Package ‘ecocomDP’

August 16, 2024
Type Package

Title Tools to Create, Use, and Convert ecocomDP Data

Description Work with the Ecological Community Data Design Pattern. 'ecocomDP'
is a flexible data model for harmonizing ecological community surveys, in a
research question agnostic format, from source data published across
repositories, and with methods that keep the derived data up-to-date as the
underlying sources change. Described in O'Brien et al. (2021),
<doi:10.1016/j.ecoinf.2021.101374>.

Version 1.3.2
License MIT + file LICENSE

URL https://github.com/EDIorg/ecocomDP

BugReports https://github.com/EDIorg/ecocomDP/issues
Encoding UTF-8

LazyData true

Depends R (>=3.4.0)

Imports RColorBrewer, data.table, dplyr, EML (>=2.0.5), emld (>=
0.5.1), geosphere, ggplot2, httr, lubridate, magrittr, methods,
neonUltilities (>= 2.1.1), rlang, rmarkdown, stats, stringr,
tidyr, tools, utils, uuid, xml2, neonOS

Suggests knitr, mime, reader, ritis, taxize, testthat, worrms,
ggrepel, usmap (>= 0.6.1), sf (>=1.0.9), maps

VignetteBuilder knitr
RoxygenNote 7.2.3
Language en-US
NeedsCompilation no

Author Colin Smith [aut, cre, cph] (<https://orcid.org/0000-0003-2261-9931>),
Eric Sokol [aut] (<https://orcid.org/0000-0001-5923-0917>),
Margaret O'Brien [aut] (<https://orcid.org/0000-0002-1693-8322>),
Matt Bitters [ctb],
Melissa Chen [ctb],

https://doi.org/10.1016/j.ecoinf.2021.101374
https://github.com/EDIorg/ecocomDP
https://github.com/EDIorg/ecocomDP/issues
https://orcid.org/0000-0003-2261-9931
https://orcid.org/0000-0001-5923-0917
https://orcid.org/0000-0002-1693-8322

Savannah Gonzales [ctb],

Matt Helmus [ctb],

Brendan Hobart [ctb],

Ruvi Jaimes [ctb],

Lara Janson [ctb],

Marta Jarzyna [ctb],

Michael Just [ctb],

Daijiang Li [ctb],

Wynne Moss [ctb],

Kari Norman [ctb],

Stephanie Parker [ctb],

Rafael Rangel [ctb] (<https://orcid.org/0009-0000-6265-3064>),
Natalie Robinson [ctb],

Thilina Surasinghe [ctb],

Kyle Zollo-Venecek [ctb] (<https://orcid.org/0000-0002-1615-590X>)

Maintainer Colin Smith <colin.smith@wisc.edu>
Repository CRAN
Date/Publication 2024-08-16 21:40:02 UTC

Contents

annotation_dictionaryo
ants_LO_flat e
ants_ L1 e
calc_geo_extent_bounding_box_m2
calc_length_of survey_years
calc_number_of_years_sampled
calc_std_dev_interval_betw_years
convert_to_ dweca L e e
create_dataset_summary
create_eml e
create_location L e e
create_location_ancillary L L L
create_observation e e e
create_observation_ancillary L L oL
Create_taXom e e e e e e e e e e e e e e e e
create_taxon_ancillary oL L Lo
create_variable_mappingo
flatten_data e
plot_sample_space_time
PIOL_SItES o e e e e
plot_taxa_abund L
plot_taxa_accum_sSites
plot_taxa_accum_time
plot_taxa_diversity
plot_taxa_occur_freq
plot_taxa_rank L

Contents

https://orcid.org/0009-0000-6265-3064
https://orcid.org/0000-0002-1615-590X

annotation_dictionary 3

plot_taxa_shared_sites e 37
read_data e 39
save_data L L L e e e e e e 42
search_data e e e 43
validate_data e e 45
write_tables L e 47
Index 49

annotation_dictionary Annotations of published data

Description

View the collection of dataset- and attribute-level annotations from existing ecocomDP datasets.

Usage

annotation_dictionary()

Details

Use the search field to find the annotation terms and URIs.

Examples

Not run:
View(annotation_dictionary())

End(Not run)

ants_L0@_flat Joined and flat version of EDI data package knb-lter-hfr.118.33

Description

A fully joined and flat version of EDI data package knb-lter-hfr.118.33 (Ant Assemblages in Hem-
lock Removal Experiment at Harvard Forest since 2003) with all relevant ecocomDP L1 identifiers
and content added. Use this dataset as an input to the L@_flat argument of the "create" functions.

Usage

ants_L0_flat

4 ants_LO flat

Format
A data frame with 2931 rows and 45 variables:

datetime dates

block block

plot plot number

treatment treatment type

moose.cage location of grid with respect to moose exclosure
trap.type trap type

trap.num applies only to pitfall cups

subfamily ant subfamily

hl head length. We used trait definitions from Del Toro et al. (2015) and filled in missing species’
data with information from Ellison et al.

rel eye length relative to body size

rll femur length relative to body size

colony.size size of colony for each species

feeding.preference feeding preference for each species

nest.substrate nest substrate

primary.habitat primary habitat

secondary.habitat secondary habitat associations

seed.disperser whether or not a seed dispersing species

slavemaker.sp whether or not a slavemaking species

behavior classifications based on behavioral interactions with other ants
biogeographic.affinity biogeographic affinity based on available occurrence records

source where trait information was found. Full citations for literature are as follows: Del Toro, 1.,
R.R. Silva, and A.M. Ellison. 2015. Predicated impacts of climatic change on ant functional
diversity and distributions in eastern North American forests. Diversity and Distributions
21:781-791; Ellison, A.M., N.J. Gotelli, G. Alpert, and E.J. Farnsworth. 2012. A field guide
to the ants of New England. Yale University Press, New Haven, Connecticut, USA.

unit_hl units for "hl" variable

unit_rel units for "rel" variable

unit_rll units for "rl1" variable

variable_name variables of the primary observation table
value values of variable_name

unit units of variable_name

observation_id the observation id

location_id the location id

event_id the event id

latitude approximate latitude of study area

ants_L1 5

longitude approximate longitude of study area

elevation approximate elevation of study area

taxon_name name of organism

taxon_id the taxon id

taxon_rank the taxon rank

authority_system the authority system taxon_name was resolved to
authority_taxon_id the id of taxon_name in authority_system

package_id the identifier of this ecocomDP dataset

original_package_id the identifier of the source dataset
length_of_survey_years number of years the survey has been ongoing
number_of_years_sampled number of years during the survey that samples were taken
std_dev_interval_betw_years the standard deviation between surveys in years
max_num_taxa number of unique taxa in this dataset

geo_extent_bounding box_m?2 the study area in meters squared

Source

https://portal.edirepository.org/nis/mapbrowse?scope=knb-1ter-hfr&identifier=118&
revision=33

ants_L1 The ecocomDP (L1) version of EDI data package knb-Iter-hfr.118.33

Description

The the ecocomDP (L1) formatted version of EDI data package knb-Iter-hfr.118.33 (Ant Assem-
blages in Hemlock Removal Experiment at Harvard Forest since 2003) read from the EDI API with
read_data(id ="edi.193.5"). Use this dataset as an input to data "use" functions.

Usage

ants_L1

Format
A list of:

id The dataset identifier

metadata See source url for metadata

tables A list of data frames, each an ecocomDP table

validation_issues Is NULL because there are no validation issues for this dataset

Source

https://portal.edirepository.org/nis/mapbrowse?scope=edi&identifier=193&revision=
5

https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hfr&identifier=118&revision=33
https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hfr&identifier=118&revision=33
https://portal.edirepository.org/nis/mapbrowse?scope=edi&identifier=193&revision=5
https://portal.edirepository.org/nis/mapbrowse?scope=edi&identifier=193&revision=5

6 calc_length_of_survey_years

calc_geo_extent_bounding_box_m2
Calculate geo_extent_bounding_box_m?2 for the dataset_summary ta-
ble

Description

Calculate geo_extent_bounding_box_m?2 for the dataset_summary table

Usage

calc_geo_extent_bounding_box_m2(west, east, north, south)

Arguments
west (numeric) West longitude in decimal degrees and negative if west of the prime
meridian.
east (numeric) East longitude in decimal degrees and negative if west of the prime
meridian.
north (numeric) North latitude in decimal degrees and negative if south of the equator.
south (numeric) South latitude in decimal degrees and negative if south of the equator.
Value

(numeric) Area of study site in meters squared.

calc_length_of_survey_years
Calculate length_of _survey_years for the dataset_summary table

Description

Calculate length_of_survey_years for the dataset_summary table

Usage

calc_length_of_survey_years(dates)

Arguments

dates (Date) Dates from the LO source dataset encompassing the entire study duration.

Value

(numeric) Number of years the study has been ongoing.

calc_number_of_years_sampled 7

calc_number_of_years_sampled
Calculate number_of _years_sampled for the dataset_summary table

Description

Calculate number_of_years_sampled for the dataset_summary table

Usage

calc_number_of_years_sampled(dates)

Arguments

dates (Date) Dates from the L0 source dataset encompassing the entire study duration.

Value

(numeric) Number of survey years in which a sample was taken.

calc_std_dev_interval_betw_years
Calculate std_dev_interval_betw_years for the dataset_summary ta-

ble

Description

Calculate std_dev_interval_betw_years for the dataset_summary table

Usage

calc_std_dev_interval_betw_years(dates)

Arguments

dates (Date) Dates from the LO source dataset encompassing the entire study duration.

Value

(numeric) The standard deviation between sampling events (in years).

8 convert_to_dwca

convert_to_dwca Convert a dataset to the Darwin Core Archive format

Description

Convert a dataset to the Darwin Core Archive format

Usage
convert_to_dwca(
path,
core_name,
source_id,
derived_id,
url = NULL,
user_id,
user_domain
)
Arguments
path (character) Path to which the DwC-A data objects and EML will be written.
core_name (character) The central table of the DwC-A dataset being created. Can be:
"event" (event core). Occurrence core is not yet supported.
source_id (character) Identifier of an ecocomDP dataset published in a supported reposi-
tory. Currently, the EDI Data Repository is supported.
derived_id (character) Identifier of the DwC-A dataset being created.
url (character) URL to the publicly accessible directory containing DwC-A data
objects. This argument supports direct download of the data entities by a data
repository and is used for automated revisioning and publication.
user_id (character) Identifier of user account associated with the data repository in which
this ecocomDP dataset will be archived. Only user_id from the EDI is currently
supported.
user_domain (character) Domain (data repository) the user_id belongs to. Currently, EDI is
supported.
Details

Reads in an ecocomDP dataset from a supported repository and converts it to a DwC-A package.

Value

DwC-A tables, meta.xml, and corresponding EML metadata.

create_dataset_summary 9

Examples

Not run:

Create directory for DwC-A outputs
mypath <- paste@(tempdir(), "/data")
dir.create(mypath)

Convert an EDI published ecocomDP dataset to a DwC-A
convert_to_dwca(
path = mypath,

core_name = "event”,
source_id = "edi.193.5",
derived_id = "edi.834.2",
user_id = "ecocomdp”,
user_domain = "EDI")
dir(mypath)
Clean up

unlink(mypath, recursive = TRUE)

End(Not run)

create_dataset_summary
Create the dataset_summary table

Description

Create the dataset_summary table

Usage

create_dataset_summary(
Lo_flat,
package_id,
original_package_id = NULL,
length_of_survey_years,
number_of_years_sampled,
std_dev_interval_betw_years,
max_num_taxa,
geo_extent_bounding_box_m2 = NULL

Arguments

Lo_flat (tbl_df, tbl, data.frame) The fully joined source LO dataset, in "flat" format (see
details).

10 create_dataset_summary

package_id (character) Column in L@_flat containing the identifier of the derived L1 dataset.
original_package_id
(character) An optional column in L@_f1lat containing the identifier of the source
L0 dataset.
length_of_survey_years
(character) Column in L@_flat containing the number of years the study has
been ongoing. Use calc_length_of_survey_years() to calculate this value.

number_of_years_sampled
(character) Column in L@_f1lat containing the number of years within the period
of study that samples were taken. Use calc_number_of_years_sampled() to
calculate this value.

std_dev_interval_betw_years
(character) Column in L@_flat containing the standard deviation of the inter-
val between sampling events. Use calc_std_dev_interval_betw_years() to
calculate this value.

max_num_taxa (character) Column in L@_flat containing the number of unique taxa in the
source LO dataset.

geo_extent_bounding_box_m2
(character) An optional column in L@_flat containing the area (in meters) of
the study location, if applicable (some LO were collected at a single point). Use
calc_geo_extent_bounding_box_m2() to calculate this value.

Details

This function collects specified columns from L@_flat and returns distinct rows.

"flat" format refers to the fully joined source LO dataset in "wide" form with the exception of the
core observation variables, which are in "long" form (i.e. using the variable_name, value, unit
columns of the observation table). This "flat" format is the "widest" an L1 ecocomDP dataset can
be consistently spread due to the frequent occurrence of LO source datasets with > 1 core observation
variable.

Value

(tbl_df, tbl, data.frame) The dataset_summary table.

Examples

flat <- ants_L0_flat

dataset_summary <- create_dataset_summary(
Lo_flat = flat,
package_id = "package_id",
original_package_id = "original_package_id",
length_of_survey_years = "length_of_survey_years”,
number_of_years_sampled = "number_of_years_sampled”,
std_dev_interval_betw_years = "std_dev_interval_betw_years”,
max_num_taxa = "max_num_taxa",
geo_extent_bounding_box_m2 = "geo_extent_bounding_box_m2")

create_eml

dataset_summary

11

create_eml

Create EML metadata

Description

Create EML metadata

Usage

create_eml(

path,

source_id,
derived_id,

script,

script_description,
is_about = NULL,

contact,
user_id,

user_domain,

basis_of_record = NULL,

url = NULL
)
Arguments
path
source_id
derived_id
script

(character) Path to the directory containing ecocomDP tables, conversion script,
and where EML metadata will be written.

(character) Identifier of a data package published in a supported repository. Cur-
rently, the EDI Data Repository is supported.

(character) Identifier of the dataset being created.

(character) Name of file used to convert source_id to derived_id.

script_description

is_about

contact

user_id

(character) Description of script.

(named character) An optional argument for specifying dataset level annotations
describing what this dataset "is about".
(data.frame) Contact information for the person that created this ecocomDP
dataset, containing these columns:

 givenName

e surName

* organizationName

¢ electronicMailAddress

(character) Identifier of user associated with user_domain.

12

create_eml

user_domain (character) Domain (data repository) the user_id belongs to. Currently, EDI is

supported.

basis_of_record

url

Details

(character) An optional argument to facilitate creation of a Darwin Core record
from this dataset using convert_to_dwca(). Use this to define the Darwin Core
property basisOfRecord as HumanObservation or MachineObservation.

(character) URL to the publicly accessible directory containing ecocomDP ta-
bles, conversion script, and EML metadata. This argument supports direct down-
load of the data entities by a data repository and is used for automated revision-
ing and publication.

This function creates an EML record for an ecocomDP by combining metadata from source_id
with boiler-plate metadata describing the ecocomDP model. Changes to the source_id EML in-
clude:

<access> Adds user_id to the list of principals granted read and write access to the eco-
comDP data package this EML describes.

<title> Adds a note that this is a derived data package in the ecocomDP format.
<pubDate> Adds the date this EML was created.
<abstract> Adds a note that this is a derived data package in the ecocomDP format.

<keywordSet Adds the "ecocomDP" keyword to enable search and discovery of all eco-
comDP data packages in the data repository it is published, and 7 terms from the LTER
Controlled vocabulary: "communities", "community composition", "community dynamics",
"community patterns”, "species composition", "species diversity", and "species richness".
Darwin Core Terms listed under basis_of_record are listed and used by convert_to_dwca()

to create a Darwin Core Archive of this ecocomDP data package.

<intellectualRights> Keeps intact the original intellectual rights license source_id was re-
leased under, or uses CCO if missing.

<taxonomicCoverage> Appends to the taxonomic coverage element with data supplied in the
ecocomDP taxon table.

<contact> Adds the ecocomDP creator as a point of contact.

<methodStep> Adds a note that this data package was created by the script, and adds prove-
nance metadata noting that this is a derived dataset and describes where the source_id can
be accessed.

<dataTables> Replaces the source_id table metadata with descriptions of the the ecocomDP
tables.

<otherEntity> Adds script and script_description. otherEntities of source_id are re-
moved.

<annotations> Adds boilerplate annotations describing the ecocomDP at the dataset, entity,
and entity attribute levels.

Taxa listed in the taxon table, and resolved to one of the supported authority systems (i.e. ITIS,
WORMS, or GBIF), will have their full taxonomic hierarchy expanded, including any common
names for each level.

https://dwc.tdwg.org/terms/#dwc:basisOfRecord
http://rs.tdwg.org/dwc/terms/HumanObservation
http://rs.tdwg.org/dwc/terms/MachineObservation
https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://www.itis.gov/
https://www.marinespecies.org/
https://gbif.org

create_eml 13

Value

An EML metadata file.

Examples

Not run:

Create directory with ecocomDP tables for create_eml()

mypath <- paste@(tempdir(), "/data")

dir.create(mypath)

inpts <- c(ants_L1$tables, path = mypath)

do.call(write_tables, inpts)

file.copy(system.file("extdata”, "create_ecocomDP.R", package = "ecocomDP"), mypath)
dir(mypath)

Describe, with annotations, what the source L@ dataset "is about”
dataset_annotations <- c(

“species abundance™ = "http://purl.dataone.org/odo/ECSO_00001688",

Population = "http://purl.dataone.org/odo/ECS0O_00000311",

“level of ecological disturbance™ = "http://purl.dataone.org/odo/ECSO_00002588",
“type of ecological disturbance™ = "http://purl.dataone.org/odo/ECS0O_00002589")

Add self as contact information incase questions arise
additional_contact <- data.frame(

givenName = 'Colin',

surName = 'Smith',

organizationName = 'Environmental Data Initiative',
electronicMailAddress = 'csmith@mail.com',

stringsAsFactors = FALSE)

Create EML
eml <- create_eml(
path = mypath,
source_id = "knb-1lter-hfr.118.33",
derived_id = "edi.193.5",
is_about = dataset_annotations,

script = "create_ecocomDP.R",
script_description = "A function for converting knb-lter-hrf.118 to ecocomDP”,
contact = additional_contact,
user_id = 'ecocomdp',
user_domain = 'EDI',
basis_of_record = "HumanObservation")
dir(mypath)
View(eml)
Clean up

unlink(mypath, recursive = TRUE)

End(Not run)

14 create_location

create_location Create the location table

Description

Create the location table

Usage

create_location(
Lo_flat,
location_id,
location_name,
latitude = NULL,
longitude = NULL,
elevation = NULL

)
Arguments
Lo_flat (tbl_df, tbl, data.frame) The fully joined source LO dataset, in "flat" format (see
details).
location_id (character) Column in L@_flat containing the identifier assigned to each unique

location at the observation level.

location_name (character) One or more columns in L@_flat of sampling locations ordered from
high to low in terms of nesting, where the lowest is the level of observation (e.g.
location_name = c("plot”, "subplot”)).

latitude (character) An optional column in L@_flat containing the latitude in decimal
degrees of location_id. Latitudes south of the equator are negative.

longitude (character) An optional column in L@_flat containing the longitude in decimal
degrees of location_id. Longitudes west of the prime meridian are negative.

elevation (character) An optional column in L@_flat containing the elevation in meters
relative to sea level of location_id. Above sea level is positive. Below sea
level is negative.

Details

This function collects specified columns from L@_f1lat, creates data frames for each location_name,
assigns latitude, longitude, and elevation to the lowest nesting level (i.e. the observation level)
returning NA for higher levels (these will have to be filled manually afterwards), and determines the
relationships between location_id and parent_location_id from L@_flat and location_name.

To prevent the listing of duplicate location_name values, and to enable the return of location_name
columns by flatten_data(), location_name values are suffixed with the column they came from
according to: paste@(<column name>, "__", <column value>). Example: A column named

"plot" with values "1", "2", "3", in L@_flat would be listed in the resulting location table under

create_location_ancillary 15

the location_name column as "1", "2", "3" and therefore no way to discern these values correspond
with "plot". Applying the above listed solution returns "plot__1", "plot__2", "plot__3" in the loca-
tion table and returns the column "plot" with values c¢("1", "2", "3") by flatten_data().

"flat" format refers to the fully joined source LO dataset in "wide" form with the exception of the
core observation variables, which are in "long" form (i.e. using the variable_name, value, unit
columns of the observation table). This "flat" format is the "widest" an L1 ecocomDP dataset can
be consistently spread due to the frequent occurrence of LO source datasets with > 1 core observation
variable.

Additionally, latitude, longitude, and elevation of sites nested above the observation level will have
to be manually added after the location table is returned.

Value

(tbl_df, tbl, data.frame) The location table.

Examples

flat <- ants_L@_flat

location <- create_location(
Lo_flat = flat,
location_id = "location_id",
location_name = c("block”, "plot"),
latitude = "latitude”,
longitude = "longitude”,
elevation = "elevation”)

location

create_location_ancillary
Create the location_ancillary table

Description

Create the location_ancillary table

Usage

create_location_ancillary(
Lo_flat,
location_id,
datetime = NULL,
variable_name,
unit = NULL

16 create_observation

Arguments
Lo_flat (tbl_df, tbl, data.frame) The fully joined source LO dataset, in "flat" format (see
details).
location_id (character) Column in L@_flat containing the identifier assigned to each unique
location at the observation level.
datetime (character) An optional column in L@_flat containing the date, and if applicable

time, of ancillary location data following the ISO-8601 standard format (e.g.
YYYY-MM-DD hh:mm:ss).

variable_name (character) Columns in L@_flat containing the ancillary location data.

unit (character) An optional column in L@_f1lat containing the units of each variable_name
following the column naming convention: unit_<variable_name> (e.g. "unit_depth").

Details

This function collects specified columns from L@_f1lat, converts into long (attribute-value) form by
gathering variable_name. Regular expression matching joins unit to any associated variable_name
and is listed in the resulting table’s "unit" column.

"flat" format refers to the fully joined source LO dataset in "wide" form with the exception of the
core observation variables, which are in "long" form (i.e. using the variable_name, value, unit
columns of the observation table). This "flat" format is the "widest" an L1 ecocomDP dataset can
be consistently spread due to the frequent occurrence of LO source datasets with > 1 core observation
variable.

Value

(tbl_df, tbl, data.frame) The location_ancillary table.

Examples

flat <- ants_L0@_flat

location_ancillary <- create_location_ancillary(
Lo_flat = flat,
location_id = "location_id",
variable_name = "treatment")

location_ancillary

create_observation Create the observation table

Description

Create the observation table

create_observation 17

Usage

create_observation(
Lo_flat,
observation_id,
event_id = NULL,

package_id,
location_id,
datetime,
taxon_id,
variable_name,
value,
unit = NULL
)
Arguments
Lo_flat (tbl_df, tbl, data.frame) The fully joined source LO dataset, in "flat" format (see
details).
observation_id (character) ColumninL@_flat containing the identifier assigned to each unique
observation.
event_id (character) An optional column in L@_flat containing the identifier assigned to
each unique sampling event.
package_id (character) Column in L@_f1lat containing the identifier of the derived L1 dataset.
location_id (character) Column in L@_flat containing the identifier assigned to each unique
location at the observation level.
datetime (character) Column in L@_flat containing the date, and if applicable time, of
the observation following the ISO-8601 standard format (e.g. YYYY-MM-DD
hh:mm:ss).
taxon_id (character) Column in L@_flat containing the identifier assigned to each unique

organism at the observation level.

variable_name (character) Column in L@_f1lat containing the names of variables measured.

value (character) Column in L@_f1lat containing the values of variable_name.
unit (character) An optional column in L@_flat containing the units of variable_name.
Details

This function collects specified columns from L@_flat and returns distinct rows.

"flat" format refers to the fully joined source L0 dataset in "wide" form with the exception of the
core observation variables, which are in "long" form (i.e. using the variable_name, value, unit
columns of the observation table). This "flat" format is the "widest" an L1 ecocomDP dataset can
be consistently spread due to the frequent occurrence of LO source datasets with > 1 core observation
variable.

Value

(tbl_df, tbl, data.frame) The observation table.

18 create_observation_ancillary

Examples

flat <- ants_L@_flat

observation <- create_observation(
Lo_flat = flat,
observation_id = "observation_id",
event_id = "event_id",
package_id = "package_id",
location_id = "location_id",
datetime = "datetime”,
taxon_id = "taxon_id",
variable_name = "variable_name”,
value = "value”,
unit = "unit")

observation

create_observation_ancillary
Create the observation_ancillary table

Description

Create the observation_ancillary table

Usage

create_observation_ancillary(
Lo_flat,
observation_id,
variable_name,
unit = NULL

Arguments

Lo_flat (tbl_df, tbl, data.frame) The fully joined source LO dataset, in "flat" format (see
details).

observation_id (character) ColumninL@_flat containing the identifier assigned to each unique
observation.

variable_name (character) Columns in L@_flat containing the ancillary observation data.

unit (character) An optional column in L@_flat containing the units of each variable_name
following the column naming convention: unit_<variable_name> (e.g. "unit_temperature").

create_taxon 19

Details

This function collects specified columns from L@_f1lat, converts into long (attribute-value) form by
gathering variable_name. Regular expression matching joins unit to any associated variable_name
and is listed in the resulting table’s "unit" column.

"flat" format refers to the fully joined source LO dataset in "wide" form with the exception of the
core observation variables, which are in "long" form (i.e. using the variable_name, value, unit
columns of the observation table). This "flat" format is the "widest" an L1 ecocomDP dataset can
be consistently spread due to the frequent occurrence of LO source datasets with > 1 core observation
variable.

Value

(tbl_df, tbl, data.frame) The observation_ancillary table.

Examples

flat <- ants_L0_flat

observation_ancillary <- create_observation_ancillary(
Lo_flat = flat,
observation_id = "observation_id",
variable_name = c("trap.type”, "trap.num”, "moose.cage"))

observation_ancillary

create_taxon Create the taxon table

Description

Create the taxon table

Usage

create_taxon(
Lo_flat,
taxon_id,
taxon_rank = NULL,
taxon_name,
authority_system = NULL,
authority_taxon_id = NULL

20

create_taxon

Arguments

Lo_flat (tbl_df, tbl, data.frame) The fully joined source LO dataset, in "flat" format (see
details).

taxon_id (character) Column in LO_flat containing the identifier assigned to each unique
organism at the observation level.

taxon_rank (character) An optional column in L@_flat containing the taxonomic rank of
the organism in taxon_name.

taxon_name (character) Column in L@_flat containing the taxonomic name of the organism.

authority_system
(character) An optional column in L@_f1lat containing the name of the authority
system authority_taxon_id is from (e.g. "ITIS").

authority_taxon_id
(character) An optional column in L@_f1lat containing the identifier correspond-
ing to taxon_name in the authority_system.

Details

This function collects specified columns from L@_flat and returns distinct rows.

Taxa listed in the taxon table, and resolved to one of the supported authority systems (i.e. ITIS,
WORMS, or GBIF), will have their full taxonomic hierarchy expanded, including any common
names for each level.

"flat" format refers to the fully joined source LO dataset in "wide" form with the exception of the
core observation variables, which are in "long" form (i.e. using the variable_name, value, unit
columns of the observation table). This "flat" format is the "widest" an L1 ecocomDP dataset can
be consistently spread due to the frequent occurrence of LO source datasets with > 1 core observation
variable.

Value

(tbl_df, tbl, data.frame) The taxon table.

Examples

flat <- ants_L@_flat

taxon <- create_taxon(
Lo_flat = flat,
taxon_id = "taxon_id",
taxon_rank = "taxon_rank",
taxon_name = "taxon_name”,
authority_system = "authority_system”,
authority_taxon_id = "authority_taxon_id")

taxon

https://www.itis.gov/
https://www.marinespecies.org/
https://gbif.org

create_taxon_ancillary 21

create_taxon_ancillary
Create the taxon_ancillary table

Description

Create the taxon_ancillary table

Usage

create_taxon_ancillary(
Lo_flat,
taxon_id,
datetime = NULL,
variable_name,

unit = NULL,
author = NULL
)
Arguments
Lo_flat (tbl_df, tbl, data.frame) The fully joined source LO dataset, in "flat" format (see
details).
taxon_id (character) Column in L@_f1lat containing the identifier assigned to each unique
organism at the observation level.
datetime (character) An optional in L@_flat containing the date, and if applicable time,

of ancillary location data following the ISO-8601 standard format (e.g. YYY Y-
MM-DD hh:mm:ss).

variable_name (character) Columns in L@_flat containing the ancillary taxon data.

unit (character) An optional column in L@_f1lat containing the units of each variable_name
following the column naming convention: unit_<variable_name> (e.g. "unit_average_length").

author (character) An optional column in L@_flat containing the person associated
with identification of taxa in the taxon table.

Details

This function collects specified columns from L@_f1lat, converts into long (attribute-value) form by
gathering variable_name. Regular expression matching joins unit to any associated variable_name

EPRT]

and is listed in the resulting table’s "unit" column.

"flat" format refers to the fully joined source LO dataset in "wide" form with the exception of the
core observation variables, which are in "long" form (i.e. using the variable_name, value, unit
columns of the observation table). This "flat" format is the "widest" an .1 ecocomDP dataset can
be consistently spread due to the frequent occurrence of LO source datasets with > 1 core observation
variable.

22

Value

(tbl_df, tbl, data.frame) The taxon_ancillary table.
Examples
flat <- ants_L0_flat

taxon_ancillary <- create_taxon_ancillary(
Lo_flat = flat,

taxon_id = "taxon_id",

variable_name = c(
"subfamily”, "hl", "rel”, "rll"”, "colony.size",
"feeding.preference”, "nest.substrate”, "primary.habitat”,
"secondary.habitat”, "seed.disperser”, "slavemaker.sp”,
"behavior”, "biogeographic.affinity”, "source"),

unit = c("unit_hl", "unit_rel”, "unit_rll"))

taxon_ancillary

create_variable_mapping

create_variable_mapping
Create the variable_mapping table

Description

Create the variable_mapping table

Usage

create_variable_mapping(
observation,
observation_ancillary = NULL,
location_ancillary = NULL,
taxon_ancillary = NULL

)

Arguments

observation (tbl_df, tbl, data.frame) The observation table.
observation_ancillary

(tbl_df, tbl, data.frame) The optional observation_ancillary table.

location_ancillary

(tbl_df, tbl, data.frame) The optional location_ancillary table.

taxon_ancillary

(tbl_df, tbl, data.frame) The optional taxon_ancillary table.

create_variable_mapping 23

Details

This function collects specified data tables, extracts unique variable_name values from each, con-
verts into long (attribute-value) form with the table name and variable_name values to the re-
sulting table’s "table_name" and "variable_name" columns, respectively. The resulting table’s
"mapped_system", "mapped_id", and "mapped_label" are filled with NA and are to be manually
filled.

Value

(tbl_df, tbl, data.frame) The variable_mapping table.

Examples

flat <- ants_L@_flat
Create inputs to variable_mapping()

observation <- create_observation(
Lo_flat = flat,
observation_id = "observation_id",
event_id = "event_id",
package_id = "package_id",
location_id = "location_id",
datetime = "datetime”,
taxon_id = "taxon_id",
variable_name = "variable_name",
value = "value"”,
unit = "unit")

observation_ancillary <- create_observation_ancillary(
Lo_flat = flat,
observation_id = "observation_id",
variable_name = c("trap.type”, "trap.num”, "moose.cage"))

location_ancillary <- create_location_ancillary(
Lo_flat = flat,
location_id = "location_id",
variable_name = "treatment")

taxon_ancillary <- create_taxon_ancillary(
Lo_flat = flat,

taxon_id = "taxon_id",

variable_name = c(
"subfamily”, "hl", "rel”, "rll”, "colony.size",
"feeding.preference”, "nest.substrate”, "primary.habitat”,
"secondary.habitat”, "seed.disperser”, "slavemaker.sp”,
"behavior”, "biogeographic.affinity”, "source"),

unit = c("unit_hl", "unit_rel”, "unit_rl1l"))
Create variable_mapping table

variable_mapping <- create_variable_mapping(

24 flatten_data

observation = observation,
observation_ancillary = observation_ancillary,
location_ancillary = location_ancillary,
taxon_ancillary = taxon_ancillary)

variable_mapping

flatten_data Flatten a dataset

Description

Flatten a dataset

Usage

flatten_data(data)

Arguments
data (list) The dataset object returned by read_data(), or a named list of ecocoomDP
tables.
Details

The "flat" format refers to the fully joined source LO dataset in "wide" form with the exception of
the core observation variables, which are in "long" form (i.e. using the variable_name, value, unit
columns of the observation table). This "flat" format is the "widest" an L1 ecocomDP dataset can be
consistently spread due to the frequent occurrence of LO source datasets with > 1 core observation
variable.

Value

(tbl_df, tbl, data.frame) A single flat table created by joining and spreading all tables, except the
observation table. See details for more information on this "flat" format.

Note

Warnings/Errors from flatten_data() can most often be fixed by addressing any validation issues
reported by read_data() (e.g. non-unique composite keys).

Ancillary identifiers are dropped from the returned object.

plot_sample_space_time 25

Examples

Flatten a dataset object
flat <- flatten_data(ants_L1)
flat

Flatten a list of tables
tables <- ants_L1$tables
flat <- flatten_data(tables)
flat

plot_sample_space_time
Plot dates and times samples were collected or observations were
made

Description

Plot dates and times samples were collected or observations were made

Usage

plot_sample_space_time(

data,

id = NA_character_,

alpha = 1,

color_var = "package_id",
shape_var = "package_id",
observation = NULL

)

Arguments

data (list or tbl_df, tbl, data.frame) The dataset object returned by read_data(), a
named list of tables containing the observation table, or a flat table containing
columns of the observation table.

id (character) Identifier of dataset to be used in plot subtitles. Is automatically
assigned when data is a dataset object containing the id field, or is a table
containing the package_id column.

alpha (numeric) Alpha-transparency scale of data points. Useful when many data
points overlap. Allowed values are between 0 and 1, where 1 is 100% opaque.
Default is 1.

color_var (character) Name of column to use to assign colors to the points on the plot

shape_var (character) Name of column to use to assign shapes to the points on the plot

observation (tbl_df, tbl, data.frame) DEPRECATED: Use data instead.

26 plot_sites

Details

The data parameter accepts a range of input types but ultimately requires the 9 columns of the
observation table.

Value

(gg, ggplot) A gg, ggplot object if assigned to a variable, otherwise a plot to your active graphics
device

Examples

Not run:
Read a dataset of interest
dataset <- read_data("edi.193.5")

Plot the dataset
plot_sample_space_time(dataset)

Flatten the dataset, manipulate, then plot

dataset %>%
flatten_data() %>%
dplyr::filter(lubridate::as_date(datetime) > "2003-07-01") %>%
dplyr::filter(as.numeric(location_id) > 4) %>%
plot_sample_space_time()

End(Not run)

Plot the example dataset
plot_sample_space_time(ants_L1)

plot_sites Plot sites on US map

Description

Plot sites on US map

Usage

plot_sites(
data,
id = NA_character_,
alpha = 1,
labels = TRUE,
color_var = "package_id",
shape_var = "package_id"

plot_sites 27

Arguments

data (list or tbl_df, tbl, data.frame) The dataset object returned by read_data(), a
named list of tables containing the observation and taxon tables, or a flat table
containing columns of the observation and location tables.

id (character) Identifier of dataset to be used in plot subtitles. Is automatically
assigned when data is a dataset object containing the id field, or is a table
containing the package_id column.

alpha (numeric) Alpha-transparency scale of data points. Useful when many data
points overlap. Allowed values are between 0 and 1, where 1 is 100% opaque.
Default is 1.

labels (logical) Argument to show labels of each US state. Default is TRUE.

color_var (character) Name of column to use to assign colors to the points on the plot

shape_var (character) Name of column to use to assign shapes to the points on the plot
Details

The data parameter accepts a range of input types but ultimately requires the 14 columns of the
combined observation and location tables.

Value

(gg, ggplot) A gg, ggplot object if assigned to a variable, otherwise a plot to your active graphics
device

Examples

Not run:

library(dplyr)

Read a dataset of interest
dataset <- read_data("edi.193.5")

Plot the dataset
plot_sites(dataset)

Flatten dataset then plot
dataset %>%

flatten_data() %>%
plot_sites()

Download a NEON dataset

dataset2 <- read_data(

id = "neon.ecocomdp.20120.001.001",

site= c('COMO', 'LECO"),

startdate = "2017-06",

enddate = "2021-03",

token = Sys.getenv(”NEON_TOKEN"), # option to use a NEON token
check.size = FALSE)

Combine the two datasets and plot. This requires the datasets be first

28

plot_taxa_abund

flattened and then stacked.

flattened_datal <- dataset %>% flatten_data()
flattened_data2 <- dataset2 %>% flatten_data()
stacked_data <- bind_rows(flattened_datal,flattened_data2)
plot_sites(stacked_data)

End(Not run)

Plot the example dataset
plot_sites(ants_L1)

plot_taxa_abund

Plot mean taxa abundances per "observation_id’

Description

Plot taxon abundances averaged across observation records for each taxon. Abundances are reported
using the units provided in the dataset. In some cases, these counts are not standardized to sampling

effort.

Usage

plot_taxa_abund(

data,

id = NA_character_,
min_relative_abundance = 0,
trans = "identity",
facet_var = NA_character_,

color_var = NA_character_,
facet_scales = "free”,
alpha
)
Arguments
data (list or tbl_df, tbl, data.frame) The dataset object returned by read_data(), a
named list of tables containing the observation and taxon tables, or a flat table
containing columns of the observation and taxon tables.
id (character) Identifier of dataset to be used in plot subtitles. Is automatically

assigned when data is a dataset object containing the id field, or is a table
containing the package_id column.

min_relative_abundance

(numeric) Minimum relative abundance allowed for taxa included in the plot; a
value between 0 and 1, inclusive.

plot_taxa_abund 29

trans (character) Define the transform applied to the response variable; "identity"
is default, "loglp" is x+1 transform. Built-in transformations include "asn",
"atanh”’ "bOXCOX", lldate"’ llexpﬂ, "hmsll’ "identity"’ lllogll, lllogloﬂ’ Vvloglpll’

non non non non non

"log2", "logit", "modulus", "probability", "probit", "pseudo_log", "reciprocal",

"reverse", "sqrt" and "time".

facet_var (character) Name of column to use for faceting. Must be a column of the obser-
vation or taxon table.

color_var (character) Name of column to use for plot colors.

facet_scales (character) Should scales be free ("free", default value), fixed ("fixed"), or free
in one dimension ("free_x", "free_y")?

alpha (numeric) Alpha-transparency scale of data points. Useful when many data
points overlap. Allowed values are between 0 and 1, where 1 is 100% opaque.
Default is 1.

Details

The data parameter accepts a range of input types but ultimately requires the 13 columns of the
combined observation and taxon tables.

Value

(gg, geplot) A gg, ggplot object if assigned to a variable, otherwise a plot to your active graphics
device

Examples

Not run:
Read a dataset of interest
dataset <- read_data("edi.193.5")

plot ecocomDP formatted dataset
plot_taxa_abund(dataset)

plot flattened ecocomDP dataset, log(x+1) transform abundances
plot_taxa_abund(

data = flatten_data(dataset),

trans = "loglp”)

facet by location color by taxon_rank, log 10 transform
plot_taxa_abund(

data = dataset,

facet_var = "location_id",

color_var = "taxon_rank”,

trans = "logl0")

facet by location, minimum rel. abund = 0.05, log 10 transform
plot_taxa_abund(

data = dataset,

facet_var = "location_id",

min_relative_abundance = 0.05,

30

plot_taxa_accum_sites

trans = "loglp"”)

color by location, log 10 transform

plot_taxa_abund(
data = dataset,

color_var = "location_id",
trans = "logl10")

tidy syntax, flatten then filter data by date

dataset %>%

flatten_data() %>%

dplyr::filter(

lubridate::as_date(datetime) > "2003-07-01") %>%
plot_taxa_abund(

trans = "loglp”,

min_relative_abundance = 0.01)

End(Not run)

Plot the example dataset
plot_taxa_abund(ants_L1)

plot_taxa_accum_sites Plot taxa accumulation by site accumulation

Description

Plot taxa accumulation by site accumulation

Usage

plot_taxa_accum_sites(data, id = NA_character_, alpha = 1, observation = NULL)

Arguments

data

id

alpha

observation

(list or tbl_df, tbl, data.frame) The dataset object returned by read_data(), a
named list of tables containing the observation table, or a flat table containing
columns of the observation table.

(character) Identifier of dataset to be used in plot subtitles. Is automatically
assigned when data is a dataset object containing the id field, or is a table
containing the package_id column.

(numeric) Alpha-transparency scale of data points. Useful when many data
points overlap. Allowed values are between 0 and 1, where 1 is 100% opaque.
Defaultis 1.

(tbl_df, tbl, data.frame) DEPRECATED: Use data instead.

plot_taxa_accum_time 31

Details

The data parameter accepts a range of input types but ultimately requires the 9 columns of the
observation table.

Value

(gg, ggplot) A gg, ggplot object if assigned to a variable, otherwise a plot to your active graphics
device

Examples

Not run:
Read a dataset of interest
dataset <- read_data("edi.193.5")

Plot the dataset
plot_taxa_accum_sites(dataset)

Flatten the dataset, manipulate, then plot

dataset %>%
flatten_data() %>%
dplyr::filter(lubridate::as_date(datetime) > "2003-07-01") %>%
plot_taxa_accum_sites()

Plot from the observation table directly
plot_taxa_accum_sites(dataset$tables$observation)

End(Not run)

Plot the example dataset
plot_taxa_accum_sites(ants_L1)

plot_taxa_accum_time Plot taxa accumulation through time

Description

Plot taxa accumulation through time

Usage

plot_taxa_accum_time(data, id = NA_character_, alpha = 1, observation = NULL)

32 plot_taxa_accum_time

Arguments

data (list or tbl_df, tbl, data.frame) The dataset object returned by read_data(), a
named list of tables containing the observation table, or a flat table containing
columns of the observation table.

id (character) Identifier of dataset to be used in plot subtitles. Is automatically
assigned when data is a dataset object containing the id field, or is a table
containing the package_id column.

alpha (numeric) Alpha-transparency scale of data points. Useful when many data

points overlap. Allowed values are between 0 and 1, where 1 is 100% opaque.
Default is 1.

observation (tbl_df, tbl, data.frame) DEPRECATED: Use data instead.

Details

The data parameter accepts a range of input types but ultimately requires the 9 columns of the
observation table.

Value

(gg, ggplot) A gg, geplot object if assigned to a variable, otherwise a plot to your active graphics
device

Examples

Not run:
Read a dataset of interest
dataset <- read_data("edi.193.5")

Plot the dataset
plot_taxa_accum_time(dataset)

Flatten the dataset, manipulate, then plot

dataset %>%
flatten_data() %>%
dplyr::filter(lubridate::as_date(datetime) > "2003-07-01") %>%
plot_taxa_accum_time()

Plot from the observation table directly
plot_taxa_accum_time(dataset$tables$observation)

End(Not run)

Plot the example dataset
plot_taxa_accum_time(ants_L1)

plot_taxa_diversity 33

plot_taxa_diversity Plot diversity (taxa richness) through time

Description

Plot diversity (taxa richness) through time

Usage
plot_taxa_diversity(
data,
id = NA_character_,
time_window_size = "day",
observation = NULL,
alpha = 1
)
Arguments
data (list or tbl_df, tbl, data.frame) The dataset object returned by read_data(), a
named list of tables containing the observation table, or a flat table containing
columns of the observation table.
id (character) Identifier of dataset to be used in plot subtitles. Is automatically

assigned when data is a dataset object containing the id field, or is a table
containing the package_id column.

time_window_size
(character) Define the time window over which to aggregate observations for
calculating richness. Can be: "day" or "year"

observation (tbl_df, tbl, data.frame) DEPRECATED: Use data instead.

alpha (numeric) Alpha-transparency scale of data points. Useful when many data
points overlap. Allowed values are between 0 and 1, where 1 is 100% opaque.
Default is 1.

Details

The data parameter accepts a range of input types but ultimately requires the 9 columns of the
observation table.

Value

(gg, ggplot) A gg, ggplot object if assigned to a variable, otherwise a plot to your active graphics
device

34 plot_taxa_occur_freq

Examples

Not run:
Read a dataset of interest
dataset <- read_data("edi.193.5")

Plot the dataset
plot_taxa_diversity(dataset)

Plot the dataset with observations aggregated by year
plot_taxa_diversity(dataset, time_window_size = "year")

Flatten the dataset, manipulate, then plot
dataset %>%
flatten_data() %>%
dplyr::filter(
lubridate::as_date(datetime) > "2007-01-01") %>%
plot_taxa_diversity()

Plot from the observation table directly
plot_taxa_diversity(dataset$tables$observation)

End(Not run)

Plot the example dataset
plot_taxa_diversity(ants_L1)

plot_taxa_occur_freq Plot taxon occurrence frequencies

Description

Plot taxon occurrence frequences as the number of ’event_id’ by ’location_id’ combinations in
which a taxon is observed.

Usage

plot_taxa_occur_freq(
data,
id = NA_character_,
min_occurrence = 0,
facet_var = NA_character_,
color_var = NA_character_,
facet_scales = "free",
alpha =1

plot_taxa_occur_freq 35

Arguments
data (list or tbl_df, tbl, data.frame) The dataset object returned by read_data(), a
named list of tables containing the observation and taxon tables, or a flat table
containing columns of the observation and taxon tables.
id (character) Identifier of dataset to be used in plot subtitles. Is automatically

assigned when data is a dataset object containing the id field, or is a table
containing the package_id column.

min_occurrence (numeric) Minimum number of occurrences allowed for taxa included in the
plot.

facet_var (character) Name of column to use for faceting. Must be a column of the obser-
vation or taxon table.

color_var (character) Name of column to use for plot colors.

facet_scales (character) Should scales be free ("free", default value), fixed ("fixed"), or free
in one dimension ("free_x", "free_y")?

alpha (numeric) Alpha-transparency scale of data points. Useful when many data
points overlap. Allowed values are between 0 and 1, where 1 is 100% opaque.
Default is 1.

Details

The data parameter accepts a range of input types but ultimately requires the 13 columns of the
combined observation and taxon tables.

Value

(gg, ggplot) A gg, ggplot object if assigned to a variable, otherwise a plot to your active graphics
device.

Examples

Not run:
Read a dataset of interest
dataset <- read_data("edi.193.5")

Plot the dataset
plot_taxa_occur_freq(dataset)

Facet by location and color by taxon_rank
plot_taxa_occur_freq(

data = dataset,

facet_var = "location_id",

color_var = "taxon_rank")

Color by location and only include taxa with >= 5 occurrences
plot_taxa_occur_freq(

data = dataset,

color_var = "location_id",

min_occurrence = 5)

36

plot_taxa_rank

Flatten, filter using a time cutoff, then plot

dataset %>%

flatten_data() %>%
dplyr::filter(lubridate::as_date(datetime) > "2003-07-01") %>%
plot_taxa_occur_freq()

End(Not run)

Plot the example dataset
plot_taxa_occur_freq(ants_L1)

plot_taxa_rank

Plot taxa ranks

Description

Plot the number of observations that use each taxonomic rank in the dataset.

Usage

plot_taxa_rank(

data,

id = NA_character_,

facet_var = NA_character_,
facet_scales = "free_x",
alpha = 1
)
Arguments

data (list or tbl_df, tbl, data.frame) The dataset object returned by read_data(), a
named list of tables containing the observation and taxon tables, or a flat table
containing columns of the observation and taxon tables.

id (character) Identifier of dataset to be used in plot subtitles. Is automatically
assigned when data is a dataset object containing the id field, or is a table
containing the package_id column.

facet_var (character) Name of column to use for faceting. Must be a column of the obser-

facet_scales

alpha

vation or taxon table.

(character) Should scales be free ("free", default value), fixed ("fixed"), or free
in one dimension ("free_x", "free_y")?

(numeric) Alpha-transparency scale of data points. Useful when many data
points overlap. Allowed values are between 0 and 1, where 1 is 100% opaque.
Default is 1.

plot_taxa_shared_sites 37

Details

The data parameter accepts a range of input types but ultimately requires the 13 columns of the
combined observation and taxon tables.

Value

(gg, ggplot) A gg, ggplot object if assigned to a variable, otherwise a plot to your active graphics
device

Examples

Not run:
Read a dataset of interest
dataset <- read_data(
id = "neon.ecocomdp.20120.001.001",
site= c('COMO', 'LECO"),
startdate = "2017-06",
enddate = "2019-09",
check.size = FALSE)

Plot the dataset
plot_taxa_rank(dataset)

Plot with facet by location
plot_taxa_rank(dataset, facet_var = "location_id")

Flatten the dataset, manipulate, then plot
dataset %>%
flatten_data() %>%
dplyr::filter(lubridate::as_date(datetime) > "2003-07-01") %>%
dplyr::filter(grepl("COM0O",location_id)) %>%
plot_taxa_rank()

End(Not run)

Plot the example dataset
plot_taxa_rank(ants_L1)

plot_taxa_shared_sites
Plot number of unique taxa shared across sites

Description

Plot number of unique taxa shared across sites

Usage

plot_taxa_shared_sites(data, id = NA_character_, observation = NULL)

38 plot_taxa_shared_sites

Arguments
data (list or tbl_df, tbl, data.frame) The dataset object returned by read_data(), a
named list of tables containing the observation table, or a flat table containing
columns of the observation table.
id (character) Identifier of dataset to be used in plot subtitles. Is automatically

assigned when data is a dataset object containing the id field, or is a table
containing the package_id column.

observation (tbl_df, tbl, data.frame) DEPRECATED: Use data instead.

Details

The data parameter accepts a range of input types but ultimately requires the 9 columns of the
observation table.

Value

(gg, ggplot) A gg, ggplot object if assigned to a variable, otherwise a plot to your active graphics
device

Examples

Not run:
Read a dataset of interest
dataset <- read_data("edi.193.5")

Plot the dataset
plot_taxa_shared_sites(dataset)

Flatten the dataset, manipulate, then plot

dataset %>%
flatten_data() %>%
dplyr::filter(lubridate::as_date(datetime) > "2003-07-01") %>%
dplyr::filter(as.numeric(location_id) > 4) %>%
plot_taxa_shared_sites()

Plot from the observation table directly
plot_taxa_shared_sites(dataset$tables$observation)

End(Not run)

Plot the example dataset
plot_taxa_shared_sites(ants_L1)

read_data 39

read_data Read published data

Description

Read published data

Usage

read_data(
id = NULL,
parse_datetime = TRUE,
unique_keys = FALSE,
site = "all",
startdate = NA,
enddate = NA,
package = "basic”,
check.size = FALSE,
nCores = 1,
forceParallel = FALSE,
token = NA,
neon.data.save.dir = NULL,
neon.data.read.path = NULL,

L

from = NULL,

format = "new”
)
Arguments
id (character) Identifier of dataset to read. Identifiers are listed in the "id" column

of the search_data() output. Older versions of datasets can be read, but a
warning is issued.

parse_datetime (logical) Parse datetime values if TRUE, otherwise return as character strings.

unique_keys (logical) Whether to create globally unique primary keys (and associated foreign
keys). Useful in maintaining referential integrity when working with multiple
datasets. If TRUE, id is appended to each table’s primary key and associated
foreign key. Default is FALSE.

site (character) For NEON data, a character vector of site codes to filter data on.
Sites are listed in the "sites" column of the search_data() output. Defaults to
"all", meaning all sites.

startdate (character) For NEON data, the start date to filter on in the form YYYY-MM.
Defaults to NA, meaning all available dates.
enddate (character) For NEON data, the end date to filter on in the form YYYY-MM.

Defaults to NA, meaning all available dates.

40 read_data

package (character) For NEON data, either *basic’ or expanded’, indicating which data
package to download. Defaults to basic.

check.size (logical) For NEON data, should the user approve the total file size before down-
loading? Defaults to FALSE.

nCores (integer) For NEON data, the number of cores to parallelize the stacking proce-
dure. Defaults to 1.

forceParallel (logical) For NEON data, if the data volume to be processed does not meet
minimum requirements to run in parallel, this overrides. Defaults to FALSE.

token (character) For NEON data, a user specific API token (generated within neon.datascience
user accounts).
neon.data.save.dir
(character) For NEON data, an optional and experimental argument (i.e. may not
be supported in future releases), indicating the directory where NEON source
data should be saved upon download from the NEON API. Data are downloaded
using neonUtilities::loadByProduct() and saved in this directory as an .rds
file. The filename will follow the format <NEON data product ID>_<timestamp>.rds
neon.data.read.path
(character) For NEON data, an optional and experimental argument (i.e. may
not be supported in future releases), defining a path to read in an .rds file of
’stacked NEON data’ from neonUtilities::loadByProduct(). See details
below for more information.

For NEON data, other arguments to neonUtilities::loadByProduct()

from (character) Full path of file to be read (if .rds), or path to directory containing
saved datasets (if .csv).

format (character) Format of returned object, which can be: "new" (the new implemen-
tation) or "old" (the original implementation; deprecated). In the new format,
the top most level of nesting containing the "id" field has been moved to the

"non

same level as the "tables", "metadata", and "validation_issues" fields.

Details

Validation checks are applied to each dataset ensuring it complies with the ecocomDP model. A
warning is issued when any validation checks fail. All datasets are returned, even if they fail vali-
dation.

Column classes are coerced to those defined in the ecocomDP specification.
Validation happens each time files are read, from source APIs or local environments.

Details for read_data() function regarding NEON data: Using this function to read data with
an id that begins with "neon.ecocomdp" will result in a query to download NEON data from the
NEON Data Portal API using neonUtilities::loadByProduct(). If a query includes provisional
data (or if you are not sure if the query includes provisional data), we recommend saving a copy
of the data in the original format provided by NEON in addition to the derived ecocomDP data
package. To do this, provide a directory path using the neon.data.read.path argument. For
example, the query my_ecocomdp_data <- read_data(id = "neon.ecocomdp.10022.001.001",
neon.data.save.dir = "my_neon_data") will download the data for NEON Data Product ID
DP1.10022.001 (ground beetles in pitfall traps) and convert it to the ecocomDP data model. In

read_data 41

doing so, a copy of the original NEON download will be saved in the directory "my_ neon_data
with the filename "DP1.10022.001_<timestamp>.RDS" and the derived data package in the eco-
comDP format will be stored in your R environment in an object named "my_ecocomdp_data".
Further, if you wish to reload a previously downloaded NEON dataset into the ecocomDP format,
you can do so using my_ecocomdp_data <- read_data(id = "neon.ecocomdp.10022.001.001",
neon.data.read.path = "my_neon_data/DP1.10022.001_<timestamp>.RDS")

Provisional NEON data. Despite NEON’s controlled data entry, at times, errors are found in pub-
lished data; for example, an analytical lab may adjust its calibration curve and re-calculate past anal-
yses, or field scientists may discover a past misidentification. In these cases, Level 0 data are edited
and the data are re-processed to Level 1 and re-published. Published data files include a time stamp
in the file name; a new time stamp indicates data have been re-published and may contain differ-
ences from previously published data. Data are subject to re-processing at any time during an initial
provisional period; data releases are never re-processed. All records downloaded from the NEON
API will have a "release" field. For any provisional record, the value of this field will be "PRO-
VISIONAL", otherwise, this field will have a value indicating the version of the release to which
the record belongs. More details can be found at https://www.neonscience.org/data-samples/data-
management/data-revisions-releases.

Value

(list) A dataset with the structure:

¢ id - Dataset identifier

* metadata - List of info about the dataset. NOTE: This object is underdevelopment and content
may change in future releases.

* tables - List of dataset tables as data.frames.

* validation_issues - List of validation issues. If the dataset fails any validation checks, then
descriptions of each issue are listed here.

Note

This function may not work between 01:00 - 03:00 UTC on Wednesdays due to regular maintenance
of the EDI Data Repository.

Examples

Not run:

Read from EDI

dataset <- read_data("edi.193.5")
str(dataset, max.level = 2)

Read from NEON (full dataset)
dataset <- read_data(”"neon.ecocomdp.20120.001.001")

Read from NEON with filters (partial dataset)
dataset <- read_data(

id = "neon.ecocomdp.20120.001.001",

site = c(”COMO", "LECO”, "SUGG"),

startdate = "2017-06",

42 save_data

enddate = "2019-09",
check.size = FALSE)

Read with datetimes as character
dataset <- read_data("edi.193.5", parse_datetime = FALSE)
is.character(dataset$tables$observation$datetime)

Read from saved .rds
save_data(dataset, tempdir())
dataset <- read_data(from = paste@(tempdir(), "/dataset.rds"))

Read from saved .csv
save_data(dataset, tempdir(), type = ".csv")# Save as .csv

dataset <- read_data(from = tempdir())

End(Not run)

save_data Save a dataset

Description

Save a dataset

Usage
save_data(dataset, path, type = ".rds"”, name = NULL)
Arguments
dataset (list) One or more datasets of the structure returned by read_data(). Name of
the dataset object will become the file name if name is not used.
path (character) Path to the directory in which dataset will be written.
type (character) Type of file to save the dataset as. Default is ".rds" but can also be
".csv". Note: metadata and validation_issues are lost when using ".csv".
name (character) An optional argument for setting the saved file name (for .rds) if
you’d like it to be different than dataset’s object name.
Value
.rds If type = ".rds", then an .rds representation of dataset is returned.
.CSV If type = ".csv", then an set of .csv files are written to a sub-directory of path
named after the data package/product ID.
Note

Subsequent calls won’t overwrite files or directories

search_data 43

Examples

Create directory for the data
mypath <- paste@(tempdir(), "/data")
dir.create(mypath)

Save as .rds
save_data(ants_L1, mypath)
dir(mypath)

Save as .rds with the name "mydata”
save_data(ants_L1, mypath, name = "mydata")
dir(mypath)

Save as .csv
save_data(ants_L1, mypath, type = ".csv")
dir(mypath)

Not run:

Save multiple datasets

ids <- c("edi.193.5", "edi.303.2", "edi.290.2")
datasets <- lapply(ids, read_data)
save_data(datasets, mypath)

dir(mypath)

End(Not run)

Clean up
unlink(mypath, recursive = TRUE)

search_data Search published data

Description

Search published data

Usage

search_data(text, taxa, num_taxa, num_years, sd_years, area, boolean = "AND")

Arguments

text (character) Text to search for in dataset titles, descriptions, and abstracts. Datasets
matching any exact words or phrase will be returned. Can be a regular expres-
sion as used by stringr::str_detect(). Is not case sensitive. Works with
boolean.

44

taxa

num_taxa

num_years

sd_years

area

boolean

Details

search_data

(character) Taxonomic names to search on. To effectively search the taxonomic
tree, it is advisable to start with specific taxonomic names and then gradually
broaden the search to higher rank levels when needed. For instance, if searching
for "Astragalus gracilis" (species) doesn’t produce any results, try expanding the
search to "Astragalus” (Genus), "Fabaceae" (Family), and so on. This approach
accounts for variations in organism identification, ensuring a more comprehen-
sive exploration of the taxonomic hierarchy.

(numeric) Minimum and maximum number of taxa the dataset should contain.
Any datasets within this range will be returned.

(numeric) Minimum and maximum number of years sampled the dataset should
contain. Any datasets within this range will be returned.

(numeric) Minimum and maximum standard deviation between survey dates (in
years). Any datasets within this range will be returned.

(numeric) Bounding coordinates within which the data should originate. Ac-
cepted values are in decimal degrees and in the order: North, East, South, West.
Any datasets with overlapping areas or contained points will be returned.

(character) Boolean operator to use when searching text and taxa. Supported
operators are: "AND", "OR". Default is "AND". Note, other parameters used in
a search are combined with an implicit "AND".

Currently, to accommodate multiple L1 versions of NEON data products, search results for a NEON
LO will also list all the L1 versions available for the match. This method is based on the assumption
that the summary data among L1 versions is the same, which may need to be addressed in the
future. A list of LO and corresponding L1 identifiers are listed in /inst/L.1_versions.txt. Each L1
version is accompanied by qualifying text that’s appended to the title, abstract, and descriptions for
comprehension of the differences among L1 versions.

Value

(tbl_df, tbl, data.frame) Search results with these feilds:

* source - Source from which the dataset originates. Currently supported are "EDI" and "NEON".

¢ id - Identifier of the dataset.

« title - Title of the dataset.

* description - Description of dataset. Only returned for NEON datasets.

¢ abstract - Abstract of dataset.

* years - Number of years sampled.

» sampling_interval - Standard deviation between sampling events in years.

* sites - Sites names or abbreviations. Only returned for NEON datasets.

e url - URL to dataset.

¢ source_id - Identifier of source LO dataset.

» source_id_url - URL to source LO dataset.

validate_data 45

Note

This function may not work between 01:00 - 03:00 UTC on Wednesdays due to regular maintenance
of the EDI Data Repository.

Examples

Not run:
Empty search returns all available datasets
search_data()

"text"” searches titles, descriptions, and abstracts
search_data(text = "Lake")

"taxa" searches taxonomic ranks for a match
search_data(taxa = "Plantae”)

"num_years"” searches the number of years sampled
search_data(num_years = c(10, 20))

Use any combination of search fields to find the data you're looking for
search_data(

text = c("Lake", "River"),

taxa = c("Plantae”, "Animalia”),

num_taxa = c(0, 10),

num_years = c(10, 100),

sd_years = c(.01, 100),

area = c(47.1, -86.7, 42.5, -92),

boolean = "OR")

End(Not run)

validate_data Validate tables against the model

Description

Validate tables against the model

Usage

validate_data(dataset = NULL, path = NULL)

Arguments

dataset (list) A dataset of the structure returned by read_data().

path (character) Path to a directory containing ecocomDP tables as files.

46

Details

Value

Note

Validation checks:

¢ File names - File names are the ecocomDP table names.

» Table presence - Required tables are present.

¢ Column names - Column names of all tables match the model.
* Column presence - Required columns are present.

* Column classes - Column classes match the model specification.

 Datetime format - Date and time formats follow the model specification.

* Primary keys - Primary keys of tables are unique.

* Composite keys - Composite keys (unique constraints) of each table are unique.

» Referential integrity - Foreign keys have a corresponding primary key.

* Coordinate format - Values are in decimal degree format.

* Coordinate range - Values are within -90 to 90 and -180 to 180.

validate_data

* Elevation - Values are less than Mount Everest (8848 m) and greater than Mariana Trench

(-10984 m).
* Variable mapping - variable_name is in table_name.

* Mapped_id - values in mapped_id are valid URIs

Examples

Not run:

Write a set of ecocomDP tables to file for validation
mydir <- paste@(tempdir(), "/dataset")
dir.create(mydir)

write_tables(

path = mydir,

observation = ants_L1$tables$observation,
observation_ancillary = ants_L1%$tables$observation_ancillary,
location = ants_L1$tables$location,

location_ancillary = ants_L1$%$tables$location_ancillary,

taxon = ants_L1%$tables$taxon,

taxon_ancillary = ants_L1$tables$taxon_ancillary,
dataset_summary = ants_L1$tables$dataset_summary,
variable_mapping = ants_L1%$tables$variable_mapping)

(list) If any checks fail, then a list of validation issues are returned along with a warning. If no
issues are found then NULL is returned.

This function is used by ecocomDP creators (to ensure what has been created is valid), maintainers
(to improve the quality of archived ecocomDP datasets), and users (to ensure the data being used is
free of error).

write_tables

Validate
validate_data(path = mydir)

Clean up
unlink(mydir, recursive = TRUE)

End(Not run)

47

write_tables Write tables to file

Description

Werite tables to file

Usage

write_tables(
path,
sep = ",",
observation = NULL,
location = NULL,
taxon = NULL,
dataset_summary = NULL,
observation_ancillary = NULL,
location_ancillary = NULL,
taxon_ancillary = NULL,
variable_mapping = NULL

)

Arguments
path (character) A path to the directory in which the files will be written.
sep (character) Field delimiter to use when writing files. Default is comma.
observation (tbl_df, tbl, data.frame) The observation table.
location (tbl_df, tbl, data.frame) The location table.
taxon (tbl_df, tbl, data.frame) The taxon table.

dataset_summary

(tbl_df, tbl, data.frame) The dataset_summary table.
observation_ancillary

(tbl_df, tbl, data.frame) The observation_ancillary table.
location_ancillary

(tbl_df, tbl, data.frame) The location_ancillary table.

48 write_tables

taxon_ancillary

(tbl_df, tbl, data.frame) The taxon_ancillary table.
variable_mapping

(tbl_df, tbl, data.frame) The variable_mapping table.

Value

ecocomDP tables as sep delimited files

Examples

Create directory for the tables
mypath <- paste@(tempdir(), "/data")
dir.create(mypath)

Create a couple inputs to write_tables()
flat <- ants_L@_flat

observation <- create_observation(
Lo_flat = flat,
observation_id = "observation_id",
event_id = "event_id",
package_id = "package_id",
location_id = "location_id",
datetime = "datetime”,
taxon_id = "taxon_id",
variable_name = "variable_name”,
value = "value”,
unit = "unit")

observation_ancillary <- create_observation_ancillary(
Lo_flat = flat,
observation_id = "observation_id",
variable_name = c("trap.type"”, "trap.num”, "moose.cage"))

Write tables to file

write_tables(
path = mypath,
observation = observation,
observation_ancillary = observation_ancillary)

dir(mypath)

Clean up
unlink(mypath, recursive = TRUE)

Index

x datasets
ants_L0_flat, 3
ants_L1,5

annotation_dictionary, 3
ants_L0_flat, 3
ants_L1,5

calc_geo_extent_bounding_box_m2, 6
calc_length_of_survey_years, 6
calc_number_of_years_sampled, 7
calc_std_dev_interval_betw_years, 7
convert_to_dwca, 8
create_dataset_summary, 9
create_eml, 11

create_location, 14
create_location_ancillary, 15
create_observation, 16
create_observation_ancillary, 18
create_taxon, 19
create_taxon_ancillary, 21
create_variable_mapping, 22

flatten_data, 24

plot_sample_space_time, 25
plot_sites, 26
plot_taxa_abund, 28
plot_taxa_accum_sites, 30
plot_taxa_accum_time, 31
plot_taxa_diversity, 33
plot_taxa_occur_freq, 34
plot_taxa_rank, 36
plot_taxa_shared_sites, 37

read_data, 39

save_data, 42
search_data, 43

validate_data, 45

write_tables, 47

49

	annotation_dictionary
	ants_L0_flat
	ants_L1
	calc_geo_extent_bounding_box_m2
	calc_length_of_survey_years
	calc_number_of_years_sampled
	calc_std_dev_interval_betw_years
	convert_to_dwca
	create_dataset_summary
	create_eml
	create_location
	create_location_ancillary
	create_observation
	create_observation_ancillary
	create_taxon
	create_taxon_ancillary
	create_variable_mapping
	flatten_data
	plot_sample_space_time
	plot_sites
	plot_taxa_abund
	plot_taxa_accum_sites
	plot_taxa_accum_time
	plot_taxa_diversity
	plot_taxa_occur_freq
	plot_taxa_rank
	plot_taxa_shared_sites
	read_data
	save_data
	search_data
	validate_data
	write_tables
	Index

