimated with an empirical Bayes method of moments,
penalised with an extra level of hypershrinkage and possibly constrained by linear constraints. Var-
ious types of hypershrinkage may be used for various co-data, including overlapping groups, hier-
archical groups and continuous co-data. P-splines may be used to estimate the relation between the
prior variance and continuous co-data variables. This may be combined with linear constraints to
estimate shape-constrained functions.

Usage

ecpc(Y, X,
Z=NULL, paraPen=NULL, paraCon=NULL, intrcpt.bam=TRUE, bam.method="ML",
groupsets=NULL, groupsets.grouplvl = NULL, hypershrinkage=NULL,
unpen = NULL, intrcpt = TRUE, model=c("linear","logistic","cox"),
postselection = "elnet,dense", maxsel = 10,
lambda = NULL, fold = 10, sigmasq = NaN, w = NULL,
nsplits = 100, weights = TRUE, profplotRSS = FALSE, Y2 = NULL, X2 = NULL,
compare = TRUE, mu = FALSE, normalise = FALSE, silent = FALSE,
datablocks = NULL, est_beta_method=c("glmnet","multiridge"))

Arguments

Y Response data; n-dimensional vector (n: number of samples) for linear and lo-
gistic outcomes, or Surv object for Cox survival.

X Observed data; (nxp)-dimensional matrix (p: number of covariates) with each
row the observed high-dimensional feature vector of a sample.

Z List with m co-data matrices. Each element is a (pxG)-dimensional co-data
matrix containing co-data on the p variables. Co-data should either be provided
in ‘Z’ or ‘groupsets’.

paraPen A list with generalised ridge penalty matrices used as hypershrinkage in estimat-
ing co-data weights, e.g. list("Z2" = list("S1" = M1,"S2"= M2)) when the
second co-data source given in ‘Z’ should be penalised by a penalty matrix ‘M1’
and ‘M2’. The names of the elements of the list should be equal to ‘Zi’ where
‘i’ matches the index of the co-data matrix. The list elements should again be
lists with elements ‘Si’ for i=1,2,.. different generalised ridge penalty matrices.
Same as the argument ‘paraPen’ used in bam of ‘mgcv’.

paraCon A list with linear inequality and or equality constraints used in estimating co-
data weights, e.g. list("Z2" = list("M.ineq" = M1,"b.ineq"= b.ineq, "M.eq"
= M2,"b.eq"= b.eq)). The names of the elements of the list should be equal
to ‘Zi’ where ‘i’ matches the index of the co-data matrix. The list elements
should again be lists with elements ‘M.ineq’, ‘b.ineq’ for inequality constraints
and ‘M.eq’, ‘b.eq’ for equality constraints, similar to the arguments used in
lsqlincon of ‘pracma’.

16 ecpc

intrcpt.bam Should an intercept be included in the co-data model? Is used only when ‘Z’
is provided, for which the function bam of ‘mgcv’ is used to fit a generalised
additive model.

bam.method When ‘Z’ is provided, ‘bam.method’ indicates the method used in bam of ‘mgcv’
to estimate the hyperpenalties corresponding to the generalised ridge penalty
matrices given in ‘paraPen’.

groupsets Co-data group sets; list with m (m: number of group sets) group sets. Each
group set is a list of all groups in that set. Each group is a vector containing the
indices of the covariates in that group.

groupsets.grouplvl

(optional) Group sets on group level used in hypershrinkage; list of m elements
(corresponding to ’groupsets’), with NULL if there is no structure on group
level, or with a list of groups containing the indices of groups of covariates in
that group. May be used for hierarchical groups and to adaptively discretise
continuous co-data, see obtainHierarchy.

hypershrinkage Type of shrinkage that is used on the group level; vector of m strings indicating
the shrinkage type (or penalty) that is used for each of the m group sets. String
may be of the simple form "type1", or "type1,type2", in which type1 is used to
select groups and type2 to estimate the group weights of the selected groups.
Possible hypershrinkage types are:
c("none","ridge","lasso","hierLasso","lasso,ridge","hierLasso,ridge");
"none" for no hypershrinkage, "ridge" (default), "lasso" and "hierLasso" (hierar-
chical lasso using a latent overlapping group lasso penalty) for group selection
possibly be combined with ridge shrinkage.

unpen Unpenalised covariates; vector with indices of covariates that should not be pe-
nalised.

intrcpt Should an intercept be included? Included by default for linear and logistic,
excluded for Cox for which the baseline hazard is estimated.

model Type of model for the response; linear, logistic or cox.

postselection Type of posterior selection method used to obtain a parsimonious model of
maxsel covariates, or FALSE if no parsimonious model is needed. Possible
options are "elnet,dense" (default), "elnet,sparse", "BRmarginal,dense", "BR-
marginal,sparse" or "DSS".

maxsel Maximum number of covariates to be selected a posteriori, in addition to all
unpenalised covariates. If maxsel is a vector, multiple parsimonious models are
returned.

lambda Global ridge penalty; if given, numeric value to fix the global ridge penalty and
equivalently, the global prior variance. When not given, for linear, by default
"ML" is used for estimation for maximum marginal likelihood estimation and
"CV" for other models for cross-validation.

fold Number of folds used in inner cross-validation to estimate global ridge penalty
lambda.

sigmasq (linear model only) If given, noise level is fixed (Y~N(X*beta,sd=sqrt(sigmasq))).

w Group set weights: m-dimensional vector. If given, group set weights are fixed.

ecpc 17

nsplits Number of splits used in the Residual Sum of Squares (RSS) criterion to esti-
mate the optimal hyperlambda.

weights Should weights be used in hypershrinkage to correct for group size (default
TRUE)?

profplotRSS Should a profile plot of the residual sum of squares (RSS) criterium be shown?

Y2 (optional) Independent response data to compare with predicted response.

X2 (optional) Independent observed data for which response is predicted.

compare Should an ordinary ridge model be fitted to compare with?

mu Should group prior means be included (default FALSE)?

normalise Should group variances be normalised to sum to 1 (default FALSE)?

silent Should output messages be suppressed (default FALSE)?

datablocks (optional) for multiple data types, the corresponding blocks of data may be given
in datablocks; a list of B vectors of the indices of covariates in ‘X’ that belong to
each of the B data blocks. Unpenalised covariates should not be given as seper-
ate block, but can be omitted or included in blocks with penalised covariates.
Each datatype obtains a datatype-specific ‘tauglobal’ as in multiridge.

est_beta_method

Package used for estimating regression coefficients, either "glmnet" or "multi-
ridge".

Details

Model:
The response is modeled with a generalised linear model with variance V ar(Y) = σ2 ∗ V (Y).
For the linear model, σ2 is the error variance parameter. For the logistic and Cox model, σ2 = 1.
The regression coefficients are independently modeled with a normal prior with prior variance v
regressed on (possibly multiple sources of) co-data

β N(0, v), v = τglobal
2 ∗ sumd[wd ∗ Zd ∗ γd]

with τglobal2 the global scaling parameter, the scalar wd the importance weight of co-data set d,
Zd the co-data matrix for source d and γd the vector of co-data variable weights of source d.

Co-data and hypershrinkage input:
Co-data should be provided in a list of co-data matrices given in argument ’Z’ or in a list of
group sets given in ’groupsets’. The latter may be used only for (overlapping) groups of vari-
ables, whereas the first may be used for continuous co-data too. In most cases, providing co-data
in ’Z’ is faster, so users may want to transform co-data from a group set to a co-data matrix with
createZforGroupset.

The co-data variable weights are estimated with an extra level of hypershrinkage, i.e. with a pe-
nalised estimator (see below). The type of hypershrinkage may differ per co-data source. Providing
these types depends on whether the co-data is provided in ’Z’ or ’groupsets’. When co-data is
provided in ’Z’, the hypershrinkage may be provided in the arguments ’paraPen’, ’paraCon’, ’intr-
cpt.bam’ and ’bam.method’ (second line above in usage). When co-data is provided in ’groupsets’,
the hypershrinkage may be provided in the arguments ’groupsets.grouplvl’ and ’hypershrinkage’
(third line above in usage).

18 ecpc

Estimation:
The regression coefficients are estimated by maximising the penalised likelihood (equiv. maximum
a posteriori estimate) for estimated prior parameters:

β′ = argmaxβ [loglik + sumk(β
2
k/(2vk)]

The prior parameters are estimated from the data using an empirical Bayes approach; τglobal2 is
estimated by maximising the marginal likelihood (linear, default, jointly optimised with σ2) or by
cross-validation (linear, logistic, Cox). γd is estimated per co-data source by finding the minimum
(penalised) least squares solution corresponding to the marginal moment equations:

γd = argminγ [||Aγ − b||22 + fpen(γ;λd)]

with fpen some penalty function (’hypershrinkage’, see below) depending on hyperpenalty param-
eter λd. Co-data weights w are estimated with a similar, unpenalised marginal moment estimator.

’ecpc’ is the first implementation of marginal moment estimation with the additional layer of hy-
pershrinkage. Moment-based estimates without hypershrinkage have been implemented in the R-
package ’GRridge’.

Hypershrinkage:
For co-data provided in the argument ’Z’, a generalised ridge penalty may be used of the type:

λd ∗ γTd ∗ S ∗ γd

with the penalty matrix S possibly a sum of multiple penalty matrices and given in argument ’para-
Pen’. Additionally, linear (in)equality constraints may be added with the argument ’paraCon’, i.e.
the least squares estimate is subject to Mineq ∗ γd <= bineq and Meq ∗ γd = bineq.

For co-data provided in the argument ’groupsets’, the types of hypershrinkage include the ridge
penalty (λd ∗ ||γ||22), lasso penalty (λd ∗ ||γ||1) and hierarchical lasso penalty with hierarchy defined
in ’groupsets.grouplvl’.

Value

An object of the class ‘ecpc’ with the following elements:

beta Estimated regression coefficients; p-dimensional vector.

intercept If included, the estimated intercept; scalar.

tauglobal Estimated global prior variance; scalar (or vector with datatype-specific global
prior variances when multiple ‘datablocks’ are given).)

gammatilde Estimated group weights before truncating negative weights to 0; vector of di-
mension the total number of groups.

gamma Final estimated group weights; vector of dimension the total number of groups.

gamma0 Estimated co-data variable intercept; scalar.

w Estimated group set weights; m-dimensional vector.

penalties Estimated multi-group ridge penalties; p-dimensional vector.

hyperlambdas Estimated hyperpenalty parameters used in hypershrinkage; m-dimensional vec-
tor.

ecpc 19

Ypred If independent test set ’X2’ is given, predictions for the test set.

MSEecpc If independent test set ’X2’, ’Y2’ is given, mean squared error of the predictions.

sigmahat (linear model) Estimated sigma^2.

If ’compare’=TRUE, ordinary ridge estimates and predictions are given. If in addition multiple
‘datablocks’ are given, the estimates and predictions for multiridge penalty are given;

model Type of model fitted for the response; linear, logistic or cox.

betaridge Estimated regression coefficients for ordinary ridge (or multiridge) penalty.

interceptridge Estimated intercept for ordinary ridge (or multiridge) penalty.

lambdaridge Estimated (multi)ridge penalty.

Ypredridge If independent test set ’X2’ is given, ordinary ridge (or multiridge) predictions
for the test set.

MSEridge If independent test set ’X2’, ’Y2’ is given, mean squared error of the ordinary
ridge (or multiridge) predictions.

If posterior selection is performed;

betaPost Estimated regression coefficients for parsimonious models. If ’maxsel’ is a vec-
tor, ’betaPost’ is a matrix with each column the vector estimate corresponding
to the maximum number of selected covariates given in ’maxsel’.

interceptPost Estimated intercept coefficient for parsimonious models.

YpredPost If independent test set ’X2’ is given, posterior selection model predictions for
the test set.

MSEPost If independent test set ’X2’, ’Y2’ is given, mean squared error of the posterior
selection model predictions.

Author(s)

Mirrelijn van Nee, Lodewyk Wessels, Mark van de Wiel

References

van Nee, Mirrelijn M., Lodewyk FA Wessels, and Mark A. van de Wiel. "Flexible co-data learning
for high-dimensional prediction." Statistics in medicine 40.26 (2021): 5910-5925.

van de Wiel, Mark A., Mirrelijn M. van Nee, and Armin Rauschenberger. "Fast cross-validation for
multi-penalty high-dimensional ridge regression." Journal of Computational and Graphical Statis-
tics 30.4 (2021): 835-847.

Examples

#####################
Simulate toy data
#####################
p<-300 #number of covariates
n<-100 #sample size training data set
n2<-100 #sample size test data set

20 ecpc

#simulate all betas i.i.d. from beta_k~N(mean=0,sd=sqrt(0.1)):
muBeta<-0 #prior mean
varBeta<-0.1 #prior variance
indT1<-rep(1,p) #vector with group numbers all 1 (all simulated from same normal distribution)

#simulate test and training data sets:
Dat<-simDat(n,p,n2,muBeta,varBeta,indT1,sigma=1,model='linear')
str(Dat) #Dat contains centered observed data, response data and regression coefficients

###################################
Provide co-data in group sets..
###################################
#Group set 1: G random groups
G <- 5 #number of groups
#sample random categorical co-data:
categoricalRandom <- as.factor(sample(1:G,p,TRUE))
#make group set, i.e. list with G groups:
groupsetRandom <- createGroupset(categoricalRandom)

#Group set 2: informative hierarchical group set
continuousCodata <- abs(Dat$beta) #use the magnitude of beta as continuous co-data
#Use adaptive discretisation to find a good discretisation of the continuous co-data;
discretise in groups of covariates of various sizes:
groupsetHierarchical <- splitMedian(values=continuousCodata,index = 1:p,

minGroupSize = 50,split="both")
and obtain group set on group level that defines the hierarchy:
hierarchy.grouplevel <- obtainHierarchy(groupset = groupsetHierarchical)
#visualise hierarchical groups:
#visualiseGroupset(Groupset = groupsetHierarchical,groupset.grouplvl = hierarchy.grouplevel)

############################
..or in co-data matrices
############################
#Setting 1: some transformations of informative, continuous co-data
Z1 <- cbind(continuousCodata,sqrt(continuousCodata))

#setting 2: splines for informative continuous
Z2 <- createZforSplines(values=continuousCodata)
S1.Z2 <- createS(orderPen=2, G=dim(Z2)[2]) #create difference penalty matrix
Con2 <- createCon(G=dim(Z2)[2], shape="positive+monotone.i") #create constraints

#setting 3: 5 random groups
Z3 <- createZforGroupset(groupsetRandom,p=p)
S1.Z3 <- createS(G=G, categorical = TRUE) #create difference penalty matrix
Con3 <- createCon(G=dim(Z3)[2], shape="positive") #create constraints

############################
Fit ecpc on group sets..
############################

#fit ecpc for the two group sets, with ridge hypershrinkage for group set 1,

ecpc 21

and hierarchical lasso and ridge for group set 2.
tic<-proc.time()[[3]]
fit <- ecpc(Y=Dat$Y,X=Dat$Xctd,groupsets=list(groupsetRandom,groupsetHierarchical),

groupsets.grouplvl=list(NULL,hierarchy.grouplevel),
hypershrinkage=c("ridge","hierLasso,ridge"),
model="linear",maxsel=c(5,10,15,20),
Y2=Dat$Y2,X2=Dat$X2ctd)

toc <- proc.time()[[3]]-tic

fit$tauglobal #estimated global prior variance
fit$gamma #estimated group weights (concatenated for the group sets)
fit$w #estimated group set weights
summary(fit$beta) #estimated regression coefficients
summary(fit$betaPost) #estimated regression coefficients after posterior selection

c(fit$MSEecpc,fit$MSEridge) #mean squared error on test set for ecpc and ordinary ridge
fit$MSEPost #MSE on the test set of ecpc after posterior selection

############################
..or on co-data matrices
############################

#fit ecpc for the three co-data matrices with following penalty matrices and constraints
#note: can also be fitted without paraPen and/or paraCon
Z.all <- list(Z1=Z1,Z2=Z2,Z3=Z3)
paraPen.all <- list(Z2=list(S1=S1.Z2), Z3=list(S1=S1.Z3))
paraCon <- list(Z2=Con2, Z3=Con3)

tic<-proc.time()[[3]]
fit <- ecpc(Y=Dat$Y,X=Dat$Xctd,

Z = Z.all, paraPen = paraPen.all, paraCon = paraCon,
model="linear",maxsel=c(5,10,15,20),
Y2=Dat$Y2,X2=Dat$X2ctd)

toc <- proc.time()[[3]]-tic

fit$tauglobal #estimated global prior variance
fit$gamma #estimated group weights (concatenated for the co-data sources)
fit$gamma0 #estimated co-data intercept

#plot contribution of one co-data source
i <-1
groupsetNO <- c(unlist(sapply(1:length(Z.all),function(i) rep(i,dim(Z.all[[i]])[2]))))
vk <- as.vector(Z.all[[i]]%*%fit$gamma[groupsetNO==i])*fit$tauglobal
plot(continuousCodata,vk)

summary(fit$beta) #estimated regression coefficients
summary(fit$betaPost) #estimated regression coefficients after posterior selection

c(fit$MSEecpc,fit$MSEridge) #mean squared error on test set for ecpc and ordinary ridge
fit$MSEPost #MSE on the test set of ecpc after posterior selection

###################################
Fit ecpc for multiple datatypes

22 hierarchicalLasso

###################################
rankBeta<-order(abs(Dat$beta)) #betas ranked in order of magnitude

#with multiple datatypes (given in datablocks) and informative groups
fit2 <- ecpc(Y=Dat$Y,X=Dat$Xctd[,rankBeta],groupsets=list(list(1:75,76:150,151:225,226:300)),

groupsets.grouplvl=list(NULL),
hypershrinkage=c("none"),
model="linear",maxsel=c(5,10,15,20),
Y2=Dat$Y2,X2=Dat$X2ctd[,rankBeta],
datablocks = list(1:floor(p/2),(floor(p/2)+1):p))

hierarchicalLasso Fit hierarchical lasso using LOG penalty

Description

Fits a linear regression model penalised with a hierarchical lasso penalty, using a latent overlapping
group (LOG) lasso penalty.

Usage

hierarchicalLasso(X, Y, groupset, lambda=NULL)

Arguments

X nxp matrix with observed data
Y nx1 vector with response data
groupset list with hierarchical group indices
lambda Scalar. Penalty parameter for the latent overlapping group penalty.

Details

The LOG penalty can be used to impose hierarchical constraints in the estimation of regression
coefficients (Yan, Bien et al. 2007), e.g. a group of covariates (child node in the hierarchical
tree) may be selected only if another group is selected (parent node in the hierarchical tree). This
function uses the simple implementation for the LOG penalty described in (Jacob, Obozinski and
Vert, 2009). Faster and more scalable algorithms may be available but not yet used in this pacakage.

Value

A list with the following elements;

betas Estimated regression coefficients.
a0 Estimated intercept.
lambdarange Range of penalty parameter used for CV (if lambda was not given).
lambda Estimated penalty parameter.
group.weights Fixed group weights used in the LOG-penalty.

obtainHierarchy 23

References

Yan, X., Bien, J. et al. (2017). Hierarchical sparse modeling: A choice of two group lasso formula-
tions. Statistical Science 32 531-560.

Jacob, L., Obozinski, G. and Vert, J.-P. (2009). Group lasso with overlap and graph lasso. In:
Proceedings of the 26th annual international conference on machine learning 433-440. ACM.

Examples

Simulate toy data
p<-60 #number of covariates
n<-30 #sample size training data set
n2<-100 #sample size test data set

#simulate all betas i.i.d. from beta_k~N(mean=0,sd=sqrt(0.1)):
muBeta<-c(0,0) #prior mean
varBeta<-c(0.0001,0.1) #prior variance
#vector with group numbers all 1 (all simulated from same normal distribution)
indT1<-rep(c(1,2),each=p/2)

#simulate test and training data sets:
Dat<-simDat(n,p,n2,muBeta,varBeta,indT1,sigma=1,model='linear')
str(Dat) #Dat contains centered observed data, response data and regression coefficients

#hierarchical grouping: e.g. covariates (p/4+1):(p/2) can only be selected when
#covariates 1:(p/4) are selected
groupset <- list(1:(p/2),(p/2+1):p,1:(p/4),(3*p/4+1):p)

#Fit hierarchical lasso, perform CV to find optimal lambda penalty
res <- hierarchicalLasso(X=Dat$Xctd,Y=Dat$Y,groupset = groupset)
res$lambdarange
plot(res$betas)

#Fit hierarchical lasso for fixed lambda
res2 <- hierarchicalLasso(X=Dat$Xctd,Y=Dat$Y,groupset = groupset,lambda=res$lambdarange[2])
plot(res2$betas)

obtainHierarchy Obtain hierarchy

Description

This function obtains the group set on group level that defines the hierarchy; if a group of covariates
g is a subset of group h, then group h is an ancestor of group g (higher up in the hierarchy). This
hierarchy is used in adaptively discretising continuous co-data.

Usage

obtainHierarchy(groupset, penalty = "LOG")

24 plot.ecpc

Arguments

groupset Group set of groups of covariates with nested groups.

penalty Default: "LOG" for a latent overlapping group approach (currently the only
option in ecpc)

Details

We use the latent overlapping group (LOG) lasso penalty to define the hierarchical constraints as
described in (Yan, Bien et al. 2007); for each group g of covariates, we make a group on group
level with group number g and the group numbers of its ancestors in the hierarchical tree. This way,
group g can be selected if and only if all its ancestors are selected. This function assumes that if
group g is a subset of group h, then group h is an ancestor of group g. Note that this assumption
does not necessarily hold for all hierarchies. The group set on group level should then be coded
manually.

Value

A group set on group level defining the hierarchy.

References

Yan, X., Bien, J. et al. (2017). Hierarchical sparse modeling: A choice of two group lasso formula-
tions. Statistical Science 32 531-560.

See Also

splitMedian to obtain a group set of nested groups for continuous co-data.

Examples

cont.codata <- seq(0,1,length.out=20) #continuous co-data
#only split at lower continous co-data group
groupset <- splitMedian(values=cont.codata,split="lower",minGroupSize=5)
#obtain groups on group level defining the hierarchy
groupset.grouplvl <- obtainHierarchy(groupset)

plot.ecpc Plot an ’ecpc’ object

Description

Make a plot of the fitted regression coefficients versus their corresponding fitted prior variances, or
fit the prior variance weight contribution of each co-data source.

plot.ecpc 25

Usage

S3 method for class 'ecpc'
plot(x, show = c("coefficients", "priorweights"),

Z = NULL, values = NULL, groupsets = NULL,
codataweights=FALSE, ...)

Arguments

x An ’ecpc’ object returned by ecpc.

show Either "coefficients" or "priorweights" to show the fitted regression coefficients
or the prior variances. To plot the prior variances, co-data should be provided in
either ’Z’ or ’groupsets’.

Z List of m co-data matrices, as in ecpc.

values List of m elements, containing p-dimensinal vectors with continuous co-data
values or NULL. If provided, the prior variances will be plotted versus the pro-
vided continuous co-data. If NULL, the prior variances will be plotted per co-
data variable.

groupsets Co-data provided as list of group sets, as in ecpc.

codataweights For the option ‘show="priorweights"’, should the prior variances include the
co-data source weights?

... ...

Value

If the packages ‘ggplot2’ and ‘ggpubr’ are installed, a ‘ggplot’ object is shown and returned, else a
base plot is shown.

See Also

See ecpc for model fitting.

Examples

#####################
Simulate toy data
#####################
p<-300 #number of covariates
n<-100 #sample size training data set
n2<-100 #sample size test data set

#simulate all betas i.i.d. from beta_k~N(mean=0,sd=sqrt(0.1)):
muBeta<-0 #prior mean
varBeta<-0.1 #prior variance
indT1<-rep(1,p) #vector with group numbers all 1 (all simulated from same normal distribution)

#simulate test and training data sets:
Dat<-simDat(n,p,n2,muBeta,varBeta,indT1,sigma=1,model='linear')

26 postSelect

str(Dat) #Dat contains centered observed data, response data and regression coefficients

###################
Provide co-data
###################
continuousCodata <- abs(Dat$beta)
Z1 <- cbind(continuousCodata,sqrt(continuousCodata))

#setting 2: splines for informative continuous
Z2 <- createZforSplines(values=continuousCodata)
S1.Z2 <- createS(orderPen=2, G=dim(Z2)[2]) #create difference penalty matrix
Con2 <- createCon(G=dim(Z2)[2], shape="positive+monotone.i") #create constraints

#setting 3: 5 random groups
G <- 5
categoricalRandom <- as.factor(sample(1:G,p,TRUE))
#make group set, i.e. list with G groups:
groupsetRandom <- createGroupset(categoricalRandom)
Z3 <- createZforGroupset(groupsetRandom,p=p)
S1.Z3 <- createS(G=G, categorical = TRUE) #create difference penalty matrix
Con3 <- createCon(G=dim(Z3)[2], shape="positive") #create constraints

#fit ecpc for the three co-data matrices with following penalty matrices and constraints
#note: can also be fitted without paraPen and/or paraCon
Z.all <- list(Z1=Z1,Z2=Z2,Z3=Z3)
paraPen.all <- list(Z2=list(S1=S1.Z2), Z3=list(S1=S1.Z3))
paraCon <- list(Z2=Con2, Z3=Con3)

############
Fit ecpc
############
tic<-proc.time()[[3]]
fit <- ecpc(Y=Dat$Y,X=Dat$Xctd,

Z = Z.all, paraPen = paraPen.all, paraCon = paraCon,
model="linear",maxsel=c(5,10,15,20),
Y2=Dat$Y2,X2=Dat$X2ctd)

toc <- proc.time()[[3]]-tic

values <- list(NULL, continuousCodata, NULL)

plot(fit, show="coefficients")
plot(fit, show="priorweights", Z=Z.all, values=values)

postSelect Perform posterior selection

postSelect 27

Description

Given data and estimated parameters from a previously fit multi-group ridge penalised model, per-
form posterior selection to find a parsimonious model.

Usage

postSelect(object, X, Y, beta=NULL, intrcpt = 0, penfctr=NULL,
postselection = c("elnet,dense","elnet,sparse","BRmarginal,dense",
"BRmarginal,sparse","DSS"), maxsel = 30, penalties=NULL,
model=c("linear","logistic","cox"), tauglobal=NULL, sigmahat = NULL,
muhatp = 0, X2 = NULL, Y2 = NULL, silent=FALSE)

Arguments

object An ’ecpc’ object returned by ecpc.

X Observed data: data of p penalised and unpenalised covariates on n samples;
(nxp)-dimensional matrix.

Y Response data; n-dimensional vector (linear, logistic) or Surv object (Cox sur-
vival).

beta Estimated regression coefficients from the previously fit model.

intrcpt Estimated intercept from the previously fit model.

penfctr As in glmnet penalty.factor; p-dimensional vector with a 0 if covariate is not
penalised, 1 if covariate is penalised.

postselection Posterior selection method to be used.

maxsel Maximum number of covariates to be selected a posteriori, in addition to all
unpenalised covariates. If maxsel is a vector, multiple parsimonious models are
returned.

penalties Estimated multi-group ridge penalties for all penalised covariates from the pre-
viously fit model; vector of length the number of penalised covariates.

model Type of model for the response.

tauglobal Estimated global prior variance from the previously fit model.

sigmahat (linear model only) estimated variance parameter from the previously fit model.

muhatp (optional) Estimated multi-group prior means for the penalised covariates from
the previously fit model.

X2 (optional) Independent observed data.

Y2 (optional) Independent response data.

silent Should output messages be suppressed (default FALSE)?

Value

A list with the following elements:

betaPost Estimated regression coefficients for parsimonious models. If ’maxsel’ is a vec-
tor, ’betaPost’ is a matrix with each column the vector estimate corresponding
to the maximum number of selected covariates given in ’maxsel’.

28 predict.ecpc

a0 Estimated intercept coefficient for parsimonious models.

YpredPost If independent test set ’X2’ is given, posterior selection model predictions for
the test set.

MSEPost If independent test set ’X2’, ’Y2’ is given, mean squared error of the posterior
selection model predictions.

Examples

#####################
Simulate toy data
#####################
p<-300 #number of covariates
n<-100 #sample size training data set
n2<-100 #sample size test data set

#simulate all betas i.i.d. from beta_k~N(mean=0,sd=sqrt(0.1)):
muBeta<-0 #prior mean
varBeta<-0.1 #prior variance
indT1<-rep(1,p) #vector with group numbers all 1 (all simulated from same normal distribution)

#simulate test and training data sets:
Dat<-simDat(n,p,n2,muBeta,varBeta,indT1,sigma=1,model='linear')
str(Dat) #Dat contains centered observed data, response data and regression coefficients

#######################################
Fit ecpc and perform post-selection
#######################################
fit <- ecpc(Y=Dat$Y,X=Dat$Xctd,groupsets=list(list(1:p)),

groupsets.grouplvl=list(NULL),
hypershrinkage=c("none"),
model="linear",maxsel=c(5,10,15,20),
Y2=Dat$Y2,X2=Dat$X2ctd)

fitPost <- postSelect(fit, Y=Dat$Y, X=Dat$Xctd, maxsel = c(5,10,15,20))
summary(fit$betaPost[,1]); summary(fitPost$betaPost[,1])

predict.ecpc Predict for new samples for ‘ecpc’ object

Description

Predict the response for new samples based on an ‘ecpc’ object.

Usage

S3 method for class 'ecpc'
predict(object, X2, X=NULL, Y=NULL, ...)

predict.ecpc 29

Arguments

object An ’ecpc’ object returned by ecpc.

X2 Independent observed data for which response is predicted.

X Observed data used in fitting the ‘object’; (nxp)-dimensional matrix (p: number
of covariates) with each row the observed high-dimensional feature vector of a
sample.

Y Response data used in fitting the ‘object’; n-dimensional vector (n: number of
samples) for linear and logistic outcomes, or Surv object for Cox survival.

... Other parameters

Value

Vector with predicted values. Note that for Cox response, the relative risks are provided, unless
training data X and Y is provided to compute the Breslow estimator.

Examples

#####################
Simulate toy data
#####################
p<-300 #number of covariates
n<-100 #sample size training data set
n2<-100 #sample size test data set

#simulate all betas i.i.d. from beta_k~N(mean=0,sd=sqrt(0.1)):
muBeta<-0 #prior mean
varBeta<-0.1 #prior variance
indT1<-rep(1,p) #vector with group numbers all 1 (all simulated from same normal distribution)

#simulate test and training data sets:
Dat<-simDat(n,p,n2,muBeta,varBeta,indT1,sigma=1,model='linear')
str(Dat) #Dat contains centered observed data, response data and regression coefficients

###################
Provide co-data
###################
continuousCodata <- abs(Dat$beta)
Z1 <- cbind(continuousCodata,sqrt(continuousCodata))

#setting 2: splines for informative continuous
Z2 <- createZforSplines(values=continuousCodata)
S1.Z2 <- createS(orderPen=2, G=dim(Z2)[2]) #create difference penalty matrix
Con2 <- createCon(G=dim(Z2)[2], shape="positive+monotone.i") #create constraints

#setting 3: 5 random groups
G <- 5
categoricalRandom <- as.factor(sample(1:G,p,TRUE))
#make group set, i.e. list with G groups:
groupsetRandom <- createGroupset(categoricalRandom)

30 print.ecpc

Z3 <- createZforGroupset(groupsetRandom,p=p)
S1.Z3 <- createS(G=G, categorical = TRUE) #create difference penalty matrix
Con3 <- createCon(G=dim(Z3)[2], shape="positive") #create constraints

#fit ecpc for the three co-data matrices with following penalty matrices and constraints
#note: can also be fitted without paraPen and/or paraCon
Z.all <- list(Z1=Z1,Z2=Z2,Z3=Z3)
paraPen.all <- list(Z2=list(S1=S1.Z2), Z3=list(S1=S1.Z3))
paraCon <- list(Z2=Con2, Z3=Con3)

############
Fit ecpc
############
tic<-proc.time()[[3]]
fit <- ecpc(Y=Dat$Y,X=Dat$Xctd,

Z = Z.all, paraPen = paraPen.all, paraCon = paraCon,
model="linear",maxsel=c(5,10,15,20),
Y2=Dat$Y2,X2=Dat$X2ctd)

toc <- proc.time()[[3]]-tic

predictions <- predict(fit, X2=Dat$X2ctd)

print.ecpc Print summary of ’ecpc’ object

Description

Print summary of the fitted model given in an ’ecpc’ object.

Usage

S3 method for class 'ecpc'
print(x, ...)

S3 method for class 'ecpc'
summary(object, ...)

Arguments

x An ’ecpc’ object returned by ecpc.

object An ’ecpc’ object returned by ecpc.

... ...

See Also

See ecpc for model fitting.

print.ecpc 31

Examples

#####################
Simulate toy data
#####################
p<-300 #number of covariates
n<-100 #sample size training data set
n2<-100 #sample size test data set

#simulate all betas i.i.d. from beta_k~N(mean=0,sd=sqrt(0.1)):
muBeta<-0 #prior mean
varBeta<-0.1 #prior variance
indT1<-rep(1,p) #vector with group numbers all 1 (all simulated from same normal distribution)

#simulate test and training data sets:
Dat<-simDat(n,p,n2,muBeta,varBeta,indT1,sigma=1,model='linear')
str(Dat) #Dat contains centered observed data, response data and regression coefficients

###################
Provide co-data
###################
continuousCodata <- abs(Dat$beta)
Z1 <- cbind(continuousCodata,sqrt(continuousCodata))

#setting 2: splines for informative continuous
Z2 <- createZforSplines(values=continuousCodata)
S1.Z2 <- createS(orderPen=2, G=dim(Z2)[2]) #create difference penalty matrix
Con2 <- createCon(G=dim(Z2)[2], shape="positive+monotone.i") #create constraints

#setting 3: 5 random groups
G <- 5
categoricalRandom <- as.factor(sample(1:G,p,TRUE))
#make group set, i.e. list with G groups:
groupsetRandom <- createGroupset(categoricalRandom)
Z3 <- createZforGroupset(groupsetRandom,p=p)
S1.Z3 <- createS(G=G, categorical = TRUE) #create difference penalty matrix
Con3 <- createCon(G=dim(Z3)[2], shape="positive") #create constraints

#fit ecpc for the three co-data matrices with following penalty matrices and constraints
#note: can also be fitted without paraPen and/or paraCon
Z.all <- list(Z1=Z1,Z2=Z2,Z3=Z3)
paraPen.all <- list(Z2=list(S1=S1.Z2), Z3=list(S1=S1.Z3))
paraCon <- list(Z2=Con2, Z3=Con3)

############
Fit ecpc
############
tic<-proc.time()[[3]]
fit <- ecpc(Y=Dat$Y,X=Dat$Xctd,

Z = Z.all, paraPen = paraPen.all, paraCon = paraCon,
model="linear",maxsel=c(5,10,15,20),
Y2=Dat$Y2,X2=Dat$X2ctd)

32 produceFolds

toc <- proc.time()[[3]]-tic

print(fit)

summary(fit)

produceFolds Produce folds

Description

Produce folds for cross-validation.

Usage

produceFolds(nsam, outerfold, response, model = c("logistic","cox","other"),
balance = TRUE)

Arguments

nsam Number of samples

outerfold Number of folds.

response Response data.

model Type of model for the response.

balance Should folds be balanced in response?

Value

A list with ‘outerfold’ elements containing a vector of sample indices in each fold.

Examples

n<-100
outerfold <- 10

#linear model
resp <- rnorm(n)
folds <- produceFolds(nsam=n, outerfold=outerfold, response=resp)

#logistic model: keep 0/1 balanced across folds
resp <- as.factor(rnorm(n)>0.5)
folds <- produceFolds(nsam=n, outerfold=outerfold, response=resp, balance = TRUE)

simDat 33

simDat Simulate data

Description

Simulate toy data with linear or logistic response.

Usage

simDat(n, p, n2 = 20, muGrp, varGrp, indT, sigma = 1,
model = c("linear","logistic"), flag = FALSE)

Arguments

n Number of samples for the training set.

p Number of covariates.

n2 Number of independent samples for the test set.

muGrp Prior mean for different groups.

varGrp Prior variance for different groups.

indT True group index of each covariate; p-dimensional vector.

sigma Variance parameter for linear model.

model Type of model.

flag Should linear predictors and true response be plotted?

Value

A list with

beta Simulated regression coefficients

Xctd Simulated observed data for training set

Y Simulated response data for test set

X2ctd Simulated observed data for test set

Y2 Simulated response data for test set

Examples

n<-10
p<-30
#simulate beta from two normal distributions; beta_k ~ N(mu_k,tau^2_k)
muGrp <- c(0,0.1) #mean (mu_1,mu_2)
varGrp <- c(0.05,0.01) #variance (tau^2_1,tau^2_2)
#group number of each covariate; first half in group 1, second half in group 2
indT <- rep(c(1,2),each=15)

dataLin <- simDat(n, p, n2 = 20, muGrp, varGrp, indT, sigma = 1, model = "linear",

34 splitMedian

flag = TRUE)
dataLog <- simDat(n, p, n2 = 20, muGrp, varGrp, indT, model = "logistic",

flag = TRUE)

splitMedian Discretise continuous data in multiple granularities

Description

Discretise continuous co-data by making groups of covariates of various size. The first group is
the group with all covariates. Each group is then recursively split in two at the median co-data
value, until some user-specified minimum group size is reached. The discretised groups are used
for adaptive discretisation of continuous co-data.

Usage

splitMedian(values, index=NULL, depth=NULL, minGroupSize = 50, first = TRUE,
split = c("both","lower","higher"))

Arguments

values Vector with the continuous co-data values to be discretised.

index Index of the covariates corresponding to the values supplied. Useful if part
of the continuous co-data is missing and only the non-missing part should be
discretised.

depth (optional): if given, a discretisation is returned with ’depth’ levels of granularity.

minGroupSize Minimum group size that each group of covariates should have.

split "both", "lower" or "higher": should both split groups of covariates be further
split, or only the group of covariates that corresponds to the lower or higher
continuous co-data group?

first Do not change, recursion help variable.

Value

A list with groups of covariates, which may be used as group set in ecpc.

See Also

Use obtainHierarchy to obtain a group set on group level defining the hierarchy for adaptive
discretisation of continuous co-data.

visualiseGroupset 35

Examples

cont.codata <- seq(0,1,length.out=20) #continuous co-data
#full tree with minimum group size 5
groupset1 <- splitMedian(values=cont.codata,minGroupSize=5)
#only split at lower continous co-data group
groupset2 <- splitMedian(values=cont.codata,split="lower",minGroupSize=5)

part <- sample(1:length(cont.codata),15) #discretise only for a part of the continuous co-data
cont.codata[-part] <- NaN #suppose rest is missing
#make group set of non-missing values
groupset3 <- splitMedian(values=cont.codata[part],index=part,minGroupSize=5)
groupset3 <- c(groupset3,list(which(is.nan(cont.codata)))) #add missing data group

visualiseGroupset Visualise a group set

Description

Visualises a group set in a graph, with directed edges indicating the hierarchy.

Usage

visualiseGroupset(Groupset, groupweights, groupset.grouplvl, nodeSize = 10, ls = 1)

Arguments

Groupset List of G groups of covariates.

groupweights (optional) vector with G group weights; if given, group weights are visualised
too.

groupset.grouplvl

List of G_2 groups defining a hierarchy.

nodeSize Size of the nodes in the visualisation; scalar.

ls Line size; scalar.

Value

A ggplot object.

See Also

visualiseGroupsetweights to plot estimated group set weights. and visualiseGroupweights
to plot estimated group weights.

36 visualiseGroupsetweights

Examples

#groups without hierarchical constraints
groupset <- list("Group1"=c(1:20),"Group2"=c(15,30))
visualiseGroupset(groupset,c(0.5,2))

#hierarchical groups
cont.codata <- seq(0,1,length.out=20) #continuous co-data
#only split at lower continous co-data group
hierarchicalgroupset <- splitMedian(values=cont.codata,split="lower",minGroupSize=5)
#obtain groups on group level defining the hierarchy
groupset.grouplvl <- obtainHierarchy(hierarchicalgroupset)
visualiseGroupset(hierarchicalgroupset, groupset.grouplvl=groupset.grouplvl)

visualiseGroupsetweights

Visualise estimated group set weights

Description

Plot group set weights from multiple cross-validation folds.

Usage

visualiseGroupsetweights(dfGrps, GroupsetNames, hist = FALSE, boxplot = TRUE,
jitter = TRUE, ps = 1.5, width = 0.5)

Arguments

dfGrps Data frame containing the following variables; ’Groupset’: factor with group set
names; ’Groupset.weight’: group set weight of each group set; ’Fold’: number
indicating which fold in the cross-validation is used.

GroupsetNames Vector with names of the group sets.

hist Should histogram be plotted?

boxplot Should boxplot be used or points?

jitter Should group set weights be jittered?

ps Point size.

width Width of jitter.

Value

Plot in ggplot object.

See Also

visualiseGroupset to visualise group sets and visualiseGroupweights to plot estimated group
weights.

visualiseGroupweights 37

Examples

dfGrps <- data.frame(Groupset=rep(c(1,2),each=10),
Groupset.weight=c(rnorm(10,0,0.01),rnorm(10,1,0.05)),
Fold=rep(1:10,2))

GroupsetNames <- c("Groupset1","Groupset2")
visualiseGroupsetweights(dfGrps, GroupsetNames, hist = FALSE, boxplot = TRUE,jitter=TRUE)

visualiseGroupweights Visualise estimated group weights

Description

Plot group weights from multiple cross-validation folds.

Usage

visualiseGroupweights(dfGrps, Groupset, groupset.grouplvl, values,
widthBoxplot = 0.05, boxplot = TRUE, jitter = TRUE,
ps = 1.5, ls = 1)

Arguments

dfGrps Data frame containing the following variables; ’Group’: factor with group names;
’Group.weight’: group weight of each group; ’Fold’: number indicating which
fold in the cross-validation is used.

Groupset List of G elements containing covariate indices for each group
groupset.grouplvl

(optional): groups on group level, e.g. defining a hierarchical structure.

values (optional): values of continuous co-data. If given, group weights are plotted
against these value.

widthBoxplot Width of boxplot.

boxplot Should a boxplot be plotted?

jitter Should point estimates be jittered?

ps Point size.

ls Line size.

Value

Plot in ggplot object.

See Also

visualiseGroupset to visualise group sets and visualiseGroupsetweights to plot estimated
group set weights.

38 visualiseGroupweights

Examples

#discrete groups
groupset1 <- list(1:20,21:40)
dfGrps1 <- data.frame(Group=as.factor(rep(c(1,2),each=10)),

Group.weight=c(rnorm(10,0.5,0.01),rnorm(10,2,0.05)),
Fold=rep(1:10,2))

visualiseGroupweights(dfGrps1, Groupset=groupset1)

#continous co-data groups
cont.codata <- seq(0,1,length.out=40) #continuous co-data
#only split at lower continous co-data group
groupset2 <- splitMedian(values=cont.codata,split="lower",minGroupSize=10)
#obtain groups on group level defining the hierarchy
groupset.grouplvl <- obtainHierarchy(groupset2)

#simulate random group weights around 1
dfGrps2 <- data.frame(Group=as.factor(rep(1:length(groupset2),each=10)),

Group.weight=c(rnorm(10*length(groupset2),1,0.01)),
Fold=rep(1:10,length(groupset2)))

#plot group weights per group
visualiseGroupweights(dfGrps2, Groupset=groupset2, groupset.grouplvl=groupset.grouplvl)
#plot group weights per leaf group in the hierarchical tree
visualiseGroupweights(dfGrps2, Groupset=groupset2, groupset.grouplvl=groupset.grouplvl,

values=cont.codata)

Index

coef.ecpc, 4
createCon, 6
createGroupset, 7, 11
createS, 7, 10, 12
createZforGroupset, 10, 11, 17
createZforSplines, 7, 10, 12
cv.ecpc, 13

ecpc, 3, 4, 7, 13, 14, 25, 27, 29, 30
ecpc-package, 2

hierarchicalLasso, 22

obtainHierarchy, 16, 23, 34

penalties, 5
penalties (coef.ecpc), 4
plot.ecpc, 24
postSelect, 26
predict.ecpc, 28
print.ecpc, 30
produceFolds, 32

simDat, 33
splitMedian, 8, 24, 34
summary.ecpc (print.ecpc), 30
Surv, 4, 13, 15, 27, 29

visualiseGroupset, 35, 36, 37
visualiseGroupsetweights, 13, 35, 36, 37
visualiseGroupweights, 13, 35, 36, 37

39

	ecpc-package
	coef.ecpc
	createCon
	createGroupset
	createS
	createZforGroupset
	createZforSplines
	cv.ecpc
	ecpc
	hierarchicalLasso
	obtainHierarchy
	plot.ecpc
	postSelect
	predict.ecpc
	print.ecpc
	produceFolds
	simDat
	splitMedian
	visualiseGroupset
	visualiseGroupsetweights
	visualiseGroupweights
	Index

