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Abstract

The R package econet provides methods for estimating parameter-dependent network
centrality measures with linear-in-means models. Both nonlinear least squares and max-
imum likelihood estimators are implemented. The methods allow for both link and node
heterogeneity in network effects, endogenous network formation and the presence of uncon-
nected nodes. The routines also compare the explanatory power of parameter-dependent
network centrality measures with those of standard measures of network centrality. Ben-
efits and features of the econet package are illustrated using data from Battaglini and
Patacchini (2018) and Battaglini, Leone Sciabolazza, and Patacchini (2020).

Keywords: network econometrics, heterogeneous peer effects, endogenous network formation,
least-square estimators, maximum likelihood estimators, R.

1. Introduction

Since its inception, network analysis has mostly focused on the discovery of topological prop-
erties of network structures. This has changed dramatically over the past ten years. An
emerging literature in economics has shown that network centrality measures, which were
traditionally viewed as descriptive, have an interpretation within equilibrium models of be-
havior. The pioneer paper is Ballester, Calvó-Armengol, and Zenou (2006). This paper
considers a model in which an agent’s effort is triggered by the effort of his/her socially con-
nected peers. It shows that the equilibrium levels of effort are linear functions of the agent’s
position in the network as measured by an indicator within the family of Katz-Bonacich cen-
tralities. Katz-Bonacich centralities (Katz 1953; Bonacich 1972, 1987) are network centrality
measures that count all nodes that can be reached through a direct or indirect path, pe-
nalizing in different ways the contributions of distant nodes in determining a given node’s
centrality. The discount factor is captured by a parameter, thus making the measures of
centrality parameter-dependent. The sociological literature has been treating this parameter
as a nuisance parameter, and arbitrarily setting it to any value smaller than one. However,
the contribution of Ballester et al. (2006) is to show that this parameter captures the strength
of peer effects or social interactions that stem from the aggregation of dyadic peer influences.
More specifically, the empirical counterpart of the Ballester et al. (2006) equilibrium condition
is a linear model of social interactions, where the individual levels of effort are linear functions
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of the levels of effort of the connected agents. The parameter capturing this influence is then
used to measure the individual’s importance in the network. Since then, a burgeoning empiri-
cal literature has used the linear-in-means model to prove that peer effects and the individual
position in the social network play an important role in explaining many social and economic
outcomes, including consumer behavior, voting patterns, job search, information diffusion,
innovation adoption, international trade and risk sharing (see e.g., An 2011, 2015a; Jackson,
Rogers, and Zenou 2017; Hsieh, Lin, and Patacchini 2020; Zenou 2016, for recent reviews).

Very recently Battaglini and Patacchini (2018) present a new theory of competitive vote-
buying to study how interest groups allocate campaign contributions when legislators care
about the behavior of other legislators to whom they are socially connected. The model
provides an alternative microfoundation for network measures within the family of Katz-
Bonacich centralities. This theory predicts that, in equilibrium, campaign contributions are
proportional to a parameter-dependent measure of network centrality, similar to the one pro-
posed by Ballester et al. (2006). While Ballester et al. (2006) is a purely theoretical paper,
Battaglini and Patacchini (2018) test the theory with data from five recent United States
(US) Congresses. In doing so, it confronts a variety of empirical challenges. For example, the
theories described above show the importance of combining the information on network cen-
trality with additional information on characteristics of the agents, since these characteristics
can magnify or reduce the role played by a central agent. Moreover, the theories provide a
framework to study the role of network endogeneity. In fact, when agents are strategic in
choosing their peers, and omitted variables (such as social skills) drive both agent’s behav-
ior and social connectedness, the estimation of the peer effects parameter might be flawed
(Manski 1993).1 Battaglini et al. (2020) derive a model to control for network endogeneity
allowing for a two-stage correction à la Heckman (Heckman 1979) and demonstrate the rel-
evance of alumni connections in shaping politicians’ legislative effectiveness. The common
trait between all these theoretical models is that they establish a link between observable
outcomes associated to a network node (for example, educational attainments as proxies of
effort levels in Ballester et al. (2006); the money received by politicians in Battaglini and
Patacchini (2018); the levels of legislative effectiveness in Battaglini et al. (2020)) and the
respective centrality of the node. This theoretical link can be used to estimate the parameter
in the centrality measure using the observable outcomes. This is useful because, for example,
it allows to test for network effects or to acquire a deeper knowledge of the topological features
of the respective networks.

The routines contained in the package econet (Battaglini, Leone Sciabolazza, Patacchini, and
Peng 2021) for R (R Core Team 2021) allow for implementation of a number of variations
of the linear-in-means model to obtain alternative centrality measures within the family of
Katz-Bonacich centrality. Both nonlinear least squares (NLLS) and maximum likelihood (ML)
estimators are provided. Several methods for dealing with the identification of network effects
are implemented. Moreover, the econet package allows for comparison of the explanatory
power of parameter-dependent network centrality measures with those of standard measures
of network centrality (Wasserman and Faust 1994). As a result, econet expands the large set of
tools available to R users interested in network analysis. Specifically, it has at least four merits.
First, it complements the R packages implementing traditional individual-level centrality
measures for binary networks, igraph (Csárdi and Nepusz 2006) and sna (Butts 2008), and

1See also An (2015a) and VanderWeele and An (2013) for a discussion on the difficulties in studying peer
effects.
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weighted networks, tnet (Opsahl 2009), and group-level centrality measures for both binary
and weighted networks, keyplayer (An and Liu 2016), by introducing new eigensolutions-
based techniques to rank individual agents’ centrality. Second, whereas previous packages,
such as btergm (Leifeld, Cranmer, and Desmarais 2018b), hergm (Schweinberger and Luna
2018), the statnet suite (Goodreau, Handcock, Hunter, Butts, and Morris 2008), and xergm

(Leifeld, Cranmer, and Desmarais 2018a), created environments for modeling the statistical
processes underlying network formation, econet provides the first framework to investigate
the socio-economic processes operating on networks (i.e., peer effects). Third, it completes
the collection of functions for modeling spatial dependence in cross-sectional data provided
by spdep (Bivand 2022) and splm (Millo and Piras 2012), by allowing the users to: i) consider
the presence of unconnected nodes, and ii) address network endogeneity. Finally, it equips the
R archive with routines still unavailable in other commonly used software for the investigation
of relational data, such as MATLAB (The MathWorks, Inc. 2011), Pajek (Batagelj and Mrvar
2003), Python (Van Rossum et al. 2011) and Stata (StataCorp 2017). The example we use to
showcase the functionality of our R package is taken from Battaglini and Patacchini (2018)
and Battaglini et al. (2020). The R package econet (Battaglini et al. 2021) is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=

econet

The rest of the paper is organized as follows. Section 2 briefly reviews the theoretical back-
ground of the different approaches used to model the socio-economic processes operating on
the network. Section 3 discusses the key elements for the estimation of parameter-dependent
centralities, and presents a general taxonomy of the models implemented by the R package
econet. Section 4 lays out various models and methods to deal with network endogeneity.
Section 5 demonstrates the use of the main functions of the package econet to determine
agent’s centrality with examples. Section 6 concludes.

2. Microeconomic foundation

This section provides a theoretical background for the network models of peer effects imple-
mented by the R package econet. Many network centrality measures have been introduced
in the literature, each capturing different aspects of network topology. Which is the correct
way to measure how central is an agent in a network? In this section we describe three
economic models that derive conditions under which the Katz-Bonacich centralities that can
be estimated using econet are the correct measures of an agent centralities. The aim is to
acquaint the researcher interested in working with econet of the different theoretical premises
of these models, so that he/she can choose the model and the relative econet functions most
appropriate for conducting his/her investigation.

Model A describes the competition between two or more lobbyists who distribute monetary
contributions among n legislators to influence their votes. Each lobbyist aims at maximizing
the number of legislators that vote for his/her own preferred policy option. Two legislators
are socially connected if they derive utility from voting in the same way. The model provides
conditions under which, in the unique Nash equilibrium of the game, the money promised to
legislator i is proportional to the Katz-Bonacich centrality of i. The model therefore provides
a clear economic interpretation to the Katz-Bonacich centrality and illustrates it relevance in
this context. This model was first presented in Battaglini and Patacchini (2018).

https://CRAN.R-project.org/package=econet
https://CRAN.R-project.org/package=econet
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Model B studies the extent to which social connections influence the legislative effectiveness
of members of the US Congress. By legislative effectiveness we mean the ability of a legislator
to pass legislation. In this model, the effectiveness in passing legislation of Congress member
i is described by a “production function” in which the inputs are the Congress member i’s
effort and the effectiveness of all other socially connected Congress members, each weighted
by the strength of their social link with i. To determine the optimal level of effort, a legislator
needs to predict the equilibrium effectiveness of all the socially linked Congress members,
who in turn need to do the same in a Nash equilibrium. Here too, the model provides
conditions under which the effectiveness of a Congress member in equilibrium is proportional
to a weighted version of the Katz-Bonacich centrality of the legislator, in which the weights
are a specific function of the legislator’s characteristics. This model was first presented in
Battaglini et al. (2020).

Models A and B are not alternative ways to represent the same economic problem. Models A
and B describe completely different social interactions: the first, a competitive game between
two lobbyists; the second, a cooperative game between n legislators.2 Models A and B are
therefore relevant to our discussion because they show how the similar centrality measure can
emerge as relevant in a completely different context. Since the tools provided in econet can
be used to estimate both generalities, these examples illustrate how econet can be useful in
studying completely different social problems.

Section 2.3 also shortly discusses the popular network model of peer effects by Ballester et al.

(2006). Interestingly, the prediction of this model is the same of that derived from Model B.
This implies that the functions contained in econet to estimate Model B can also be used to
test the predictions of the model by Ballester et al. (2006). The difference between model B
and Ballester et al. (2006) is in the way the strategic environment is modeled. In model B,
the productivity of i is affected by the productivity of the other socially connected players;
in Ballester et al. (2006), it is assumed that the cost of effort of i depends on the effort
level of the other players. In Ballester et al. (2006), the actions (i.e., the levels of effort) are
predicted to be equal to the Katz-Bonacich centralities; in model B, it is the outcomes that
are predicted equal to the centralities. Model B is better suited for empirical analysis as the
effectiveness can often be observed and measured, but not effort. Models that have attempted
to test the predictions of Ballester et al. (2006) have approximated effort with output, but
this approximation is not possible if other unobserved factors affect output. The model in
Ballester et al. (2006), however is an important reference point because it is one of the first
models to study these issues. The tools provided by econet are also useful in estimating the
parameters of the model in Ballester et al. (2006).

2.1. Setup of model A

Battaglini and Patacchini (2018), BP henceforth, consider a model in which a legislature with
n members chooses between one of two alternatives: a new policy, denoted by A, and a status
quo policy, denoted by B.3 Legislator i’s utility of voting for policy p, denoted by U i(x(p)),

2The difference is not just in the interpretation. The models are formally different games in a game theoretic
sense: the set of players are different, the strategy space is different, the payoffs are different.

3We present here a simplified version of the model in BP for brevity. We refer to the original paper for the
more general version.
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is:

U i(x(p)) = ω
(
si(p)

)
+ ϕ

∑

j

gi,jxj(p) + εi
p (1)

The first term in Equation 1 is the utility of the interest groups’ contributions: si(p) is the
contribution pledged in exchange for a vote for p, and ω (s) is the utility that legislator i’s
receives from a contribution s. The function ω(·) is increasing, concave and differentiable
with lims→0 ω

′(s) = ∞, lims→∞ ω′(s) = 0. The second term in Equation 1 describes the
social interaction effects. The social network is described by a n × n matrix G with generic
element gi,j > 0, xj(p) is an indicator function equal to one if legislator j chooses p and zero
otherwise, and gi,j measures the strength of the social influence of legislator j on legislator i.
The final term in Equation 1 represents other exogenous factors that may affect i’s preference
for or aversion to voting for p. The terms are normalized so that εi

A = εi, where εi can be
positive or negative, and εi

B is set at zero.4

Two interest groups, also denoted A and B, attempt to influence the policy outcome. Interest
group A is interested in persuading as many legislators as possible to chose policy A; interest
group B, instead, is interested in persuading the legislators to choose policy B. Each interest
group is endowed with a budget W and promises a contingent payment to each legislator
that follows its recommendation. Specifically, interest group A promises a vector of payments
sA = (s1

A, . . . , s
n
A) to the legislators, where si

A is the payment received by legislator i if he
chooses A; similarly, interest group B promises a vector of payments sB = (s1

B, . . . , s
n
B) to

the legislators, where si
B is the payment received by legislator i if he votes for B.

Legislator i is willing to vote for A if and only if E
[
U i

B(x) − U i
A(x)

]
≤ 0. It is assumed

that the interest groups do not know with certainty the legislators’ preferences, and so are
unable to perfectly forecast how payments affect their voting behavior: so εi is assumed to
be an independent, uniformly distributed variable with mean zero and density Ψ > 0, whose
realization is observed only by i. Observing that the probability that legislator i votes for A
is φi = E(xi(A)), we therefore have that i votes for A only if:

εi ≤ ω(si
A) − ω(si

B) + ϕ
∑

j
gi,j (2φj − 1) , (2)

From Equation 2, we have that in an interior solution in which all probabilities are in (0, 1),
the legislators’ probabilities of choosing A, φ = (φ1, . . . , φn), are characterized by the non
linear system:



φ1

. . .
φn


 =




1/2 + Ψ
(
ω(s1

A) − ω(s1
B) + ϕ

∑
j g1,j (2φj − 1)

)

. . .

1/2 + Ψ
(
ω(sn

A) − ω(sn
B) + ϕ

∑
j gn,j (2φj − 1)

)


 (3)

that gives a unique vector of equilibrium probabilities φ(s) = {φ1(s), . . . , φn(s)}.

The game proceeds as follows. In stage 1, the lobbyists simultaneously commit to a vector of
payments sA and sB, without observing εi

p. A strategy for interest group l is a probability

4Obviously, it is natural to assume that the legislators care about the outcome of the vote. This effect of
their vote is proportional to the probability of being pivotal: that is, the case in which A and B votes are tied,
or one of them is one vote below the other. The exact pivotal probabilities are computed and incorporated in
the legislators’ expected utilities in the analysis in BP. Here we omit these terms for simplicity, since in any
case they are very small in an election with hundreds of voters.
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distribution over the set of feasible transfers S, that is:

S = {s :
∑

i
si ≤ W, si ≥ 0 for i = 1, . . . , n}.

In stage 2, the Congress members see the vector of payments and the shocks εi
ps and optimally

decide how to vote. The lobbyists therefore expect the Congress members to vote with
probabilities φ(s) = {φ1(s), . . . , φn(s)} given by Equation 3.

A pair of strategies constitute a Nash equilibrium if they are mutually optimal: the strategy
of interest group A maximizes the expected number of legislators who adopt A given φ and
interest group B’s strategy; and the strategy of interest group B minimizes the expected
number of legislators who adopt A given φ and interest group A’s strategy.

Interest group A solves:

max
sA∈S

{
∑

i

[φi(sA, sB)]

}
(4)

taking sB as given. Interest group B’s problem is the mirror image of A’s problem, as it
attempts to minimize the objective function of Equation 4 taking sA as given. The equilibrium
solution must satisfy the first order condition:

∑
j
∂φj(sA, sB)/∂si

l = λl and
∑n

j=1
sj

l = W for i = 1, . . . , n, l = A,B (5)

where λl is the Lagrangian multiplier associated with the budget constraints
∑

i s
i
l ≤ W in

interest group l’s problem. BP show that the problem of Equation 4 is well behaved and fully
characterized by Equation 5; in equilibrium, moreover, A and B have the same Lagrangian
multipliers λA = λB = λ∗, so the first order condition is:

Dφ⊤ · 1 = λ∗

where Dφ⊤=(∂φ∗
1/∂s

i
A, . . . , ∂φ

∗
n/∂s

i
A).

To understand the relationship between lobbying and centralities we need to “unpack” the
voting probabilities. Differentiating Equation 3 and rearranging, we obtain:

Dφ = Ψ [I − 2Ψϕ · G]−1Dω (6)

where Dφ and Dω are the Jacobians of, respectively, φ and ω. Using Equation 6, we can
rewrite the first order condition for the optimality of the lobbyists as:

Dφ⊤ · 1 = Ψ ·Dω⊤ ·
(
I − ϕ∗ · G

⊤
)−1

· 1 = λ∗ (7)

⇒ Dω⊤ · b
(
ϕ∗,G⊤

)
= λ∗/Ψ

where ϕ∗ = 2Ψϕ and b
(
ϕ∗,G⊤

)
is the vector of Bonacich centralities of the matrix G

⊤ with

parameter ϕ∗. Note that Dω is a vector of zeros except for its i-th element that is equal to
ω′(si

∗). We can therefore write our necessary and sufficient condition of Equation 7 as:

bi

(
ϕ∗,G⊤

)
· ω′(si

∗) = λ∗ for i = 1, . . . , n (8)

where, without loss in generality, we have incorporated the constant Ψ in the Lagrangian
multiplier λ∗. The necessary and sufficient condition of Equation 8 shows the determinants
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of the interest group’s monetary allocation. The interest group chooses si
∗ equalizing the

marginal cost of resources to its marginal benefit. The marginal cost is measured by the
Lagrangian multiplier λ∗ of Equation 4. The marginal benefit is measured by the increase
in expected votes for A. Equation 8 makes clear that, because of network effects, the direct

benefit of making a transfer to i is magnified by a factor that is exactly equal to bi

(
ϕ∗,G⊤

)
,

the Bonacich centrality of i in G
⊤ with a constant ϕ∗.

2.2. Setup of model B

Battaglini, Leone Sciabolazza, and Patacchini (2020), BLP henceforth, consider a congress
comprised of n legislators, where N = {1, . . . , n} is the set of legislators. Each legislator
has a pet legislative project that she/he wants to implement. The goal of each legislator is
to maximize her/his legislative effectiveness, measured by the probability of implementing
the project. They assume that legislator i’s legislative effectiveness at the r-th congress yr,i

is a function of i’s characteristics, her/his effort and the legislative effectiveness of all the
legislators that i has befriended. Specifically, the technology is assumed to be:

yr,i = Ar,i + φ
√∑

j

gi,jyr,j · li (9)

Equation 9 represents the “production function” for legislative effectiveness. The first term,
Ar,i, is a fixed effect idiosyncratic to i.5 The second term, which is new in our model, captures
the importance of social connections. The social network is described by a n × n matrix G

with the generic element gi,j that measures the strength of the social influence of legislator
j on legislator i. The adjacency matrix can be as simple as tracking the connections among
legislator i and j, for example, gij = 1 if i is connected to j (j ̸= i) and gij = 0 otherwise.
We set gii = 0. The level of effort is li; the cost of exerting a level of effort li is (li)

2 /2.

A strategy for a legislator is described by a function li : T → [0, 1], mapping i’s type Ai to
an effort level. It is assumed that when the floor opens for business, each legislator i chooses
her/his own level of effort li simultaneously, taking as given the social network and her/his
own expectations of the other legislators’ effectiveness. Given the optimal reaction functions,
the levels of effectiveness are endogenously determined by Equation 9.6

The optimal level of effort li by a type i = 1, . . . , n solves the problem:

max
li



Ai + φ



√√√√

n∑

j=1

gi,jyr,j


 · li − (li)

2 /2



 ,

taking yr = (yr,1, . . . ,yr,n) as given. Substituting the solution to this maximization problem
in condition of Equation 9, we obtain that the equilibrium levels of legislative efficiency for

5This term may include a variety of characteristics that have been highlighted in the existing literature as
important for effectiveness: the legislator’s seniority, gender and race (potentially in the presence of discrimi-
nation) and the legislator’s position in the committee system and party hierarchy.

6This approach is similar to that in general equilibrium theory in economics where consumers choose their
optimal consumption taking prices as given: here legislators choose their levels of effort taking the other
legislators’ effectiveness as given. As in general equilibrium theory (where prices are endogenous since they
need to clear markets), here the levels of effectiveness are endogenous since they must satisfy the externality
Equation 9 given the optimal effort levels.
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a type i = 1, . . . , n are given by: yr,i = Ar,i + φ2

2

∑n
j=1 gi,jyr,j . These equations can be

expressed in matrix form as:

[
I −

(
φ2/2

)
· G

]
· yr = Ar (10)

where yr = (yr,1(G,Ar), . . . ,yr,n(G,Ar))′ is the vector of legislative effectiveness yr,i(G,Ar)
solving Equation 10, and Ar = (Ar,1, . . . , Ar,n)′ is the vector of types’ characteristics. The
equilibrium levels of effectiveness are therefore uniquely defined as:

(yr,1(G,Ar), . . . ,yr,n(G,Ar))′ =
[
I −

(
φ2/2

)
· G

]−1
Ar.

that is the weighted Katz-Bonacich centrality of legislator i in network G with discount
factor φ2/2 and weights Ar = (Ar,1, . . . , Ar,n)′. In the presence of social spillovers among
connected legislators (i.e., φ > 0), however, the effectiveness of any legislator depends on the
characteristics of all other legislators, with each legislator weighted using their distance in the
network (the weights given by the rows of

[
I −

(
φ2/2

)
· G
]−1

). The standard model is nested
as a special case of the more general model (with φ = 0), and so we are able to test if social
connections improve the fit of our estimates of E.

2.3. Alternative setup

Alternative microfoundations are games with linear-quadratic utilities that capture linear
externalities in agents’ actions. A popular setup is a social network model of peer effects with
conformity preferences. Let yr,i denote the legislator i’s legislative effectiveness at the r-th
congress. Denote by y

r,i the average effort of individual i’s peers, given by:

y
r,i =

1

ḡi

n∑

j=1

gi,jyr,j,

Each legislator i at the congress r selects an effort yr,i, and obtains a payoff ur,i(yr) that
depends on the effort profile yr in the following way:

ur,i(yr) = (ar,i + ηr + εr,i) yr,i, −
1

2
y2

r,i, −
d

2
(yr,i, − y

r,i)
2 (11)

where d > 0. The benefit part of this utility function is given by (ar,i + ηr + εr,i) yr,i, while the
cost is 1

2y2
r,i,; both are increasing in own effort yr,i,. In this part, ar,i denotes the agent’s ex-

ante idiosyncratic heterogeneity, which is assumed to be deterministic, perfectly observable by
all individuals in the network and corresponds to the observable characteristics of individual
i and to the observable average characteristics of individual i’s peers. To be more precise, ar,i

can be written as:

ar,i =
M∑

m=1

βmx
m
r,i +

1

ḡi

M∑

m=1

n∑

j=1

θmgij x
m
r,i

where xm
r,i is a set of M variables accounting for observable differences in individual charac-

teristics of individual i, and βm, θm are parameters. In the utility function of Equation 11)
ηr denotes the unobservable network characteristics and εr,i is an error term, meaning that
there is some uncertainty in the benefit part of the utility function. Both ηr and εr,i are ob-
served by the individuals but not by the researcher. The second part of the utility function
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d
2 (yr,i, − y

r,i)
2 reflects the influence of peers’ behavior on own behavior. It is such that each

individual wants to minimize the social distance between herself and her reference group,
where d is the parameter describing the taste for conformity. Here, the individual loses util-
ity d

2 (yr,i, − y
r,i)

2 from failing to conform to others. This is the standard way economists
have been modeling conformity (see, among others, Akerlof 1980, Bernheim 1994, Kandel and
Lazear 1992, Akerlof 1997, Fershtman and Weiss 1998, Patacchini and Zenou 2012, Patac-
chini, Rainone, and Zenou 2012).7 The social norm y

r,i can be interpreted as peers’ social
status. Observe that the social norm here captures the differences between individuals due
to network effects. It means that individuals have different types of friends and thus different
reference groups y

r,i. As a result, the social norm each individual i faces is endogenous and
depends on her location in the network as well as the structure of the network.

In this game where agents choose their effort level yi,k ≥ 0 simultaneously, there exists an
unique Nash equilibrium (see, e.g., Patacchini and Zenou (2012) given by:

y∗
r,i, = ϕ

1

ḡi

nk∑

j=1

gijy∗
r,j, + (1 − ϕ) (ar,i + ηr + εr,i)

where ϕ = d/(1+d). The optimal effort level depends on the individual ex ante heterogeneity
(ar,i), on the unobserved network characteristics (ηr) and it is increasing with the average
effort of the reference group.

3. Network models of peer effects

Following the notation defined in the previous section, for each network r with adjacency

matrix G = [gij ], the k-th power of G given by G
k = G

(ktimes)
... G keeps track of direct and

indirect connections in r. More precisely, the (i, j)-th cell of G
k gives the number of paths of

length k in r between i and j. In particular, G
0 = I.

Definition 1 (Katz 1953; Bonacich 1987). Given a vector u ∈ R
n
+, and ϕ ≥ 0 a small enough

scalar, the vector of Katz-Bonacich centralities of parameter ϕ in network g is defined as:

b (g, ϕ) = (I − ϕG)−1
u =

∞∑

p=0

ϕp
G

p
u. (12)

The reduced form of the first order necessary and sufficient condition for optimality in the
behavioral model A developed by BP (see Equation 8), can be written as:

yr = α · (I − ϕG)−1 +X⊤
r β + ϵr, (13)

where yr is the vector of outcomes for the n agents in network r,8 Xr is a matrix collecting
the characteristics of the agents and ϵr is a random error term. The coefficients α, ϕ and β

7Ballester et al. (2006) and Calvó-Armengol, Patacchini, and Zenou (2009) present similar microfoundations
for peer effects where agents’ behavior depends on the aggregate (rather than average) behavior of peers.

8In the context investigated by BLP, y is the amount of money received by legislators from interest groups
in support for their electoral campaign. Observe that model A can be applied to the study of peer effects
in other contexts where the behavior of the agents under study is consistent with the theory underlying this
model. The same reasoning applies for model B. The interested readers is referred to the recent reviews by
An (2011, 2015a); Jackson et al. (2017); Hsieh et al. (2020); Zenou (2016) for a comprehensive review of the
many empirical applications of network models of peer effects.
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are the parameters to estimate. Model 13 can be written as

yr = α · b1 (g, ϕ) +X⊤
r β + ϵr,

where b1 (g, ϕ) = b (g, ϕ) from Equation 12 when u = 1.
For a sample with r̄ networks, one can stack up the data by defining y = (y⊤

1 , · · · ,y⊤
r̄ )⊤, ϵ =

(ϵ⊤
1 , · · · , ϵ⊤

r̄
)⊤, b(ϕ) =

(
b (g, ϕ)⊤ , . . . , b (g, ϕ)⊤

)⊤
, X = (X⊤

1 , . . . ,X
⊤
r ) andG = diag{Gr}r̄

r=1.

Observe that the generic matrix Gr has dimension nr ×nr, and G has dimension n×n, with
n =

∑r̄
r=1 nr. For the entire sample, the model is:

y = α · b(ϕ) +Xβ + ϵ (14)

We extend Model 14 by accounting for heterogeneity in network spillovers. Specifically,
Model 14 becomes:

y = α[I −G(ϕI + γΛ)]−11 +Xβ + ϵ (15)

where Λ = I ⊗ z is a matrix with the values in the vector z on the diagonal, and all other
values are 0. Matrix I has dimension n × n and the vector z has dimension has dimension
1 × n. The vector z represents a given characteristic of the agents. Consistently, the term
γ allows for the possibility that agents with different characteristics may be more or less
susceptible to social spillovers.

The reduced form of the first order necessary and sufficient condition for optimality in the
behavioral model developed by BLP (see Equation 10), is:

yr = (I − ϕG)−1 (α+X⊤
r β) + ϵr

which can be rewritten as:
yr = b2 (g, ϕ) + ϵr (16)

where b2 (g, ϕ) = b (g, ϕ) from Equation 12 when u = (α + X
⊤
r β). Equation 16 shows

that, in this case as well, the optimal behavior is proportional to a centrality measure within
the Family 12. When we consider the case where the parameter ϕ associated with network
externalities is not constant across agents, Model 16 in matrix formulation becomes:

y = (I − θΛG)−1(α+Xβ) + ϵ (17)

y = (I − ηGΛ)−1(α+Xβ) + ϵ (18)

In Equations 17 and 18, Λ is an identity matrix with dimension n × n. In Equation 17,
θ = θ0 + θ1z, where θ0 is a rescaling factor, and θ1 quantifies the interaction between the
adjacency matrix G and the vector z. Consequently, θ1 measures the extent to which the
peers of an agent with a given characteristic are susceptible to her/his influence. Similarly,
in Equation 18, η = η0 + η1z, where η0 is a rescaling factor, and η1 measures the extent to
which an agent with a given characteristic z is more susceptible to the influence of her/his
peers.9

In addition, BLP also consider the possibility of heterogeneous links (rather than nodes). We
consider the case in which agents belong to two different groups and interactions are different
between and within groups. To allow for group effects, one can reorder the matrix G so that

9For additional details on these models see the online appendix of the paper by Battaglini et al. (2020).
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the first n1 columns refer to agents in the first group, and the other n2 = n−n1 columns refer
to agents in the second group. The matrix G can now be divided into four submatrices. The
submatrices in the main diagonal (of dimensions n1 · n1 and n2 · n2) collect the interactions
within groups, whereas the remaining two submatrices (of dimensions n1 · n2 and n2 · n1)
collect interactions between groups. G can thus be decomposed in two n ·n matrices Gwit and
Gbtw, with G = Gwit + Gbtw. Gwit is a matrix that has the same top left and bottom right
components as G and it is zero otherwise, and Gbtw is a matrix that has the same bottom
left and top right components as G and it is zero otherwise. As a result, Model 16 becomes

y = (I − ϕ1Gwit − ϕ2Gbtw)−1(α+Xβ) + ϵ (19)

where ϕ1 captures within-group spillovers, and ϕ2 between-group spillovers. The taxonomy of
models outlined above shows that centrality measures should be calculated according to the
most appropriate behavioral model describing the agents’ behaviors and the requested level
of heterogeneity of agents and network links. In BP and BLP we bring these theories to the
data and find support for their predictions in different contexts.

3.1. Estimation

Models 14 and 16 cannot be estimated by a simple OLS regression in which y represents
the dependent variables and b(ϕ) and X are the independent variables because b(ϕ) is a
nonlinear function of a parameter to be estimated, ϕ. We can, however, obtain estimates for
α, ϕ and β using NLLS or ML.

The NLLS requests solving the nonlinear least-squares problem for Equation 14 and 16. This
task is performed by econet using the Levenberg-Marquardt algorithm implemented by Box,
Davies, and Swann (1969) in the R package minpack.lm developed by Elzhov, Mullen, Spiess,
and Bolker (2022). The details of how the NLLS works in practice can be found in More
(1978).

The ML estimation requests ML functions that can be derived as follows, by assuming ε ∼
N(0, σ2I). For Equation 14, assume ε ∼ N(0, σ2I), the log likelihood function is

ln (L) = −
n

2
ln (2π) −

1

2
ln σ2 −

1

2

[
y − (I − ϕG)−11 −Xβ

]′ [
y − (I − ϕG)−11 −Xβ

]
/σ2

where n is the total sample size. Equation 15 will have the same form as Equation 14, except
substituting ϕG with G(ϕI + γΛ).

In a similar fashion, we consider the following maximum likelihood functions for Equation 16,
17, 18 and 19. For Equation 16, the log likelihood function corresponding to Equation 20
is:

y =
n

2
ln (2π) −

1

2
ln|Ω| −

1

2

[
y − (I − ϕG)−1Xβ

]′
Ω−1

[
y − (I − ϕG)−1Xβ

]
(20)

where Ω = σ2(I − ϕG)−1(I − ϕG′)−1. Equation 17, 18 and 19 have the same likelihood
function as above except substituting ϕG with θΛG or ηGΛ or ϕ1Gwit − ϕ2Gbtw. When the
network is sparse, isolates (i.e., individuals with no neighbors) will exist.In this case, we can
modify the likelihood function to expedite the process. Rewrite

G =

(
Gc

n1×n2
0n1×n2

0n2×n1
0n2×n1

)
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where n1 is the size of all connected individuals and n2 is the sizes of isolates.

(I − ϕG)−1 =

( (
I − ϕGc

n1×n2

)−1
0n1×n2

0n2×n1
In2×n1

)

Define y =
(
yc′

, yu′

)′
and X =

(
Xc′

, Xu′

)′
. The likelihood function (Equation 20) can be

transformed into:

y =
n1

2
ln (2π) −

1

2
ln|Ω1| −

1

2

[
yc − (I − ϕGc)−1Xcβ

]′
Ω1

−1
[
yc − (I − ϕGc)−1Xcβ

]
+

n2

2
ln (2π) −

n2

2
σ2 −

1

2
[yu −Xuβ]′ [yu −Xuβ]

(21)

Where Ω1 = σ2(I − ϕGc)−1(I − ϕGc)−1.

Our package allows the adjacency matrix to be used as a direct input. This setting simplifies
the data processing procedure compared with other R packages like spdep when dealing with
social network data. Packages like spdep are designed for spatial data. In this environment,
the network data is required to be imported as neighbor pairs. However, social network data
differs from spatial data since isolates may exists (nodes that have no connection with all
other nodes). Networks containing isolates are not compatible with the data structure for
packages like spdep.

Our package not only provides a way to get around this problem but also proposes an efficient
algorithm when including those isolates. Instead of inverting the entire adjacency matrix, we
show in the algebra above that one only needs to invert the adjacency matrix for connected
nodes. The likelihood function can be written as a sum of the spatial auto-regressive (SAR)
likelihood function for connected nodes and a standard linear likelihood function of isolates
(see Equation 21).

4. Addressing network endogeneity

In many real-world contexts, the network topology is the result of the choices of the agents as
much as their behavior over the observed topologies. As a result, the data structure can be
endogenous, and inference neglecting this issue would be invalid. The simplest way to tackle
the problem is to model network formation using a homophily model (see e.g., Fafchamps and
Gubert 2007; Mayer and Puller 2008; Lai and Reiter 2017; Apicella, Marlowe, Fowler, and
Christakis 2012; Attanasio, Barr, Cardenas, Genicot, and Meghir 2012) where the existence
of a link between i and j, gi,j , is explained by the distance between i and j in terms of
characteristics, according to the model

gi,j = δo +
∑

l

δl+1|xl
i − xl

j | + ui,j (22)

where xl
i for l = 1, . . . , L are i’s characteristics. As standard in the literature on dyadic

link formation, the main assumption underlying Model 22 is dyadic independence, i.e., the
assumption that each agent’s choices are not influenced by others’ decisions, and therefore
each link in the network occurs with the same probability.10

10This approach can be extended to dyadic dependence using latent space models or exponential random
graph models (see An 2011, for a discussion).
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Fafchamps, Leij, and Goyal (2010) and Graham (2015) suggest a variation of this model
where this assumption can be tested. They suggest to include in the model the length of the
shortest distance between i and j (Fafchamps et al. 2010), or the number of shared friends
between i and j (Graham 2015).

Let us denote this additional variable, κi,j :

gi,j = δo + δ2κi,j +
∑

l

δl+w|xl
i − xl

j | + ui,j (23)

A statistically significant estimate of the parameter δ2 would suggest that the presence of a
link depends on the presence of links at path lengths higher than 2 (or on the number of
shared friends), thus indicating a violation of the hypothesis of dyadic independence.

A different variation of Model 22 is proposed by Graham (2016). The model in Graham
(2016) accounts for agents’ unobserved heterogeneity by adding fixed effects for agents i and
j:

gi,j = δo + δ1ωi,j +
∑

l

δl+1|xl
i − xl

j | + ιi + ιj + ui,j , (24)

These models of network formation can help mitigate concerns about network endogeneity
in linear models of peer effects, such as Models 14 and 16, in one of two ways: i) they can
be used to predict network connections on the basis of exogenous agents’ characteristics and
then use the predicted network topology as an instrument for the actual network structure,
or ii) they can be used as a first step selection equation to derive a correction for network
endogeneity à la Heckman.11

BLP follow approach ii. Under the assumption that εr = (εr,1, . . . , εr,n)′ and {(ui,j,r)}i,j are
jointly normal with E(ϵ2i,r) = σ2

ϵ , E(ϵi,rui,j,r) = σϵu for all i ̸= j, E(ui,j,ruik,r) = σ2
u ∀j = k,

and E(ui,j,rui,k,r) = 0 ∀j ̸= k, the expected value of the error term conditional on the link
formation is E(ϵi,r | {ui,j,r}j ̸=i) = ψ ·

∑
j ̸=i ui,j,r, where ψ = σϵu/σ

2
u. It follows that Model 16

can be written as:

yr = [I − ϕG]−1 · [α · 1 + Xrβ+ψξr+εr] (25)

where ξi,r =
∑

j ̸=i ui,j,r with ξr = (ξi,r, . . . , ξn,r)
′

. The term ψξr now captures the selection
bias. The model can then be estimated with NLLS (see Section 3). Under these assumptions,
approach i) and approach ii) should produce similar results since both deliver consistent
estimators.

Under approach i), however, inference is complicated because the selectivity term ξ is a gen-
erated regressor from a previous estimation and no closed form solution is available for the
NLLS standard errors estimates in a network context. For this reason, BLP use bootstrapped
standard errors. Because of the inherent structural dependency of network data, the design of
the resampling scheme for this bootstrap procedure needs special consideration. The residual
vector in Equation 25 does not contain i.i.d. elements, and one cannot sample with replace-
ment from this vector. Then, BLP use the residual bootstrap procedure, which is common
in spatial econometrics (see Anselin 1990), where resampling is performed on the structural
errors, under the assumption that they are i.i.d. In practice, the vector of structural errors
are derived from ε = [I − ϕ̂G]u, where u is the residual vector from Equation 24.

11See Heckman (1979), who first proposed this technique. For different applications of the Heckman approach
in spatial statistics and for network models see Johnnson and Moon (2021); Qu and Lee (2015).
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An important challenge in using the two step procedures for both approach i) and ii) is finding
exclusion restrictions, that is factors that affect network formation only.12 This is notoriously
a difficult task. BLP use an original instrument: connections between agents which are made
during adolescence. Those connections are powerful predictors of social contacts later on in
life, but clearly predetermined to decisions taken in the adulthood.

5. Implementing econet

We now turn the discussion to the implementation of the functions contained in econet. econet

implements the set of linear models of social interactions introduced in Section 2, where an
agent’s outcome is a function of the outcomes of the connected agents in the network. The
routines provide both NLLS and ML estimators. The possible sources of endogeneity that
could hinder the identification of a causal effect in the model can be addressed by imple-
menting the two-step correction procedures described in Section 3. The estimated parameter
capturing the impact of the social network on an agent’s performance is then used to measure
the individual importance in the network, obtaining a weighted version of Katz-Bonacich
centrality. Finally, the explanatory power of the parameter-dependent centrality can be com-
pared with those of standard measures of network centrality. It is worth emphasizing that
econet allows the inclusion of unconnected agents, for whom the Katz-Bonacich centrality is
constant.

Specifically, econet provides four functions. The first one is net_dep, which allows one to
estimate a model of social interactions and compute the relative weighted Katz-Bonacich
centralities of the agents. Different behavioral models can be chosen (i.e., those provided by
BP and BLP). Moreover, the hypothesis of homogeneous or heterogeneous spillovers can be
tested. The second function is boot, which is built to obtain valid inference when the NLLS
estimator with Heckman correction is used. The third function is horse_race, which allows
one to compare the explanatory power of parameter-dependent centralities relative to other
centrality measures. The fourth function is quantify, and it is used to assess the effect of
control variables in the framework designed by BLP.

5.1. Detailing the functions

The modeling choices presented so far are implemented by the function net_dep. The first
three arguments of this function are: i) formula, an object of class ‘formula’ which specifies
the independent variable and the controls; ii) data, an object of class ‘data.frame’ containing
the values of the variables included in formula, iii) G, an object of class ‘Matrix’ where the
generic element gij is used to track the connection between i and j in the social network.
G can be unweighted (i.e., gij = 1 if i and j are connected, and 0 otherwise), or weighted
(e.g., gij collects the intensity of the relations between i and j) and column-normalized. The
matrix must be arranged in the same order of the data, and row and column names must
indicate agents’ ids.

12Technically, the two step model is identified even using exactly the same set of regressors in both stages
since the dyad-specific repressors used in the first stage (the network formation stage) are expressed in absolute
values of differences. These differences do not appear in the outcome equation. Identification is thus achieved
by exploiting non-linearities specific to the network structure of our model. While this strategy has been used
in the applied network literature (see e.g., Goldsmith-Pinkham and Imbens 2013; Hsieh and Lee 2016), it may
be a tenous source of identification in some cases.
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Model Hypothesis Equation Centrality measure b (g, ϕ)

A lim 14 ϕ: homogeneous b (g, ϕ) = (I − ϕG)−1 1
het 15 ϕ: heterogeneous by node type b (g, ϕ) = [I −G(ϕI + γΛ)]−11

B lim 16 ϕ: homogeneous b (g, ϕ) = (I − ϕG)−1 1
het_l 17 ϕ: heterogeneous outgoing influence

by node type
b (g, ϕ) = (I − θΛG)−11

het_r 18 ϕ: heterogeneous ingoing influence
by node type

b (g, ϕ) = (I − ηGΛ)−11

par 19 ϕ: heterogeneous by link type b (g, ϕ) = (I−ϕ1Gwitϕ2Gbtw)−11

Table 1: Field specification in net_dep.

The next two arguments in net_dep, model and hypothesis, are used to specify the model to
be estimated through an object of class ‘character’, as documented in Table 1. Specifically,
the argument model indicates the framework to be applied: i.e., it is set to Model_A or Model_B

to implement respectively the framework by BP and BLP. The argument hypothesis is
necessary to indicate whether peer effects are assumed to be homogeneous model = "lim" or
heterogeneous (model = c("het", "het_l", "het_r")).

The argument z is used to specify the source of heterogeneity for the peer effects parameter
ϕ (i.e., the variable z in Equations 15, 17, 18), or the groups in which the network should
be partitioned when model = "par". Specifically, z is a numeric vector where the generic
element i refers to agent’s i characteristic (e.g., it takes 1 if i is a female, and 0 otherwise).

In order to correct for the potential bias arising from network endogeneity, we include in the
function four arguments: i) endogeneity, a logical object equal to TRUE if net_dep should
implement the two-step correction procedure as e.g., in Model 25, and FALSE otherwise; ii)
correction, an object of class ‘character’ that is set to indicate whether net_dep should
implement a Heckman correction (correction = "heckman"), or an instrumental variable
approach (correction = "iv"); iii) exclusion_restriction, a object of class ‘Matrix’ used
to specify the matrix to instrument the endogenous network; iv) first_step, an object of
class ‘character’ which specifies the network formation model to be used in the first step of
the procedure for both correction = "heckman" and correction = "iv". This argument
can be equal to standard (Equation 22), shortest (Equation 23, as in Fafchamps et al.

2010), coauthor (Equation 23, as in Graham 2015), fe (Equation 24), and degree, where
the difference in degree centrality between agents is an additional regressor of Equation 22.

Finally, the argument estimation allows the user to choose the estimation technique. This is
an object of class ‘character’ that can be one of two options: NLLS (nonlinear least squares),
which implements the Levenberg-Marquardt optimization algorithm for solving the nonlin-
ear least-squares problem using the function nlsLM contained in the R package minpack.lm

(Elzhov et al. 2022) or MLE (maximum likelihood), which uses the function mle2 of the R pack-
age bbmle to implement the quasi-Newton method by Bolker and R Core Team (2021) for
maximum-likelihood bound constrained optimization.

The complete list of all the inputs of the function net_dep is available in the help page of the
package econet, and it is accessible from R by running the code ?net_dep.

The output of net_dep consists of a list of three objects: i) the point estimates and relative
standard errors of the model’s parameters; ii) the vector of agents’ network centrality; iii)
the point estimates and relative standard errors of the parameters of the first stage model, if
endogeneity = TRUE.
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We provide below a list of examples to illustrate the functionality of net_dep. Since in all
examples we reject the hypothesis of normality of the errors, the NLLS estimation method is
used.13

Exercise 1: Katz-Bonacich centrality with parameter constant across agents

In the first example, we estimate the association between a Congress member’s network
centrality and the amount of dollars he received from interest groups to finance his electoral
campaign for the 111th Congress using Model 14. The variables used to control for the effect
of legislators’ characteristics are: party affiliation (party); gender (gender); chairmanship
(nchair); whether or not the Congress member has at least one connection in the network
(isolate).

The network used for this exercise represents the connections between agents which are made
during adolescence. The network is constructed using information on the educational insti-
tutions attended by the Congress members. Specifically, we assume that a tie exists between
two Congress members if they graduated from the same institution within eight years of each
other. We set a link between two Congress members, gij , to be equal to the number of schools
they both attended within eight years of each other; then we row normalize the social weights
so that

∑
i gij = 1 for any i. This analysis is a simplified version (in terms of both data and

controls included in the model specification) of the analysis in BP.

R> library("econet")

R> set.seed(2)

R> data("a_db_alumni", package = "econet")

R> data("G_alumni_111", package = "econet")

R> db_model_A <- a_db_alumni

R> G_model_A <- a_G_alumni_111

R> are_factors <- c("party", "gender", "nchair", "isolate")

R> db_model_A[are_factors] <- lapply(db_model_A[are_factors], factor)

R> db_model_A$PAC <- db_model_A$PAC/1e+06

R> f_model_A <- formula("PAC ~ gender + party + nchair + isolate")

R> starting <- c(alpha = 0.47325, beta_gender1 = -0.26991,

+ beta_party1 = 0.55883, beta_nchair1 = -0.17409,

+ beta_isolate1 = 0.18813, phi = 0.21440)

R> lim_model_A <- net_dep(formula = f_model_A, data = db_model_A,

+ G = G_model_A, model = "model_A", estimation = "NLLS",

+ hypothesis = "lim", start.val = starting)

R> summary(lim_model_A)

Call:

Main Equation: PAC ~ alpha * solve_block(I - phi * G) %*% Ones +

beta_gender1 * gender1 + beta_party1 * party1 +

beta_nchair1 * nchair1 + beta_isolate1 * isolate1

13Observe that in the examples presented in the paper, a set of starting values is used to estimate NLLS
with the function net_dep. When these are not provided by the user, net_dep uses some random values, and
NLLS takes significantly more time to converge in this case. The reader interested in learning more about
how starting values should be used when running NLLS estimations can refer to Box et al. (1969). Additional
details on how to specify starting values with net_dep can be found by running the code ?net_dep from R.
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Estimate Std. Error t value Pr(>|t|)

alpha 0.47325 0.17969 2.634 0.00876 **

beta_gender1 -0.26991 0.10504 -2.570 0.01052 *

beta_party1 0.55883 0.08363 6.682 7.5e-11 ***

beta_nchair1 -0.17409 0.19004 -0.916 0.36016

beta_isolate1 0.18813 0.18196 1.034 0.30178

phi 0.21440 0.27005 0.794 0.42768

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC: 1042.55 loglik: -514.28

In this model, the estimate of the spillover effect (ϕ), assumed to be the same for all Congress
members, is positive (even though is not statistically significant in this example): The es-
timated value of ϕ is used to calculate the weighted Katz-Bonacich centrality of the agents
(as mentioned, this value can be extracted from the second object stored in the output of
net_dep: e.g., lim_model_A$centrality). The estimate of the intercept α directly measures
the impact of this network centrality measure. Its interpretation is akin to the one of an
estimated coefficient in a linear regression model. We find a positive effect of a legislator’s
centrality on campaign contributions, showing that more connected Congress members are
likely to receive more attention from interest groups. Specifically, when the Katz-Bonacich
centrality of agent i increases by one unit, the amount of dollars received by i from interest
groups increases by 0.47 × 1, 000, 000 = 470, 000$. The same logic can be applied to interpret
the other estimated coefficients.

Let us now repeat the same exercise for Model 16. We use a simplified version (in terms
of both data and controls included in the model specification) of the analysis presented in
BLP. Our goal here is to investigate the association of legislative networks with Congress
members’ legislative effectiveness score (LES). Network ties are defined here as the number
of bills that j cosponsored with i. Also in this case, we impose that

∑
i gij = 1. The

underlying idea is that legislators’ productivity is affected by the productivity of the other
legislators with whom they interact. However, while alumni connections are formed during
adolescence and can thus be reasonably assumed to be exogenous to a Congress member’s
political activity, cosponsorships are instead endogenous, since legislators are clearly strategic
in choosing with whom to cosponsor a bill. The function net_dep allows the users to control
for network endogeneity using the Heckman correction procedures described in Section 3.1.
The legislators’ characteristics used in this context are the same used in the previous example
except the variable isolate, since all Congress members have at least one cosponsorship link.

R> data("db_cosponsor", package = "econet")

R> data("G_alumni_111", package = "econet")

R> db_model_B <- db_cosponsor

R> G_model_B <- G_cosponsor_111

R> G_exclusion_restriction <- G_alumni_111

R> are_factors <- c("gender", "party", "nchair")

R> db_model_B[are_factors] <- lapply(db_model_B[are_factors] , factor)

R> f_model_B <- formula("les ~gender + party + nchair")

R> starting <- c(alpha = 0.23952, beta_gender1 = -0.22024,
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+ beta_party1 = 0.42947, beta_nchair1 = 3.09615,

+ phi = 0.40038, unobservables = 0.07714)

R> lim_model_B <- net_dep(formula = f_model_B, data = db_model_B,

+ G = G_model_B, model = "model_B", estimation = "NLLS",

+ hypothesis = "lim", endogeneity = TRUE,

+ correction = "heckman", first_step = "standard",

+ exclusion_restriction = G_exclusion_restriction,

+ start.val = starting)

R> summary(lim_model_B)

Call:

Main Equation: les ~ solve_block(I - phi * G) %*% (alpha * Ones +

beta_gender1 * gender1 + beta_party1 * party1 +

beta_nchair1 * nchair1 + beta_unobservables * unobservables)

Estimate Std. Error t value Pr(>|t|)

alpha 0.23952 0.07130 3.359 0.000851 ***

beta_gender1 -0.22024 0.14052 -1.567 0.117787

beta_party1 0.42947 0.10111 4.247 2.65e-05 ***

beta_nchair1 3.09615 0.25951 11.931 < 2e-16 ***

phi 0.40038 0.06136 6.525 1.90e-10 ***

beta_unobservables 0.07714 0.06138 1.257 0.209519

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC: 1342.51 loglik: -664.25

R> summary(lim_model_B, print = "first.step")

First step: y ~ exclusion_restriction + gender1 + party1 + nchair1

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.481e-03 3.809e-05 38.887 < 2e-16 ***

exclusion_restriction 4.657e-03 4.129e-04 11.279 < 2e-16 ***

gender1 -6.638e-05 2.135e-05 -3.109 0.00188 **

party1 2.366e-03 1.940e-05 121.922 < 2e-16 ***

nchair1 -4.180e-04 3.436e-05 -12.163 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R2: 0.07

The output of function summary(lim_model_B, print = "first.step") reports the esti-
mates of the first step Model 22. The interpretation of the results from the first step model
follows the standard interpretation of the results of a linear probability model. Being con-
nected in the alumni network (G_exclusion_restriction) has a positive and significant
impact on the probability that two legislators will cosponsor a bill, hence the alumni network
is an important predictor of the cosponsorship network (G_Model_B).
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The output of the function summary(lim_model_B) presents the estimation results of Model 25.
Because of the two-step procedure, standard errors of Model 16 are bootstrapped using the
function boot. This function takes the following arguments: i) fit, the first object of
net_dep’s output; ii) group, a numeric vector used to specify if the resampling should be
performed within specific groups; iii) niter, an object of class ‘numeric’ which indicates
the iterations of the bootstrap; iv) weights, a logical object equal to TRUE if the object fit

is estimated with the argument to_weight different from NULL, and FALSE otherwise (the
second is the default option); parallel, a logical object equal to TRUE if the user wants to
use parallel computation, and FALSE otherwise (the second is the default option); ncores, an
object of class ‘numeric’ which indicates the number of cores to be used for running parallel
computation.14

R> boot_lim_estimate <- boot(object = lim_model_B, hypothesis = "lim",

+ group = NULL, niter = 2, weights = FALSE, parallel = FALSE,

+ ncores = NULL)

R> boot_lim_estimate

coefficient boot.Std.Error boot.t.value boot.p.value

alpha 0.23951648 0.08747214 2.738203 6.432331e-03

beta_gender1 -0.22023753 0.14368757 -1.532753 1.260671e-01

beta_party1 0.42946569 0.11875662 3.616352 3.339708e-04

beta_nchair1 3.09614813 0.24416950 12.680323 1.487650e-31

phi 0.40038484 0.06001437 6.671483 7.756648e-11

beta_unobservables 0.07714043 0.05965438 1.293123 1.966581e-01

The results of this second exercise show a positive and significant network effects (ϕ) on the
effectiveness of agents, meaning that Congress members benefit from their interactions with
the colleagues conscripted to their own causes. It is worth noting that network endogeneity
does not seem to be a major concern in this simple example, since the correlation between
the unobservables of link formation and outcome equation (ϕ in Model 16) is not statistically
significant.

Observe that while in Model 14 the estimated effect of network centrality is captured by
one parameter α, in Model 16 it requires further elaboration since it varies with individual
characteristics. For the k-th covariate in Model 16, if ϕ > 0, the centrality’s marginal effect
is (I − φG)−1(Iβk), which is a n · n matrix with its (i, j)-th element representing the effect
of a change in the characteristic k for agent j on the outcome of agent i. The diagonal
elements capture the direct effect of a marginal change in the characteristic k for agent i.
The elements outside the diagonal instead capture the indirect effects, that is the effects on
the outcome of i triggered by variation of the characteristic k in other agents. The direct
effects are comparable to the OLS estimated effects without considering the network effects.
The important difference in comparing the estimates of the covariates in the models with and
without network effects is precisely that when ϕ > 0, the marginal effect of the k-th covariate
in Model 16 is not just βk but it also depends on the individual’s position in the network
(i.e., on the individual’s network centrality).

14Please note that this function can take considerable time to run. In addition, the argument parallel

has been fully tested only within the Windows operating system. We plan in the future to make this option
available across other major operating systems.
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The function quantify allows the user to run this task. Specifically, it provides the estimated
impacts of the agents’ characteristics with network effects (which is equivalent to the estimated
impacts of agents’ network centrality by characteristic) and compares them with the OLS
estimates. Because, as we said before, the marginal effects of characteristics are different for
different agents, the function quantify reports the mean, standard deviation, maximum and
minimum for both direct and indirect effects. It requires the argument fit, which is the
output of either the function net_dep or horse_race (discussed below).

R> quantify(fit = lim_estimate_model_B)

beta Direct_mean Direct_std Direct_max Direct_min

beta_gender1 -0.2202 -0.2205 0.0002 -0.2202 -0.2217

beta_party1 0.4295 0.4299 0.0003 0.4323 0.4295

beta_nchair1 3.0961 3.0992 0.0025 3.1162 3.0961

beta_unobservables 0.0771 0.0772 0.0001 0.0776 0.0771

Indirect_mean Indirect_std Indirect_max Indirect_min

beta_gender1 -0.0003 0.0005 0.0000 -0.0149

beta_party1 0.0007 0.0009 0.0290 0.0000

beta_nchair1 0.0047 0.0068 0.2091 0.0000

beta_unobservables 0.0001 0.0002 0.0052 0.0000

The estimation results show the mean, standard deviation, maximum and minimum for both
direct and indirect effects. Perhaps unsurprisingly, it appears that the indirect effects are
smaller than the direct effects.15

As already shown, agents’ centrality measures can be accessed using the operator $ with
net_dep’s output, e.g., lim_model_B$centrality, and it can be used for different applica-
tions. For example, we can use it to rank agents’ positions in the Congress social space, or
to study the centrality distribution in the Republican and the Democratic party, as we do in
Figure 1.

Exercise 2: Katz-Bonacich centrality with heterogeneous by node parameter

The code below estimates Model 15 using gender as the relevant dimension of heterogeneity.
Gender is a dummy variable which takes 1 if the legislator is a female, and 0 otherwise.

R> z <- as.numeric(as.character(db_model_A[, "gender"]))

R> f_het_model_A <- formula("PAC ~ party + nchair + isolate")

R> starting <- c(alpha = 0.44835, beta_party1 = 0.56004,

+ beta_nchair1 = -0.16349, beta_isolate1 = 0.21011,

+ beta_z = -0.26015, phi = 0.34212, gamma = -0.49960)

R> het_model_A <- net_dep(formula = f_het_model_A, data = db_model_A,

+ G = G_model_A, model = "model_A", estimation = "NLLS",

+ hypothesis = "het", z = z, start.val = starting)

R> summary(het_model_A)

15For additional details on the interpretation of the estimated parameters of network models with peer effects
see LeSage and Pace (2009), Chapter 2.7.
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Figure 1: BLP model: Distribution of Parameter-Dependent Network Centrality.

Call:

Main Equation: PAC ~ alpha * solve_block(I - G %*% (phi * I +

gamma * G_heterogeneity)) %*% Ones + beta_party1 * party1 +

beta_nchair1 * nchair1 + beta_isolate1 * isolate1 + beta_z * z

Estimate Std. Error t value Pr(>|t|)

alpha 0.44835 0.17942 2.499 0.0128 *

beta_party1 0.56004 0.08342 6.713 6.21e-11 ***

beta_nchair1 -0.16349 0.18984 -0.861 0.3896

beta_isolate1 0.21011 0.17927 1.172 0.2418

beta_z -0.26014 0.10655 -2.441 0.0150 *

phi 0.34212 0.25377 1.348 0.1783

gamma -0.49960 0.34662 -1.441 0.1502

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC: 1042.34 loglik: -513.17

The results show that in this simple example γ is not significant, suggesting that female
Congress members do not have a different level of influence than their male peers. Note
that the weighted Katz-Bonacich centrality derived from the spillover effect are stored in the
object het_model_A$centrality.
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If we use Equation 17 and 18, we distinguish between outgoing and incoming influence, that is
if females are more (or less) able to influence and to be influenced by their peers respectively.
The code below implements this analysis. For ease of exposition, we do not consider the
possible endogeneity of the social network.

R> z <- as.numeric(as.character(db_model_B[, "gender"]))

R> f_het_model_B <- formula("les ~ party + nchair")

R> starting <- c(alpha = 0.23952, beta_party1 = 0.42947,

+ beta_nchair1 = 3.09615, beta_z = -0.12749,

+ theta_0 = 0.42588, theta_1 = 0.08007)

R> het_model_B_l <- net_dep(formula = f_het_model_B, data = db_model_B,

+ G = G_model_B, model = "model_B", estimation = "NLLS",

+ hypothesis = "het_l", z = z, start.val = starting)

R> starting <- c(alpha = 0.04717, beta_party1 = 0.51713,

+ beta_nchair1 = 3.12683, beta_z = 0.01975,

+ eta_0 = 1.02789, eta_1 = 2.71825)

R> het_model_B_r <- net_dep(formula = f_het_model_B, data = db_model_B,

+ G = G_model_B, model = "model_B", estimation = "NLLS",

+ hypothesis = "het_r", z = z, start.val = starting)

R> summary(het_model_B_l)

Call:

Main Equation: les ~ solve_block(I - (theta_0 * I -

theta_1 * G_heterogeneity) %*% G) %*% (alpha * Ones +

beta_party1 * party1 + beta_nchair1 * nchair1 + beta_z * z)

Estimate Std. Error t value Pr(>|t|)

alpha 0.22740 0.07584 2.998 0.00287 **

beta_party1 0.41382 0.10198 4.058 5.88e-05 ***

beta_nchair1 3.07797 0.26148 11.771 < 2e-16 ***

beta_z -0.12749 0.21199 -0.601 0.54789

theta_0 0.42587 0.07418 5.741 1.77e-08 ***

theta_1 0.08007 0.12320 0.650 0.51611

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC: 1343.68 loglik: -664.84

R> summary(het_model_B_r)

Call:

Main Equation: les ~ solve_block(I - G %*% (eta_0 * I -

eta_1 * G_heterogeneity)) %*% (alpha * Ones +

beta_party1 * party1 + beta_nchair1 * nchair1 + beta_z * z)

Estimate Std. Error t value Pr(>|t|)

alpha 0.04717 0.06867 0.687 0.49251

beta_party1 0.51713 0.09259 5.585 4.13e-08 ***

beta_nchair1 3.12683 0.25680 12.176 < 2e-16 ***
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beta_z 0.01976 0.15098 0.131 0.89595

eta_0 1.02790 0.22400 4.589 5.85e-06 ***

eta_1 2.71825 0.91547 2.969 0.00315 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC: 1336.63 loglik: -661.31

The results shows that females do not seem to be able to influence their socially connected
peers (θ is not significant), but they are helpful to their colleagues (η1 > 0). In terms
of network analysis, this implies that all else being equal, Congress members located close
to female colleagues benefit from their position since they can leverage females to be more
effective in their legislative activity. In this case, the weighted Katz-Bonacich centralities are
stored in het_model_B_l$centrality and het_model_B_r$centrality.

Exercise 3: Katz-Bonacich centrality with heterogeneous by link parameter

In this last exercise, we show how to explore the hypothesis that relations within and be-
tween parties might have a different impact on the Congress members’ LES. The code below
estimates Model 19 where the within and between effects are shaped by party membership.

R> z <- as.numeric(as.character(db_model_B[, "party"]))

R> starting <- c(alpha = 0.242486, beta_gender1 = -0.229895,

+ beta_party1 = 0.42848, beta_nchair1 = 3.0959,

+ phi_within = 0.396371, phi_between = 0.414135)

R> party_model_B <- net_dep(formula = f_model_B, data = db_model_B,

+ G = G_model_B, model = "model_B", estimation = "NLLS",

+ hypothesis = "par", z = z, start.val = starting)

R> summary(party_model_B)

Call:

Main Equation: les ~ solve_block(I - phi_within * G_within -

phi_between * G_between) %*% (alpha * Ones + beta_gender1 * gender1 +

beta_party1 * party1 + beta_nchair1 * nchair1)

Estimate Std. Error t value Pr(>|t|)

alpha 0.24249 0.08988 2.698 0.007251 **

beta_gender1 -0.22990 0.14120 -1.628 0.104221

beta_party1 0.42848 0.12623 3.394 0.000751 ***

beta_nchair1 3.09590 0.26008 11.904 < 2e-16 ***

phi_within 0.39637 0.07306 5.425 9.66e-08 ***

phi_between 0.41414 0.24175 1.713 0.087420 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC: 1344.1 loglik: -665.05

The estimation results show that connections within one’s own party and between parties are
both significant for advancing a piece of legislation. The weighted Katz-Bonacich centrality
can be found in the object party_model_B$centrality.
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5.2. Centrality measure comparison

Network centrality measures adopt different criteria for ranking the importance of an agent
in a network. As a result, it might be the case that a network centrality measure robustly
predicts how the individual’s importance in the network determine her/his outcome, while
other measures of centrality do not do so as well. Therefore, one can expect that the outcome
of an agent may be significantly predicted by different centrality measures, but only the
measures which better explain the agents’ outcome will remain significant when these are
included together in the same regression model, while the others will not be distinguished
from zero.

The R package econet allows to evaluate the explanatory power of parameter-dependent
centralities relative to other centrality measures, which depend on network topology only.
More specifically, econet considers the following measures, which are computed using the
R package igraph (Csárdi and Nepusz 2006): indegree centrality, outdegree centrality, degree
centrality, betweenness centrality, incloseness centrality, outcloseness centrality, and closeness
centrality. It also reports eigenvector centrality, which is calculated using the R package sna

(Butts 2008).16 We then implement an augmented version of Models 14 and 16 where we add
one (or more) centrality measures in the matrix of individual characteristics X⊤

r . By doing
so we can run an horse race across different centrality measures.17

The arguments of the function horse_race are similar to the net_dep ones. The different
ones are: i) centralities, an object or a vector of class ‘character’ specifying the names
of the centrality measure(s) to be used; ii) directed, a logical object which is set to TRUE if
the network is directed, and FALSE otherwise; iii) weighted, a logical object equal to TRUE if
links between agents have weights, and FALSE otherwise; and iv) normalization, an object of
class ‘character’ which can be used to normalize centrality measures before the estimations.
18

The output of this function is also similar to net_dep, i.e., a list containing the results of
the main estimates in the first object, a data.frame listing the centrality measures in the
second object, and the results of the first step estimation in the third object (if endogeneity

= TRUE). An example of how this model is implemented and results are stored is provided in
the following example, where we use a linear regression model where betweenness centrality
is a regressor.

R> starting <- c(alpha = 0.214094, beta_gender1 = -0.212706,

16Indegree centrality is the number of incoming links of one node; outdegree centrality is the number of
outgoing links of one node; degree centrality is the sum of in and out degree; betweenness centrality is the
number of times a node falls on the shortest path between two other nodes; incloseness centrality is the inverse
of the average distance of one node from all the other nodes passing through incoming links; outcloseness
centrality is the inverse of the average distance of one node from all the other nodes passing through outcoming
links; closeness centrality is the sum of in and out closeness, and eigenvector centrality is proportional to the
sum of the centrality of agent’s neighbors (see Jackson 2010, for further details).

17It is worth noting that centrality measures are computed assuming that the underlying network is fixed.
However, as pointed out by An (2015b), social networks are easily malleable. How robust the centrality
measure is to the potential changes in the network is worth further studying.

18The options available are: NULL, no normalization; bygraph, divide by the number of nodes in the network
minus 1 (for degree and closeness) or the number of possible links in the network (betweenness), bycomponent,
divide by the number of nodes in agent’s component minus 1 (for degree and closeness) or the number of
possible links in agent’s component (betweenness); bymaxgraph, divide by the maximum centrality value in
the network; bymaxcomponent, divide by the maximum centrality value in agent’s component.
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+ beta_party1 = 0.478518, beta_nchair1 = 3.09234,

+ beta_betweenness = 7.06287e-05, phi = 0.344787)

R> horse_model_B <- horse_race(formula = f_model_B,

+ centralities = "betweenness", directed = TRUE, weighted = TRUE,

+ normalization = NULL, data = db_model_B, G = G_model_B,

+ model = "model_B", estimation = "NLLS", start.val = starting)

R> summary(horse_model_B, centrality = "betweenness")

Call:

Main Equation: les ~ gender + party + nchair + betweenness

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.300e-01 9.042e-02 3.650 0.000295 ***

gender1 -8.904e-02 1.445e-01 -0.616 0.538011

party1 7.054e-01 1.139e-01 6.194 1.36e-09 ***

nchair1 3.202e+00 2.644e-01 12.112 < 2e-16 ***

betweenness 1.851e-04 3.985e-05 4.645 4.51e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC: 1362.19 loglik: -675.09

> summary(horse_model_B)

Call:

Main Equation: les ~ solve_block(I - phi * G) %*% (alpha * Ones +

beta_gender1 * gender1 + beta_party1 * party1 +

beta_nchair1 * nchair1 + beta_betweenness * betweenness)

Estimate Std. Error t value Pr(>|t|)

alpha 2.141e-01 7.676e-02 2.789 0.00552 **

beta_gender1 -2.127e-01 1.408e-01 -1.511 0.13162

beta_party1 4.785e-01 1.105e-01 4.331 1.85e-05 ***

beta_nchair1 3.092e+00 2.593e-01 11.927 < 2e-16 ***

beta_betweenness 7.063e-05 4.561e-05 1.549 0.12219

phi 3.448e-01 7.101e-02 4.856 1.68e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

AIC: 1341.61 loglik: -663.8

The results of this estimation show evidence that being able to broker connections in the
network, as measured by betweenness centrality in the object summary(horse_model_B) is
associated with higher legislative effectiveness. The effect disappears when we include network
effects, that is when we add betweenness centrality as an additional regressor in the linear
model of social interactions (Equation 16). This suggests that Katz-Bonacich centrality is
a more robust predictor of effectiveness in this context. Estimates are stored in the object
horse_estimate_model_B, whereas centrality measures in horse_model_B$centrality.
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6. Conclusions

We have described the key elements for the estimation of parameter-dependent centralities
derived from equilibrium models of behavior, and discussed the use of the package econet for
the implementation of such metrics. The methods described in the paper are derived from
several modifications to the linear-in-means model – for which both nonlinear least squares
and maximum likelihood estimators are provided – and they allow one to model both link
and node heterogeneity in network effects, endogenous network formation and the presence
of unconnected nodes. Furthermore, they provide the means to compare the explanatory
power of parameter-dependent network centrality measures with those of standard measures of
network centrality. A number of examples are used to walk the reader through the discussion
and orientate the application of these methods to new potential directions of research.
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