Package ‘easyalluvial’

December 7, 2023

Title Generate Alluvial Plots with a Single Line of Code
Version 0.3.2

URL https://github.com/erblast/easyalluvial/

Description Alluvial plots are similar to sankey diagrams and visualise categorical data
over multiple dimensions as flows. (Rosvall M, Bergstrom CT (2010) Mapping Change in
Large Networks. PLoS ONE 5(1): e8694. <doi:10.1371/journal.pone.0008694>
Their graphical grammar however is a bit more complex then that of a regular x/y
plots. The 'ggalluvial' package made a great job of translating that grammar into
'ggplot2’ syntax and gives you many options to tweak the appearance of an alluvial
plot, however there still remains a multi-layered complexity that makes it difficult
to use 'ggalluvial' for explorative data analysis. 'easyalluvial' provides a simple
interface to this package that allows you to produce a decent alluvial plot from any
dataframe in either long or wide format from a single line of code while also handling
continuous data. It is meant to allow a quick visualisation of entire dataframes
with a focus on different colouring options that can make alluvial plots a great
tool for data exploration.

License CCO
Encoding UTF-8
LazyData true
Depends R(>=3.5)

Suggests testthat, covr, ISLR, nycflights13, vdiffr (>= 0.3.1),
pkgdown, mlbench, earth, workflows, future, furrr, e1071,
caret, parsnip, vip, rpart, glmnet, xgboost

RoxygenNote 7.2.3

Imports purrr, tidyr (>= 1.0.0) , dplyr , forcats , ggalluvial (>=
0.9.1), ggplot2 (>=3.2.0) , ggridges , RColorBrewer , recipes
(>=0.1.5) , rlang , stringr , magrittr , tibble , gridExtra ,
randomForest , progressr , progress

Language en-US
NeedsCompilation no

Author Bjoern Koneswarakantha [aut, cre]
(<https://orcid.org/0000-0003-4585-7799>)

1

https://github.com/erblast/easyalluvial/
https://doi.org/10.1371/journal.pone.0008694
https://orcid.org/0000-0003-4585-7799

2 add_imp_plot

Maintainer Bjoern Koneswarakantha <datistics@gmail.com>

Repository CRAN

Date/Publication 2023-12-07 13:40:06 UTC

R topics documented:
add_imp_plot 2
add_marginal_histograms 3
alluvial_long e e e 5
alluvial_model_response 7
alluvial_model_response_caret 10
alluvial_model_response_parsnipol e 12
alluvial_wide e e 14
check_pkg installed 16
get_data_space 17
get_pdp_predictions 18
get_pdp_predictions_Seqo e 20
manip_bin_numerics e 21
manip_factor_2_numeric e 22
MECATS2 o e e e e e e e e e e e e e e e 23
palette_filter L e 24
palette_increase_length L 25
palette_plot_intensity L. 26
palette_plot_rgp e e e 27
palette_qualitativeo 27
plot_all_hists e 28
plot_condensation e e e e 29
plot_hist 30
plotimpo e 30
quarterly_flights 31
quarterly_sunspots L e e e 32
tdy_imp e e 32
HEANIC e e e e e e e e e e e 33

Index 34

add_imp_plot add bar plot of important features to model response alluvial plot
Description

adds bar plot of important features to model response alluvial plot

Usage

add_imp_plot(grid, p = NULL, data_input, plot =T, ...)

add_marginal_histograms

Arguments
grid
P

data_input
plot

Value

gtable

See Also

gtable or ggplot

alluvial plot, optional if alluvial plot has already been passed as grid. Default:
NULL

dataframe used to generate alluvial plot
logical if plot should be drawn or not

additional parameters passed to plot_imp

arrangeGrob plot_imp

Examples

Not run:

df = mtcars2[,

! names(mtcars2) %in% 'ids']

train = caret::train(disp ~ .

pred_train

, df

, method = 'rf’

, trControl = caret::trainControl(method = 'none')
, importance = TRUE)

caret::predict.train(train, df)

p = alluvial_model_response_caret(train, degree = 4, pred_train = pred_train)

p_grid = add_marginal_histograms(p, data_input = df)

p_grid = add_imp_plot(p_grid, p, data_input = df)

End(Not run)

add_marginal_histograms

add marginal histograms to alluvial plot

Description

will add density histograms and frequency plots of original data to alluvial plot

add_marginal_histograms

add_marginal_histograms(

Usage
P,
data_input,
top = TRUE,
keep_labels =
plot = TRUE,
)
Arguments
p
data_input
top

keep_labels
plot

Value

gtable

See Also

arrangeGrob

Examples

Not run:

FALSE,

alluvial plot
dataframe, input data that was used to create dataframe

logical, position of histograms, if FALSE adds them at the bottom, Default:
TRUE

logical, keep title and caption, Default: FALSE
logical if plot should be drawn or not

additional arguments for model response alluvial plot concerning the response
variable

pred_train display training prediction, not necessary if pred_train has already
been passed to alluvial_model_response()
scale int, y-axis distance between the ridge plots, Default: 400

resp_var character vector, specify response variable in data_input, if not set
response variable will try to be inferred, Default: NULL

p = alluvial_wide(mtcars2, max_variables = 3)
p_grid = add_marginal_histograms(p, mtcars2)

End(Not run)

alluvial_long 5

alluvial_long alluvial plot of data in long format

Description

Plots two variables of a dataframe on an alluvial plot. A third variable can be added either to the left

or

the right of the alluvial plot to provide coloring of the flows. All numerical variables are scaled,

centered and YeoJohnson transformed before binning.

Usage
al

luvial_long(
data,

key,

value,

id,

fill = NULL,
fill_right = T,
bins = 5,

bin_labels = c("LL", "ML", "M", "MH", "HH"),

NA_label = "NA",

order_levels_value = NULL,

order_levels_key = NULL,

order_levels_fill = NULL,

complete = TRUE,

fill_by = "first_variable”,

col_vector_flow = palette_qualitative() %>% palette_filter(greys = F),
col_vector_value = RColorBrewer::brewer.pal(9, "Greys")[c(3, 6, 4, 7, 5)],
verbose = F,

stratum_labels = T,

stratum_label_type = "label”,

stratum_label_size = 4.5,

stratum_width = 1/4,

auto_rotate_xlabs = T,

Arguments
data a dataframe
key unquoted column name or string of x axis variable
value unquoted column name or string of y axis variable
id unquoted column name or string of id column
fill unquoted column name or string of fill variable which will be used to color

flows, Default: NULL

6 alluvial_long

fill_right logical, TRUE fill variable is added to the right FALSE to the left, Default: T
bins number of bins for automatic binning of numerical variables, Default: 5
bin_labels labels for bins, Default: c("LL", "ML", "M", "MH", "HH")

NA_label character vector define label for missing data

order_levels_value
character vector denoting order of y levels from low to high, does not have to be
complete can also just be used to bring levels to the front, Default: NULL

order_levels_key

character vector denoting order of x levels from low to high, does not have to be

complete can also just be used to bring levels to the front, Default: NULL
order_levels_fill

character vector denoting order of color fill variable levels from low to high,

does not have to be complete can also just be used to bring levels to the front,
Default: NULL

complete logical, insert implicitly missing observations, Default: TRUE
fill_by one_of(c(’first_variable’, ’last_variable’, "all_flows’, ’values’)), Default: first_variable’
col_vector_flow

HEX color values for flows, Default: palette_filter(greys = F)

col_vector_value
HEX color values for y levels/values, Default:RColorBrewer::brewer.pal(9, *Greys’)[c(3,6,4,7,5)]

verbose logical, print plot summary, Default: F

stratum_labels logical, Default: TRUE
stratum_label_type

character, Default: "label"
stratum_label_size

numeric, Default: 4.5

stratum_width double, Default: 1/4
auto_rotate_xlabs
logical, Default: TRUE

additional parameter passed to manip_bin_numerics

Value

ggplot2 object

See Also

alluvial_wide ,geom_flow, geom_stratum manip_bin_numerics

Examples

Not run:
data = quarterly_flights

alluvial_model_response 7

alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'last_variable')
more flow coloring variants ----—-—----------—--—————— -

alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'first_variable')
alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'all_flows"')
alluvial_long(data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'value')

color by additional variable carrier ------------------——-—————-

alluvial_long(data, key = qu, value = mean_arr_delay, fill = carrier, id = tailnum)

use same color coding for flows and y levels ------------———-——-

palette = c('green3', 'tomato')

alluvial_long(data, qu, mean_arr_delay, tailnum, fill_by = 'value'

, col_vector_flow = palette
, col_vector_value = palette)

reorder levels —-—---———-m—mmm oo

alluvial_long(data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'
, order_levels_value = c('on_time', 'late'))
alluvial_long(data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'

, order_levels_key = c('Q4', 'Q3', 'Q2', 'Q1'))

require(dplyr)
require(magrittr)

order_by_carrier_size = data %>%
group_by(carrier) %>%
count() %>%
arrange(desc(n)) %>%
.[['carrier']]

alluvial_long(data, qu, mean_arr_delay, tailnum, carrier
, order_levels_fill = order_by_carrier_size)

End(Not run)

alluvial_model_response
create model response plot

8 alluvial_model_response

Description

alluvial plots are capable of displaying higher dimensional data on a plane, thus lend themselves to
plot the response of a statistical model to changes in the input data across multiple dimensions. The
practical limit here is 4 dimensions. We need the data space (a sensible range of data calculated
based on the importance of the explanatory variables of the model as created by get_data_space
and the predictions returned by the model in response to the data space.

Usage
alluvial_model_response(
pred,
dspace,
imp,
degree = 4,

bin_labels = c("LL", "ML", "M", "MH", "HH"),

col_vector_flow = c("#FF0065", "#009850", "#A56F2B", "#0Q5EAA", "#710500", "#7B5380",
"#9DD1D1"),

method = "median”,

force = FALSE,

params_bin_numeric_pred = list(bins = 5),

pred_train = NULL,

stratum_label_size = 3.5,

)
Arguments

pred vector, predictions, if method = *pdp’ use get_pdp_predictions to calculate
predictions

dspace data frame, returned by get_data_space

imp dataframe, with not more then two columns one of them numeric containing im-
portance measures and one character or factor column containing corresponding
variable names as found in training data.

degree integer, number of top important variables to select. For plotting more than 4
will result in two many flows and the alluvial plot will not be very readable,
Default: 4

bin_labels labels for prediction bins from low to high, Default: ¢("LL", "ML", "M", "MH",
"HHH)

col_vector_flow,
character vector, defines flow colours, Default: cC#FF0065’,#009850°, ’#A56F2B’,
"#O0OSEAA’, *#710500’)
method, character vector, one of c("median’, *pdp’)
median sets variables that are not displayed to median mode, use with regular
predictions

pdp partial dependency plot method, for each observation in the training data
the displayed variable as are set to the indicated values. The predict function

alluvial_model_response 9

is called for each modified observation and the result is averaged, calculate
predictions using get_pdp_predictions

. Default: median’

force logical, force plotting of over 1500 flows, Default: FALSE
params_bin_numeric_pred
list, additional parameters passed to manip_bin_numerics which is applied to
the pred parameter. Default: list(bins = 5, center = T, transform = T, scale = T)

pred_train numeric vector, base the automated binning of the pred vector on the distribution
of the training predictions. This is useful if marginal histograms are added to the
plot later. Default = NULL

stratum_label_size
numeric, Default: 3.5

additional parameters passed to alluvial_wide

Details

this model visualisation approach follows the "visualising the model in the dataspace" principle as
described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the
blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

ggplot2 object

See Also

alluvial_wide, get_data_space, alluvial_model_response_caret

Examples
df = mtcars2[, ! names(mtcars2) %in% 'ids']
m = randomForest::randomForest(disp ~ ., df)

imp = m$importance

dspace = get_data_space(df, imp, degree = 3)

pred = predict(m, newdata = dspace)
alluvial_model_response(pred, dspace, imp, degree = 3)

partial dependency plotting method
Not run:
pred = get_pdp_predictions(df, imp
, .f_predict = randomForest:::predict.randomForest
, m
, degree = 3
, bins = 5)

alluvial_model_response(pred, dspace, imp, degree = 3, method = 'pdp')

End(Not run)

10 alluvial_model_response_caret

alluvial_model_response_caret
create model response plot for caret models

Description

Wraps alluvial_model_response and get_data_space into one call for caret models.

Usage

alluvial_model_response_caret(
train,
data_input,
degree = 4,
bins = 5,
bin_labels = c("LL", "ML", "M", "MH", "HH"),
col_vector_flow = c("#FFQ065", "#009850", "#A56F2B", "#QO5EAA", "#710500", "#7B5380",
"#9DD1D1"),
method = "median”,
parallel = FALSE,
params_bin_numeric_pred = list(bins = 5),
pred_train = NULL,
stratum_label_size = 3.5,
force = F,
resp_var = NULL,

Arguments

train caret train object

data_input dataframe, input data

degree integer, number of top important variables to select. For plotting more than 4
will result in two many flows and the alluvial plot will not be very readable,
Default: 4

bins integer, number of bins for numeric variables, increasing this number might
result in too many flows, Default: 5

bin_labels labels for the bins from low to high, Default: ¢("LL", "ML", "M", "MH", "HH")

col_vector_flow,

character vector, defines flow colours, Default: c(C#FF0065°,#009850’, "#A56F2B’,
*#O0SEAA’, *#710500%)

method, character vector, one of c¢(’median’, *pdp’)

median sets variables that are not displayed to median mode, use with regular
predictions

alluvial_model_response_caret 11

pdp partial dependency plot method, for each observation in the training data
the displayed variables are set to the indicated values. The predict function
is called for each modified observation and the result is averaged

. Default: *'median’

parallel logical, turn on parallel processing for pdp method. Default: FALSE
params_bin_numeric_pred
list, additional parameters passed to manip_bin_numerics which is applied to
the pred parameter. Default: list(bins = 5, center = T, transform = T, scale = T)

pred_train numeric vector, base the automated binning of the pred vector on the distribution
of the training predictions. This is useful if marginal histograms are added to the
plot later. Default = NULL

stratum_label_size
numeric, Default: 3.5

force logical, force plotting of over 1500 flows, Default: FALSE
resp_var character, sometimes target variable cannot be inferred and needs to be passed.
Default NULL

additional parameters passed to alluvial_wide

Details

this model visualisation approach follows the "visualising the model in the dataspace" principle as
described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the
blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

ggplot2 object

Parallel Processing

We are using ‘furrr® and the ‘future® package to paralelize some of the computational steps for
calculating the predictions. It is up to the user to register a compatible backend (see plan).

See Also

alluvial_wide, get_data_space, varImp, extractPrediction, get_data_space, get_pdp_predictions

Examples

if(check_pkg_installed("caret”, raise_error = FALSE)) {
df = mtcars2[, ! names(mtcars2) %in% 'ids']

train = caret::train(disp ~
df,
method = 'rf',
trControl = caret::trainControl(method = 'none'),
importance = TRUE)

.

12 alluvial_model_response_parsnip

alluvial_model_response_caret(train, df, degree = 3)

3

partial dependency plotting method

Not run:

future::plan("multisession™)

alluvial_model_response_caret(train, df, degree = 3, method = 'pdp', parallel = TRUE)

End(Not run)

alluvial_model_response_parsnip
create model response plot for parsnip models

Description

Wraps alluvial_model_response and get_data_space into one call for parsnip models.

Usage

alluvial_model_response_parsnip(
m,
data_input,
degree = 4,
bins = 5,
bin_labels = c(”LL", "ML", "M”", "MH", "HH"),
col_vector_flow = c("#FF0065", "#009850", "#A56F2B", "#0Q5EAA", "#710500", "#7B5380"
"#9DD1D1"),
method = "median”,
parallel = FALSE,
params_bin_numeric_pred = list(bins = 5),
pred_train = NULL,
stratum_label_size = 3.5,
force = F,
resp_var = NULL,
.f_imp = vip::vi_model,

)
Arguments
m parsnip model or trained workflow
data_input dataframe, input data
degree integer, number of top important variables to select. For plotting more than 4

will result in two many flows and the alluvial plot will not be very readable,
Default: 4

alluvial_model_response_parsnip 13

bins integer, number of bins for numeric variables, increasing this number might
result in too many flows, Default: 5
bin_labels labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")

col_vector_flow,
character vector, defines flow colours, Default: cC#FF0065’,#009850°, "#A56F2B’,
"#O0SEAA’, *#7105007)
method, character vector, one of c("median’, *pdp’)
median sets variables that are not displayed to median mode, use with regular
predictions
pdp partial dependency plot method, for each observation in the training data
the displayed variables are set to the indicated values. The predict function
is called for each modified observation and the result is averaged
. Default: "'median’

parallel logical, turn on parallel processing for pdp method. Default: FALSE
params_bin_numeric_pred
list, additional parameters passed to manip_bin_numerics which is applied to
the pred parameter. Default: list(bins = 5, center = T, transform = T, scale = T)

pred_train numeric vector, base the automated binning of the pred vector on the distribution
of the training predictions. This is useful if marginal histograms are added to the
plot later. Default = NULL

stratum_label_size
numeric, Default: 3.5

force logical, force plotting of over 1500 flows, Default: FALSE

resp_var character, sometimes target variable cannot be inferred and needs to be passed.
Default NULL

.f_imp vip function that calculates feature importance, Default: vip::vi_model

additional parameters passed to alluvial_wide

Details

this model visualisation approach follows the "visualising the model in the dataspace" principle as
described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the
blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

ggplot2 object

Parallel Processing

We are using ‘furrr‘ and the ‘future® package to paralelize some of the computational steps for
calculating the predictions. It is up to the user to register a compatible backend (see plan).

See Also

alluvial_wide, get_data_space, varImp, extractPrediction, get_data_space, get_pdp_predictions

14 alluvial_wide

Examples

if(check_pkg_installed("parsnip”, raise_error = FALSE) &
check_pkg_installed("vip"”, raise_error = FALSE)) {

df = mtcars2[, ! names(mtcars2) %in% 'ids']

m = parsnip::rand_forest(mode = "regression”) %>%
parsnip::set_engine("randomForest”) %>%
parsnip::fit(disp ~ ., data = df)

alluvial_model_response_parsnip(m, df, degree = 3)
3
Not run:
workflow ---------=---—--m—mmm oo
m <- parsnip::rand_forest(mode = "regression") %>%
parsnip::set_engine("randomForest")

rec_prep = recipes::recipe(disp ~ ., df) %>%
recipes: :prep()

wf <- workflows: :workflow() %>%
workflows: :add_model(m) %>%
workflows::add_recipe(rec_prep) %>%
parsnip::fit(df)

alluvial_model_response_parsnip(wf, df, degree = 3)
partial dependence plotting method -----
future::plan("multisession”)

alluvial_model_response_parsnip(m, df, degree = 3, method = 'pdp', parallel = TRUE)

End(Not run)

alluvial_wide alluvial plot of data in wide format

Description

plots a dataframe as an alluvial plot. All numerical variables are scaled, centered and YeoJohnson
transformed before binning. Plots all variables in the sequence as they appear in the dataframe until
maximum number of values is reached.

Usage

alluvial_wide(
data,
id = NULL,
max_variables = 20,
bins = 5,

alluvial_wide

bin_labels =

15

C(HLLM7 IIML”’ ”M”, ”MHH’ HHHH),

NA_label = "NA",

order_levels

= NULL,

fill_by = "first_variable”,

col_vector_flow = palette_qualitative() %>% palette_filter(greys = F),
col_vector_value = RColorBrewer::brewer.pal(9, "Greys")[c(4, 7, 5, 8, 6)1,
colorful_fill_variable_stratum = T,

verbose = F,

stratum_labels = T,
stratum_label_type = "label”,
stratum_label_size = 4.5,

stratum_width

= 1/4,

auto_rotate_xlabs =T,

Arguments

data

id
max_variables
bins
bin_labels
NA_label
order_levels

fill_by
col_vector_flow

a dataframe

unquoted column name of id column or character vector with id column name
maximum number of variables, Default: 20

number of bins for numerical variables, Default: 5

labels for the bins from low to high, Default: ¢("LL", "ML", "M", "MH", "HH")
character vector, define label for missing data, Default: "NA’

character vector denoting levels to be reordered from low to high

one_of(c(’first_variable’, ’last_variable’, ’all_flows’, ’values’)), Default: ’first_variable’

HEX colors for flows, Default: palette_filter(greys = F)

col_vector_value

Hex colors for y levels/values, Default: RColorBrewer::brewer.pal(9, "Greys")[c(3,
6,4,7,5)]

colorful_fill_variable_stratum

verbose

stratum_labels

logical, use flow colors to colorize fill variable stratum, Default: TRUE
logical, print plot summary, Default: F
logical, Default: TRUE

stratum_label_type

character, Default: "label"

stratum_label_size

stratum_width

numeric, Default: 4.5
double, Default: 1/4

auto_rotate_xlabs

logical, Default: TRUE

additional arguments passed to manip_bin_numerics

16 check_pkg_installed

Details

Under the hood this function converts the wide format into long format. ggalluvial also offers a way
to make alluvial plots directly from wide format tables but it does not allow individual colouring of
the stratum segments. The tradeoff is that we can only order levels as a whole and not individually
by variable, Thus if some variables have levels with the same name the order will be the same. If
we want to change level order independently we have to assign unique level names first.

Value

ggplot2 object

See Also

alluvial_wide, geom_flow, geom_stratum, manip_bin_numerics

Examples

Not run:
alluvial_wide(data = mtcars2, id =
, max_variables = 3
, fill_by = 'first_variable')#'
more coloring variants-----------------—---——-
alluvial_wide(data = mtcars2, id = ids
, max_variables = 5
, fill_by = 'last_variable')

ids

alluvial_wide(data = mtcars2, id = ids
, max_variables = 5
, fill_by = 'all_flows')
alluvial_wide(data = mtcars2, id = ids
, max_variables = 5

, fill_by = 'first_variable')
manually order variable values and colour by stratum value
alluvial_wide(data = mtcars2, id = ids
, max_variables = 5
, fill_by = 'values'
, order_levels = c('4', '8"', '6'))

End(Not run)

check_pkg_installed check if package is installed

Description

check if package is installed

get_data_space 17

Usage

check_pkg_installed(pkg, raise_error = TRUE)

Arguments

pkg character, package name

raise_error logical

Value

logical

Examples

check_pkg_installed("easyalluvial")

get_data_space calculate data space

Description

calculates a dataspace based on the modeling dataframe and the importance of the explanatory
variables. It only considers the most important variables as defined by the degree parameter. It
selects a number (defined by bins) of sensible single values spread over the range of the numeric
variables and creates all possible value combinations among the most important variables. The
values of the remaining variables are set to mode(factors) or median(numerics).

Usage

get_data_space(df, imp, degree = 4, bins = 5, max_levels = 10)

Arguments

df dataframe, training data

imp dataframe, with not more then two columns one of them numeric containing im-
portance measures and one character or factor column containing corresponding
variable names as found in training data.

degree integer, number of top important variables to select. For plotting more than 4
will result in two many flows and the alluvial plot will not be very readable,
Default: 4

bins integer, number of bins for numeric variables, and maximum number of lev-
els for factor variables, increasing this number might result in too many flows,
Default: 5

max_levels integer, maximum number of levels per factor variable, Default: 10

18 get_pdp_predictions

Details

It selects a the top most important variables based on the degree parameter and bins the numeric
variables using manip_bin_numerics, while leaving categoric variables unchanged. The number
of bins for each numeric variable is set to bins -2. Next the median is picked for each of the bins
and the min and the max value is added for each numeric variable So that we get (median(bin)
X bins -2, max, min) for each numeric variable. Then all possible combinations between those
values and the categoric factor levels are created. The total number of all possible combinations
defines the range of the data space. The values of the remaining variables are set to mode(factors)
or median(numerics).

this model visualisation approach follows the "visualising the model in the dataspace" principle as
described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the
blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

data frame

See Also

alluvial_wide, manip_bin_numerics

Examples
df = mtcars2[, ! names(mtcars2) %in% 'ids']
m = randomForest::randomForest(disp ~ ., df)

imp = m$importance
dspace = get_data_space(df, imp)

get_pdp_predictions get predictions compatible with the partial dependence plotting
method

Description

Alluvial plots are capable of displaying higher dimensional data on a plane, thus lend themselves
to plot the response of a statistical model to changes in the input data across multiple dimensions.
The practical limit here is 4 dimensions while conventional partial dependence plots are limited to
2 dimensions.

Briefly the 4 variables with the highest feature importance for a given model are selected and 5
values spread over the variable range are selected for each. Then a grid of all possible combinations
is created. All none-plotted variables are set to the values found in the first row of the training data
set. Using this artificial data space model predictions are being generated. This process is then
repeated for each row in the training data set and the overall model response is averaged in the end.
Each of the possible combinations is plotted as a flow which is coloured by the bin corresponding
to the average model response generated by that particular combination.

get_pdp_predictions 19

Usage

get_pdp_predictions(
df,
imp,
m,
degree = 4,
bins = 5,
.f_predict = predict,
parallel = FALSE

)
Arguments

df dataframe, training data

imp dataframe, with not more then two columns one of them numeric containing im-
portance measures and one character or factor column containing corresponding
variable names as found in training data.

m model object

degree integer, number of top important variables to select. For plotting more than 4
will result in two many flows and the alluvial plot will not be very readable,
Default: 4

bins integer, number of bins for numeric variables, increasing this number might
result in too many flows, Default: 5

.f_predict corresponding model predict() function. Needs to accept ‘m‘ as the first pa-
rameter and use the ‘newdata‘ parameter. Supply a wrapper for predict func-
tions with x-y syntax. For parallel processing the predict method of object
classes will not always get imported correctly to the worker environment. We
can pass the correct predict method via this parameter for example randomFor-
est:::predict.randomForest. Note that a lot of modeling packages do not export
the predict method explicitly and it can only be found using :::.

parallel logical, turn on parallel processing. Default: FALSE

Details

For more on partial dependency plots see [https://christophm.github.io/interpretable-ml-book/pdp.html].

Value

vector, predictions

Parallel Processing

We are using ‘furrr’ and the ‘future‘ package to paralelize some of the computational steps for
calculating the predictions. It is up to the user to register a compatible backend (see plan).

20 get_pdp_predictions_seq

Examples
df = mtcars2[, ! names(mtcars2) %in% 'ids']
m = randomForest::randomForest(disp ~ ., df)

imp = m$importance

pred = get_pdp_predictions(df, imp
, m
, degree = 3
, bins = 5)

parallel processing -----—--—-——-——-——-——-——--
Not run:
future::plan("multisession”)

note that we have to pass the predict method via .f_predict otherwise
it will not be available in the worker's environment.

pred = get_pdp_predictions(df, imp
, m
, degree = 3
, bins =5,
, parallel = TRUE
, .f_predict = randomForest:::predict.randomForest)

End(Not run)

get_pdp_predictions_seq

get predictions compatible with the partial dependence plotting
method, sequential variant that only works for numeric predictions.

Description

has been replaced by pdp_predictions which can be paralelized and also handles factor predictions.
It is still used to test results.

Usage

get_pdp_predictions_seq(df, imp, m, degree = 4, bins = 5, .f_predict = predict)

Arguments
df dataframe, training data
imp dataframe, with not more then two columns one of them numeric containing im-

portance measures and one character or factor column containing corresponding
variable names as found in training data.

m model object

manip_bin_numerics

degree

bins

.f_predict

See Also

21

integer, number of top important variables to select. For plotting more than 4
will result in two many flows and the alluvial plot will not be very readable,
Default: 4

integer, number of bins for numeric variables, increasing this number might
result in too many flows, Default: 5

corresponding model predict() function. Needs to accept ‘m‘ as the first pa-
rameter and use the ‘newdata‘ parameter. Supply a wrapper for predict func-
tions with x-y syntax. For parallel processing the predict method of object
classes will not always get imported correctly to the worker environment. We
can pass the correct predict method via this parameter for example randomFor-
est:::predict.randomForest. Note that a lot of modeling packages do not export
the predict method explicitly and it can only be found using :::.

get_pdp_predictions

manip_bin_numerics bin numerical columns

Description

centers, scales and Yeo Johnson transforms numeric variables in a dataframe before binning into n
bins of equal range. Outliers based on boxplot stats are capped (set to min or max of boxplot stats).

Usage

manip_bin_numerics(

X’
bins = 5,

bin_labels = C(“LL”, "ML”, “M”, ”MH“, "HH”),

center =T,
scale = T,
transform =

digits = 2,

T,
round_numeric

:T,

NA_label = "NA"

Arguments

X

bins

bin_labels

dataframe with numeric variables, or numeric vector

number of bins for numerical variables, passed to cut as breaks parameter, De-
fault: 5

labels for the bins from low to high, Default: ¢("LL", "ML", "M", "MH", "HH").
Can also be one of c(’mean’, 'median’, *'min_max’, ’cuts’), the corresponding
summary function will supply the labels.

22 manip_tfactor_2_numeric

center logical, Default: T
scale logical, Default: T
transform logical, apply Yeo Johnson Transformation, Default: T

round_numeric,
logical, rounds numeric results if bin_labels is supplied with a supported sum-
mary function name.

digits, integer, number of digits to round to

NA_label character vector, define label for missing data, Default: "NA’
Value

dataframe
Examples

summary(mtcars2)
summary(manip_bin_numerics(mtcars2))
summary (manip_bin_numerics(mtcars2, bin_labels = 'mean'))
summary (manip_bin_numerics(mtcars2, bin_labels = 'cuts'
, scale = FALSE, center = FALSE, transform = FALSE))

manip_factor_2_numeric
converts factor to numeric preserving numeric levels and order in
character levels.

Description
before converting we check whether the levels contain a number, if they do the number will be
preserved.

Usage

manip_factor_2_numeric(vec)

Arguments

vec vector

Value

vector

See Also

str_detect

mtcars2 23

Examples

fac_num = factor(c(1,3,8))
fac_chr = factor(c('foo', 'bar'))
fac_chr_ordered = factor(c('a','b','c'), ordered = TRUE)

manip_factor_2_numeric(fac_num)
manip_factor_2_numeric(fac_chr)
manip_factor_2_numeric(fac_chr_ordered)

does not work for decimal numbers
manip_factor_2_numeric(factor(c("A12", "B55", "10e4")))
manip_factor_2_numeric(factor(c("1.56", "4.56", "8.4")))

mtcars?2 mtcars dataset with cyl, vs, am ,gear, carb as factor variables and car
model names as id

Description

mtcars dataset with cyl, vs, am ,gear, carb as factor variables and car model names as id

Usage

mtcars?2

Format

A data frame with 32 rows and 12 variables

mpg Miles/(US) gallon

cyl Number of cylinders
disp Displacement (cu.in.)
hp Gross horsepower

drat Rear axle ratio

wt Weight (1000 1bs)

gsec 1/4 mile time

vs Engine

am Transmission

gear Number of forward gears
carb Number of carburetors

ids car model name

Source

datasets

24 palette_filter

palette_filter color filters for any vector of hex color values

Description

filters are based on rgb values

Usage

palette_filter(
palette = palette_qualitative(),

similar = F,
greys =T,
reds = T,
greens = T,
blues = T,
dark =T,
medium = T,
bright =T,
thresh_similar = 25
)
Arguments
palette any vector with hex color values, Default: palette_qualitative()
similar, logical, allow similar colours, similar colours are detected using a threshold
(thresh_similar), two colours are similar when each value for RGB is within
threshold range of the corresponding RGB value of the second colour, Default:
F
greys, logical, allow grey colours, blue == green == blue , Default: T
reds, logical, allow red colours, blue < 50 & green < 50 & red > 200 , Default: T
greens, logical, allow green colours, green > red & green > blue, Default: T
blues, logical, allow blue colours, blue > green & green > red, Default: T
dark, logical, allow colours of dark intensity, sum(red, green, blue) < 420 , Default:
T
medium, logical, allow colours of medium intensity, between(sum(red, green, blue), 420,
600) , Default: T
bright, logical, allow colours of bright intensity, sum(red, green, blue) > 600, Default:
T

thresh_similar,
int, threshold for defining similar colours, see similar, Default: 25

Value

vector with hex colors

palette_increase_length 25
Examples

require(magrittr)

palette_qualitative() %>%
palette_filter(thresh_similar = @) %>%
palette_plot_intensity()

Not run:
more examples-------------—---——--——oo-—

palette_qualitative() %>%
palette_filter(thresh_similar = 25) %>%
palette_plot_intensity()

palette_qualitative() %>%
palette_filter(thresh_similar = @, blues = FALSE) %>%
palette_plot_intensity()

End(Not run)

palette_increase_length
increases length of palette by repeating colours

Description

works for any vector

Usage

palette_increase_length(palette = palette_qualitative(), n = 100)

Arguments
palette any vector, Default: palette_qualitative()
n, int, length, Default: 100

Value

vector with increased length

Examples

require(magrittr)

length(palette_qualitative())

26 palette_plot_intensity

palette_qualitative() %>%
palette_increase_length(100) %>%
length()

palette_plot_intensity
plot colour intensity of palette

Description

sum of red green and blue values

Usage

palette_plot_intensity(palette)

Arguments

palette any vector containing color hex values

Value

ggplot2 plot

See Also

palette_plot_rgp

Examples

Not run:

if(interactive()){

palette_qualitative() %>%
palette_filter(thresh = 25) %>%
palette_plot_intensity()

}

End(Not run)

palette_plot_rgp 27

palette_plot_rgp plot rgb values of palette

Description

grouped bar chart

Usage

palette_plot_rgp(palette)

Arguments

palette any vector containing color hex values

Value

ggplot2 plot

See Also

palette_plot_intensity

Examples

Not run:

if(interactive()){

palette_qualitative() %>%
palette_filter(thresh = 50) %>%
palette_plot_rgp()

}

End(Not run)

palette_qualitative compose palette from qualitative RColorBrewer palettes

Description
uses c(C#FF0065’,#009850°, "#A56F2B’, "#005EAA’, "#710500°, *#7B5380°, *#9DD1D1’) and
then adds all unique values found in all qualitative RColorBrewer palettes

Usage

palette_qualitative()

28

Value

plot_all_hists

vector with hex values

See Also

RColorBrewer

Examples

palette_qualitative()

plot_all_hists

plot marginal histograms of alluvial plot

Description

will create gtable with density histograms and frequency plots of all variables of a given alluvial

plot.
Usage
plot_all_hists(p, data_input, top = TRUE, keep_labels = FALSE, ...)
Arguments
p alluvial plot
data_input dataframe, input data that was used to create dataframe
top logical, position of histograms, if FALSE adds them at the bottom, Default:

keep_labels

Value

gtable

See Also

arrangeGrob

TRUE
logical, keep title and caption, Default: FALSE

additional arguments for specific alluvial plot types: pred_train can be used to
pass training predictions for model response alluvials

add_marginal_histograms

plot_condensation 29

Examples

Not run:
p = alluvial_wide(mtcars2, max_variables = 3)
plot_all_hists(p, mtcars2)

End(Not run)

plot_condensation Plot dataframe condensation potential

Description

plotting the condensation potential is meant as a decision aid for which variables to include in an
alluvial plot. All variables are transformed to categoric variables and then two variables are selected
by which the dataframe will be grouped and summarized by. The pair that results in the greatest
condensation of the original dataframe is selected. Then the next variable which offers the greatest
condensation potential is chosen until all variables have been added. The condensation in percent is
then plotted for each step along with the number of groups (flows) in the dataframe. By experience
it is not advisable to have more than 1500 flows because then the alluvial plot will take a long time
to render. If there is a particular variable of interest in the dataframe this variable can be chosen as
a starting variable.

Usage

plot_condensation(df, first = NULL)

Arguments
df dataframe
first unquoted expression or string denoting the first variable to be picked for con-
densation, Default: NULL
Value
ggplot2 plot
See Also

quosure reexports RColorBrewer

Examples

plot_condensation(mtcars2)

plot_condensation(mtcars2, first = 'disp')

30

plot_imp

plot_hist

plot histogram of alluvial plot variable

Description

helper function used by add_marginal_histograms

Usage
plot_hist(var, p, data_input, ...)
Arguments
var character vector, variable name
p alluvial plot
data_input dataframe used to create alluvial plot
additional arguments for specific alluvial plot types: pred_train can be used to
pass training predictions for model response alluvials
Value
ggplot object
plot_imp plot feature importance
Description

plot important features of model response alluvial as bars

Usage

plot_imp(p, data_input, truncate_at = 50, color = "darkgrey")

Arguments

p
data_input
truncate_at

color

Value

ggplot object

alluvial plot
dataframe used to generate alluvial plot
integer, limit number of features to that value, Default: 50

character vector, Default: "darkgrey’

quarterly_flights 31

Examples
Not run:
df = mtcars2[, ! names(mtcars2) %in% 'ids']
train = caret::train(disp ~ .
, df
, method = 'rf'
, trControl = caret::trainControl(method = 'none')

, importance = TRUE)
pred_train = caret::predict.train(train, df)
p = alluvial_model_response_caret(train, degree = 3, pred_train = pred_train)

plot_imp(p, mtcars2)

End(Not run)

quarterly_flights Quarterly mean arrival delay times for a set of 402 flights

Description

Created from nycflights13::flights

Usage

quarterly_flights

Format

A data frame with 1608 rows and 6 variables

tailnum a unique identifier created from tailnum, origin, destination and carrier
carrier carrier code

origin origin code

dest destination code

qu quarter

mean_arr_delay average delay on arrival as either on_time or late

Source

nycflights13::flights

32 tidy_imp

quarterly_sunspots Quarterly mean relative sunspots number from 1749-1983

Description

Quarterly mean relative sunspots number from 1749-1983

Usage

quarterly_sunspots

Format
A data frame with 940 rows and 4 variables
year
qu quarter

spots total number of sunspots

mean_spots_per_year

Source

Andrews, D. F. and Herzberg, A. M. (1985) Data: A Collection of Problems from Many Fields for
the Student and Research Worker. New York: Springer-Verlag.

tidy_imp tidy up dataframe containing model feature importance

Description

returns dataframe with exactly two columns, vars and imp and aggregates dummy encoded vari-
ables. Helper function called by all functions that take an imp parameter. Can be called manually if
formula for aggregating dummy encoded variables must be modified.

Usage
tidy_imp(imp, df, .f = max, resp_var = NULL)

Arguments
imp dataframe or matrix with feature importance information
df dataframe, modeling training data
.f window function, Default: max
resp_var character, prediction variable, can usually be inferred from imp and df. It does

not work for all models and needs to be specified in those cases.

titanic

Value

dataframe

vars character column with feature names

imp numerical column, importance values

Examples
randomforest
df = mtcars2[, ! names(mtcars2) %in% 'ids']
m = randomForest: :randomForest(disp ~ ., df)

imp = m$importance
tidy_imp(imp, df)

33

titanic titanic data set’

Description

titanic data set’

Usage

titanic

Format
A data frame with 891 rows and 10 variables

Survived Survived
Pclass Pclass

Sex Sex

Age Age

SibSp SibSp

Parch Parch

Fare Fare

Cabin Cabin
Embarked Embarked
title title

Source

datasets

Index

+ datasets quarterly_flights, 31
mtcars2, 23 quarterly_sunspots, 32
quarterly_flights, 31 quosure, 29
quarterly_sunspots, 32
titanic, 33 RColorBrewer, 28, 29

reexports, 29
add_imp_plot, 2
add_marginal_histograms, 3, 28
alluvial_long, 5
alluvial_model_response, 7, 10, 12
alluvial_model_response_caret, 9, 10
alluvial_model_response_parsnip, 12 varImp, 11, 13
alluvial_wide, 6,9, 11, 13,14, 16, 18
arrangeGrob, 3, 4, 28

str_detect, 22

tidy_imp, 32
titanic, 33

check_pkg_installed, 16
extractPrediction, /1, 13

geom_flow, 6, 16

geom_stratum, 6, 16
get_data_space, §-13, 17
get_pdp_predictions, 8, 9, 11, 13,18, 21
get_pdp_predictions_seq, 20

manip_bin_numerics, 6,9, 11, 13,15, 16, 18,
21

manip_factor_2_numeric, 22

mtcars2, 23

palette_filter, 24
palette_increase_length, 25
palette_plot_intensity, 26,27
palette_plot_rgp, 26,27
palette_qualitative, 27

plan, 11,13, 19
plot_all_hists, 28
plot_condensation, 29
plot_hist, 30

plot_imp, 3, 30

34

	add_imp_plot
	add_marginal_histograms
	alluvial_long
	alluvial_model_response
	alluvial_model_response_caret
	alluvial_model_response_parsnip
	alluvial_wide
	check_pkg_installed
	get_data_space
	get_pdp_predictions
	get_pdp_predictions_seq
	manip_bin_numerics
	manip_factor_2_numeric
	mtcars2
	palette_filter
	palette_increase_length
	palette_plot_intensity
	palette_plot_rgp
	palette_qualitative
	plot_all_hists
	plot_condensation
	plot_hist
	plot_imp
	quarterly_flights
	quarterly_sunspots
	tidy_imp
	titanic
	Index

