Package 'easyalluvial'

December 7, 2023

Title Generate Alluvial Plots with a Single Line of Code

Version 0.3.2

URL https://github.com/erblast/easyalluvial/

Description Alluvial plots are similar to sankey diagrams and visualise categorical data over multiple dimensions as flows. (Rosvall M, Bergstrom CT (2010) Mapping Change in Large Networks. PLoS ONE 5(1): e8694. <doi:10.1371/journal.pone.0008694> Their graphical grammar however is a bit more complex then that of a regular x/y plots. The 'ggalluvial' package made a great job of translating that grammar into 'ggplot2' syntax and gives you many options to tweak the appearance of an alluvial plot, however there still remains a multi-layered complexity that makes it difficult to use 'ggalluvial' for explorative data analysis. 'easyalluvial' provides a simple interface to this package that allows you to produce a decent alluvial plot from any dataframe in either long or wide format from a single line of code while also handling continuous data. It is meant to allow a quick visualisation of entire dataframes with a focus on different colouring options that can make alluvial plots a great tool for data exploration.

License CC0

Encoding UTF-8

LazyData true

Depends R(>= 3.5)

Suggests testthat, covr, ISLR, nycflights13, vdiffr (>= 0.3.1), pkgdown, mlbench, earth, workflows, future, furrr, e1071, caret, parsnip, vip, rpart, glmnet, xgboost

RoxygenNote 7.2.3

Language en-US

NeedsCompilation no

Author Bjoern Koneswarakantha [aut, cre] (<https://orcid.org/0000-0003-4585-7799>) Maintainer Bjoern Koneswarakantha <datistics@gmail.com> Repository CRAN Date/Publication 2023-12-07 13:40:06 UTC

R topics documented:

add_imp_plot	2
add_marginal_histograms	3
alluvial_long	5
alluvial_model_response	7
alluvial_model_response_caret	10
alluvial_model_response_parsnip	12
alluvial_wide	14
check_pkg_installed	16
get_data_space	17
get_pdp_predictions	18
get_pdp_predictions_seq	20
manip_bin_numerics	21
manip_factor_2_numeric	22
mtcars2	23
palette_filter	24
palette_increase_length	25
palette_plot_intensity	26
palette_plot_rgp	27
palette_qualitative	27
plot_all_hists	28
plot_condensation	29
plot_hist	30
plot_imp	30
quarterly_flights	31
quarterly_sunspots	32
tidy_imp	32
titanic	33
	•
	34

Index

add_imp_plot add bar plot of important features to model response alluvial plot

Description

adds bar plot of important features to model response alluvial plot

Usage

add_imp_plot(grid, p = NULL, data_input, plot = T, ...)

Arguments

grid	gtable or ggplot
р	alluvial plot, optional if alluvial plot has already been passed as grid. Default: NULL
data_input	dataframe used to generate alluvial plot
plot	logical if plot should be drawn or not
	additional parameters passed to plot_imp

Value

gtable

See Also

arrangeGrob plot_imp

Examples

add_marginal_histograms

add marginal histograms to alluvial plot

Description

will add density histograms and frequency plots of original data to alluvial plot

Usage

```
add_marginal_histograms(
   p,
   data_input,
   top = TRUE,
   keep_labels = FALSE,
   plot = TRUE,
   ...
)
```

Arguments

р	alluvial plot
data_input	dataframe, input data that was used to create dataframe
top	logical, position of histograms, if FALSE adds them at the bottom, Default: TRUE
keep_labels	logical, keep title and caption, Default: FALSE
plot	logical if plot should be drawn or not
	additional arguments for model response alluvial plot concerning the response variable
	<pre>pred_train display training prediction, not necessary if pred_train has already been passed to alluvial_model_response()</pre>
	scale int, y-axis distance between the ridge plots, Default: 400
	resp_var character vector, specify response variable in data_input, if not set response variable will try to be inferred, Default: NULL

Value

gtable

See Also

arrangeGrob

Examples

```
## Not run:
p = alluvial_wide(mtcars2, max_variables = 3)
p_grid = add_marginal_histograms(p, mtcars2)
```

End(Not run)

4

Description

Plots two variables of a dataframe on an alluvial plot. A third variable can be added either to the left or the right of the alluvial plot to provide coloring of the flows. All numerical variables are scaled, centered and YeoJohnson transformed before binning.

Usage

```
alluvial_long(
  data,
  key,
  value,
  id,
  fill = NULL,
  fill_right = T,
  bins = 5,
  bin_labels = c("LL", "ML", "M", "MH", "HH"),
  NA_label = "NA",
  order_levels_value = NULL,
  order_levels_key = NULL,
  order_levels_fill = NULL,
  complete = TRUE,
  fill_by = "first_variable",
  col_vector_flow = palette_qualitative() %>% palette_filter(greys = F),
  col_vector_value = RColorBrewer::brewer.pal(9, "Greys")[c(3, 6, 4, 7, 5)],
  verbose = F,
  stratum_labels = T,
  stratum_label_type = "label",
  stratum_label_size = 4.5,
  stratum_width = 1/4,
  auto_rotate_xlabs = T,
  . . .
)
```

Arguments

data	a dataframe
key	unquoted column name or string of x axis variable
value	unquoted column name or string of y axis variable
id	unquoted column name or string of id column
fill	unquoted column name or string of fill variable which will be used to color flows, Default: NULL

fill_right	logical, TRUE fill variable is added to the right FALSE to the left, Default: T	
bins	number of bins for automatic binning of numerical variables, Default: 5	
bin_labels	labels for bins, Default: c("LL", "ML", "M", "MH", "HH")	
NA_label	character vector define label for missing data	
order_levels_va	lue	
	character vector denoting order of y levels from low to high, does not have to be complete can also just be used to bring levels to the front, Default: NULL	
order_levels_ke	ey .	
	character vector denoting order of x levels from low to high, does not have to be complete can also just be used to bring levels to the front, Default: NULL	
order_levels_fi	11	
	character vector denoting order of color fill variable levels from low to high, does not have to be complete can also just be used to bring levels to the front, Default: NULL	
complete	logical, insert implicitly missing observations, Default: TRUE	
fill_by	one_of(c('first_variable', 'last_variable', 'all_flows', 'values')), Default: 'first_variable'	
col_vector_flow		
	HEX color values for flows, Default: palette_filter(greys = F)	
col_vector_valu		
	HEX color values for y levels/values, Default:RColorBrewer::brewer.pal(9, 'Greys')[c(3,6,4,7,5)]	
verbose	logical, print plot summary, Default: F	
<pre>stratum_labels</pre>	logical, Default: TRUE	
<pre>stratum_label_t</pre>	уре	
	character, Default: "label"	
<pre>stratum_label_s</pre>		
	numeric, Default: 4.5	
stratum_width	double, Default: 1/4	
auto_rotate_xla	bs	
	logical, Default: TRUE	
	additional parameter passed to manip_bin_numerics	

Value

ggplot2 object

See Also

alluvial_wide,geom_flow,geom_stratum,manip_bin_numerics

Examples

```
## Not run:
    data = quarterly_flights
```

```
alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'last_variable' )
# more flow coloring variants ------
alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'first_variable' )
alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'all_flows' )
alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'value' )
# color by additional variable carrier -----
alluvial_long( data, key = qu, value = mean_arr_delay, fill = carrier, id = tailnum )
# use same color coding for flows and y levels ------
palette = c('green3', 'tomato')
alluvial_long( data, qu, mean_arr_delay, tailnum, fill_by = 'value'
              , col_vector_flow = palette
              , col_vector_value = palette )
# reorder levels ------
alluvial_long( data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'
              , order_levels_value = c('on_time', 'late') )
alluvial_long( data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'
             , order_levels_key = c('Q4', 'Q3', 'Q2', 'Q1') )
require(dplyr)
require(magrittr)
order_by_carrier_size = data %>%
  group_by(carrier) %>%
  count() %>%
  arrange( desc(n) ) %>%
  .[['carrier']]
alluvial_long( data, qu, mean_arr_delay, tailnum, carrier
              , order_levels_fill = order_by_carrier_size )
```

End(Not run)

alluvial_model_response

create model response plot

Description

alluvial plots are capable of displaying higher dimensional data on a plane, thus lend themselves to plot the response of a statistical model to changes in the input data across multiple dimensions. The practical limit here is 4 dimensions. We need the data space (a sensible range of data calculated based on the importance of the explanatory variables of the model as created by get_data_space and the predictions returned by the model in response to the data space.

Usage

```
alluvial_model_response(
    pred,
    dspace,
    imp,
    degree = 4,
    bin_labels = c("LL", "ML", "M", "MH", "HH"),
    col_vector_flow = c("#FF0065", "#009850", "#A56F2B", "#005EAA", "#710500", "#7B5380",
        "#9DD1D1"),
    method = "median",
    force = FALSE,
    params_bin_numeric_pred = list(bins = 5),
    pred_train = NULL,
    stratum_label_size = 3.5,
    ...
)
```

Arguments

pred	vector, predictions, if method = 'pdp' use get_pdp_predictions to calculate predictions	
dspace	data frame, returned by get_data_space	
imp	dataframe, with not more then two columns one of them numeric containing im- portance measures and one character or factor column containing corresponding variable names as found in training data.	
degree	integer, number of top important variables to select. For plotting more than 4 will result in two many flows and the alluvial plot will not be very readable, Default: 4	
bin_labels	labels for prediction bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")	
col_vector_flow,		
	character vector, defines flow colours, Default: c('#FF0065','#009850', '#A56F2B', '#005EAA', '#710500')	
method,	character vector, one of c('median', 'pdp')	
	median sets variables that are not displayed to median mode, use with regular predictions	
	pdp partial dependency plot method, for each observation in the training data the displayed variable as are set to the indicated values. The predict function	

	is called for each modified observation and the result is averaged, calculate predictions using get_pdp_predictions	
	. Default: 'median'	
force	logical, force plotting of over 1500 flows, Default: FALSE	
params_bin_nume	eric_pred	
	list, additional parameters passed to manip_bin_numerics which is applied to the pred parameter. Default: list(bins = 5, center = T, transform = T, scale = T)	
pred_train	numeric vector, base the automated binning of the pred vector on the distribution of the training predictions. This is useful if marginal histograms are added to the plot later. Default = NULL	
stratum_label_size		
	numeric, Default: 3.5	
	additional parameters passed to alluvial_wide	

Details

this model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

ggplot2 object

See Also

alluvial_wide, get_data_space, alluvial_model_response_caret

Examples

```
df = mtcars2[, ! names(mtcars2) %in% 'ids' ]
m = randomForest::randomForest( disp ~ ., df)
imp = m$importance
dspace = get_data_space(df, imp, degree = 3)
pred = predict(m, newdata = dspace)
alluvial_model_response(pred, dspace, imp, degree = 3)
# partial dependency plotting method
## Not run:
 pred = get_pdp_predictions(df, imp
                            , .f_predict = randomForest:::predict.randomForest
                            , m
                            , degree = 3
                            , bins = 5)
 alluvial_model_response(pred, dspace, imp, degree = 3, method = 'pdp')
```

End(Not run)

```
alluvial_model_response_caret
```

create model response plot for caret models

Description

Wraps alluvial_model_response and get_data_space into one call for caret models.

Usage

```
alluvial_model_response_caret(
  train,
  data_input,
  degree = 4,
 bins = 5,
 bin_labels = c("LL", "ML", "M", "MH", "HH"),
 col_vector_flow = c("#FF0065", "#009850", "#A56F2B", "#005EAA", "#710500", "#7B5380",
    "#9DD1D1"),
 method = "median",
 parallel = FALSE,
 params_bin_numeric_pred = list(bins = 5),
 pred_train = NULL,
  stratum_label_size = 3.5,
  force = F,
  resp_var = NULL,
  . . .
)
```

Arguments

train	caret train object	
data_input	dataframe, input data	
degree	integer, number of top important variables to select. For plotting more than 4 will result in two many flows and the alluvial plot will not be very readable, Default: 4	
bins	integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5	
bin_labels	labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")	
col_vector_flow,		
	character vector, defines flow colours, Default: c('#FF0065','#009850', '#A56F2B', '#005EAA', '#710500')	
method,	character vector, one of c('median', 'pdp')	
	median sets variables that are not displayed to median mode, use with regular predictions	

	pdp partial dependency plot method, for each observation in the training data the displayed variables are set to the indicated values. The predict function is called for each modified observation and the result is averaged	
	. Default: 'median'	
parallel	logical, turn on parallel processing for pdp method. Default: FALSE	
params_bin_num	eric_pred	
	list, additional parameters passed to manip_bin_numerics which is applied to the pred parameter. Default: list(bins = 5, center = T, transform = T, scale = T)	
pred_train	numeric vector, base the automated binning of the pred vector on the distribution of the training predictions. This is useful if marginal histograms are added to the plot later. Default = NULL	
<pre>stratum_label_size</pre>		
	numeric, Default: 3.5	
force	logical, force plotting of over 1500 flows, Default: FALSE	
resp_var	character, sometimes target variable cannot be inferred and needs to be passed. Default NULL	
	additional parameters passed to alluvial_wide	

Details

this model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

ggplot2 object

Parallel Processing

We are using 'furrr' and the 'future' package to paralelize some of the computational steps for calculating the predictions. It is up to the user to register a compatible backend (see plan).

See Also

alluvial_wide, get_data_space, varImp, extractPrediction, get_data_space, get_pdp_predictions

Examples

```
alluvial_model_response_caret(train, df, degree = 3)
}
# partial dependency plotting method
## Not run:
future::plan("multisession")
alluvial_model_response_caret(train, df, degree = 3, method = 'pdp', parallel = TRUE)
## End(Not run)
```

alluvial_model_response_parsnip create model response plot for parsnip models

Description

Wraps alluvial_model_response and get_data_space into one call for parsnip models.

Usage

```
alluvial_model_response_parsnip(
 m,
  data_input,
 degree = 4,
 bins = 5,
 bin_labels = c("LL", "ML", "M", "MH", "HH"),
 col_vector_flow = c("#FF0065", "#009850", "#A56F2B", "#005EAA", "#710500", "#7B5380",
    "#9DD1D1"),
 method = "median",
 parallel = FALSE,
 params_bin_numeric_pred = list(bins = 5),
 pred_train = NULL,
  stratum_label_size = 3.5,
 force = F,
 resp_var = NULL,
  .f_imp = vip::vi_model,
  . . .
)
```

Arguments

m	parsnip model or trained workflow
data_input	dataframe, input data
degree	integer, number of top important variables to select. For plotting more than 4 will result in two many flows and the alluvial plot will not be very readable, Default: 4

12

bins	integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5	
bin_labels	labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")	
col_vector_flow	ν,	
	character vector, defines flow colours, Default: c('#FF0065','#009850', '#A56F2B', '#005EAA', '#710500')	
method,	character vector, one of c('median', 'pdp')	
	median sets variables that are not displayed to median mode, use with regular predictions	
	pdp partial dependency plot method, for each observation in the training data the displayed variables are set to the indicated values. The predict function is called for each modified observation and the result is averaged	
	. Default: 'median'	
parallel	logical, turn on parallel processing for pdp method. Default: FALSE	
params_bin_nume	eric_pred	
	list, additional parameters passed to manip_bin_numerics which is applied to the pred parameter. Default: list(bins = 5, center = T, transform = T, scale = T)	
pred_train	numeric vector, base the automated binning of the pred vector on the distribution of the training predictions. This is useful if marginal histograms are added to the plot later. Default = NULL	
stratum_label_size		
	numeric, Default: 3.5	
force	logical, force plotting of over 1500 flows, Default: FALSE	
resp_var	character, sometimes target variable cannot be inferred and needs to be passed. Default NULL	
.f_imp	vip function that calculates feature importance, Default: vip::vi_model	
	additional parameters passed to alluvial_wide	

Details

this model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

ggplot2 object

Parallel Processing

We are using 'furrr' and the 'future' package to paralelize some of the computational steps for calculating the predictions. It is up to the user to register a compatible backend (see plan).

See Also

alluvial_wide, get_data_space, varImp, extractPrediction, get_data_space, get_pdp_predictions

Examples

```
if(check_pkg_installed("parsnip", raise_error = FALSE) &
  check_pkg_installed("vip", raise_error = FALSE)) {
 df = mtcars2[, ! names(mtcars2) %in% 'ids' ]
 m = parsnip::rand_forest(mode = "regression") %>%
    parsnip::set_engine("randomForest") %>%
    parsnip::fit(disp ~ ., data = df)
 alluvial_model_response_parsnip(m, df, degree = 3)
}
## Not run:
# workflow ------
m <- parsnip::rand_forest(mode = "regression") %>%
 parsnip::set_engine("randomForest")
rec_prep = recipes::recipe(disp ~ ., df) %>%
 recipes::prep()
wf <- workflows::workflow() %>%
 workflows::add_model(m) %>%
 workflows::add_recipe(rec_prep) %>%
 parsnip::fit(df)
alluvial_model_response_parsnip(wf, df, degree = 3)
# partial dependence plotting method -----
future::plan("multisession")
alluvial_model_response_parsnip(m, df, degree = 3, method = 'pdp', parallel = TRUE)
## End(Not run)
```

alluvial_wide alluvial plot of data in wide format

Description

plots a dataframe as an alluvial plot. All numerical variables are scaled, centered and YeoJohnson transformed before binning. Plots all variables in the sequence as they appear in the dataframe until maximum number of values is reached.

Usage

```
alluvial_wide(
   data,
   id = NULL,
   max_variables = 20,
   bins = 5,
```

alluvial_wide

```
bin_labels = c("LL", "ML", "M", "MH", "HH"),
NA_label = "NA",
order_levels = NULL,
fill_by = "first_variable",
col_vector_flow = palette_qualitative() %>% palette_filter(greys = F),
col_vector_value = RColorBrewer::brewer.pal(9, "Greys")[c(4, 7, 5, 8, 6)],
colorful_fill_variable_stratum = T,
verbose = F,
stratum_labels = T,
stratum_label_type = "label",
stratum_label_size = 4.5,
stratum_width = 1/4,
auto_rotate_xlabs = T,
...
```

Arguments

)

data	a dataframe	
id	unquoted column name of id column or character vector with id column name	
<pre>max_variables</pre>	maximum number of variables, Default: 20	
bins	number of bins for numerical variables, Default: 5	
bin_labels	labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH")	
NA_label	character vector, define label for missing data, Default: 'NA'	
order_levels	character vector denoting levels to be reordered from low to high	
fill_by	one_of(c('first_variable', 'last_variable', 'all_flows', 'values')), Default: 'first_variable'	
col_vector_flow	N	
	HEX colors for flows, Default: palette_filter(greys = F)	
col_vector_valu	Je	
	Hex colors for y levels/values, Default: RColorBrewer::brewer.pal(9, "Greys")[c(3,	
	6, 4, 7, 5)]	
colorful_fill_variable_stratum		
	logical, use flow colors to colorize fill variable stratum, Default: TRUE	
verbose	logical, print plot summary, Default: F	
stratum_labels	logical, Default: TRUE	
stratum_label_type		
	character, Default: "label"	
stratum_label_size		
	numeric, Default: 4.5	
stratum_width	double, Default: 1/4	
auto_rotate_xlabs		
	logical, Default: TRUE	
	additional arguments passed to manip_bin_numerics	

Details

Under the hood this function converts the wide format into long format. ggalluvial also offers a way to make alluvial plots directly from wide format tables but it does not allow individual colouring of the stratum segments. The tradeoff is that we can only order levels as a whole and not individually by variable, Thus if some variables have levels with the same name the order will be the same. If we want to change level order independently we have to assign unique level names first.

Value

ggplot2 object

See Also

alluvial_wide,geom_flow,geom_stratum,manip_bin_numerics

Examples

```
## Not run:
alluvial_wide( data = mtcars2, id = ids
               , max_variables = 3
               , fill_by = 'first_variable' )#'
# more coloring variants-----
alluvial_wide( data = mtcars2, id = ids
               , max_variables = 5
               , fill_by = 'last_variable' )
alluvial_wide( data = mtcars2, id = ids
               , max_variables = 5
               , fill_by = 'all_flows' )
alluvial_wide( data = mtcars2, id = ids
               , max_variables = 5
               , fill_by = 'first_variable' )
# manually order variable values and colour by stratum value
alluvial_wide( data = mtcars2, id = ids
                , max_variables = 5
                 , fill_by = 'values'
                 , order_levels = c('4', '8', '6') )
```

End(Not run)

check_pkg_installed check if package is installed

Description

check if package is installed

get_data_space

Usage

check_pkg_installed(pkg, raise_error = TRUE)

Arguments

pkg	character, package name	
raise_error	logical	

Value

logical

Examples

check_pkg_installed("easyalluvial")

get_data_space calculate data space

Description

calculates a dataspace based on the modeling dataframe and the importance of the explanatory variables. It only considers the most important variables as defined by the degree parameter. It selects a number (defined by bins) of sensible single values spread over the range of the numeric variables and creates all possible value combinations among the most important variables. The values of the remaining variables are set to mode(factors) or median(numerics).

Usage

```
get_data_space(df, imp, degree = 4, bins = 5, max_levels = 10)
```

Arguments

df	dataframe, training data
imp	dataframe, with not more then two columns one of them numeric containing im- portance measures and one character or factor column containing corresponding variable names as found in training data.
degree	integer, number of top important variables to select. For plotting more than 4 will result in two many flows and the alluvial plot will not be very readable, Default: 4
bins	integer, number of bins for numeric variables, and maximum number of levels for factor variables, increasing this number might result in too many flows, Default: 5
<pre>max_levels</pre>	integer, maximum number of levels per factor variable, Default: 10

Details

It selects a the top most important variables based on the degree parameter and bins the numeric variables using manip_bin_numerics, while leaving categoric variables unchanged. The number of bins for each numeric variable is set to bins -2. Next the median is picked for each of the bins and the min and the max value is added for each numeric variable So that we get (median(bin) X bins -2, max, min) for each numeric variable. Then all possible combinations between those values and the categoric factor levels are created. The total number of all possible combinations defines the range of the data space. The values of the remaining variables are set to mode(factors) or median(numerics).

this model visualisation approach follows the "visualising the model in the dataspace" principle as described in Wickham H, Cook D, Hofmann H (2015) Visualizing statistical models: Removing the blindfold. Statistical Analysis and Data Mining 8(4) <doi:10.1002/sam.11271>

Value

data frame

See Also

alluvial_wide, manip_bin_numerics

Examples

```
df = mtcars2[, ! names(mtcars2) %in% 'ids' ]
m = randomForest::randomForest( disp ~ ., df)
imp = m$importance
dspace = get_data_space(df, imp)
```

get_pdp_predictions get predictions compatible with the partial dependence plotting method

Description

Alluvial plots are capable of displaying higher dimensional data on a plane, thus lend themselves to plot the response of a statistical model to changes in the input data across multiple dimensions. The practical limit here is 4 dimensions while conventional partial dependence plots are limited to 2 dimensions.

Briefly the 4 variables with the highest feature importance for a given model are selected and 5 values spread over the variable range are selected for each. Then a grid of all possible combinations is created. All none-plotted variables are set to the values found in the first row of the training data set. Using this artificial data space model predictions are being generated. This process is then repeated for each row in the training data set and the overall model response is averaged in the end. Each of the possible combinations is plotted as a flow which is coloured by the bin corresponding to the average model response generated by that particular combination.

18

get_pdp_predictions

Usage

```
get_pdp_predictions(
    df,
    imp,
    m,
    degree = 4,
    bins = 5,
    .f_predict = predict,
    parallel = FALSE
)
```

Arguments

df	dataframe, training data
imp	dataframe, with not more then two columns one of them numeric containing im- portance measures and one character or factor column containing corresponding variable names as found in training data.
m	model object
degree	integer, number of top important variables to select. For plotting more than 4 will result in two many flows and the alluvial plot will not be very readable, Default: 4
bins	integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5
.f_predict	corresponding model predict() function. Needs to accept 'm' as the first parameter and use the 'newdata' parameter. Supply a wrapper for predict functions with x-y syntax. For parallel processing the predict method of object classes will not always get imported correctly to the worker environment. We can pass the correct predict method via this parameter for example randomForest:::predict.randomForest. Note that a lot of modeling packages do not export the predict method explicitly and it can only be found using :::.
parallel	logical, turn on parallel processing. Default: FALSE

Details

For more on partial dependency plots see [https://christophm.github.io/interpretable-ml-book/pdp.html].

Value

vector, predictions

Parallel Processing

We are using 'furrr' and the 'future' package to paralelize some of the computational steps for calculating the predictions. It is up to the user to register a compatible backend (see plan).

Examples

```
df = mtcars2[, ! names(mtcars2) %in% 'ids' ]
m = randomForest::randomForest( disp ~ ., df)
imp = m$importance
pred = get_pdp_predictions(df, imp
                           , m
                           , degree = 3
                           , bins = 5)
# parallel processing -----
## Not run:
future::plan("multisession")
# note that we have to pass the predict method via .f_predict otherwise
# it will not be available in the worker's environment.
pred = get_pdp_predictions(df, imp
                           , m
                           , degree = 3
                           , bins = 5,
                           , parallel = TRUE
                           , .f_predict = randomForest:::predict.randomForest)
## End(Not run)
```

```
get_pdp_predictions_seq
```

get predictions compatible with the partial dependence plotting method, sequential variant that only works for numeric predictions.

Description

has been replaced by pdp_predictions which can be paralelized and also handles factor predictions. It is still used to test results.

Usage

```
get_pdp_predictions_seq(df, imp, m, degree = 4, bins = 5, .f_predict = predict)
```

Arguments

df	dataframe, training data
imp	dataframe, with not more then two columns one of them numeric containing im- portance measures and one character or factor column containing corresponding variable names as found in training data.
m	model object

20

degree

bins

	integer, number of top important variables to select. For plotting more than 4 will result in two many flows and the alluvial plot will not be very readable, Default: 4	
	integer, number of bins for numeric variables, increasing this number might result in too many flows, Default: 5	
ct	corresponding model predict() function. Needs to accept 'm' as the first parameter and use the 'newdeta' parameter. Supply a wrapper for predict func	

.f_predict corresponding model predict() function. Needs to accept 'm' as the first parameter and use the 'newdata' parameter. Supply a wrapper for predict functions with x-y syntax. For parallel processing the predict method of object classes will not always get imported correctly to the worker environment. We can pass the correct predict method via this parameter for example randomForest:::predict.randomForest. Note that a lot of modeling packages do not export the predict method explicitly and it can only be found using :::.

See Also

get_pdp_predictions

manip_bin_numerics bin numerical columns

Description

centers, scales and Yeo Johnson transforms numeric variables in a dataframe before binning into n bins of equal range. Outliers based on boxplot stats are capped (set to min or max of boxplot stats).

Usage

```
manip_bin_numerics(
    x,
    bins = 5,
    bin_labels = c("LL", "ML", "M", "MH", "HH"),
    center = T,
    scale = T,
    transform = T,
    round_numeric = T,
    digits = 2,
    NA_label = "NA"
)
```

Arguments

х	dataframe with numeric variables, or numeric vector
bins	number of bins for numerical variables, passed to cut as breaks parameter, Default: 5
bin_labels	labels for the bins from low to high, Default: c("LL", "ML", "M", "MH", "HH"). Can also be one of c('mean', 'median', 'min_max', 'cuts'), the corresponding summary function will supply the labels.

center	logical, Default: T
scale	logical, Default: T
transform	logical, apply Yeo Johnson Transformation, Default: T
round_numeric,	
	logical, rounds numeric results if bin_labels is supplied with a supported summary function name.
digits,	integer, number of digits to round to
NA_label	character vector, define label for missing data, Default: 'NA'

Value

dataframe

Examples

```
summary( mtcars2 )
summary( manip_bin_numerics(mtcars2) )
summary( manip_bin_numerics(mtcars2, bin_labels = 'mean'))
summary( manip_bin_numerics(mtcars2, bin_labels = 'cuts'
, scale = FALSE, center = FALSE, transform = FALSE))
```

```
manip_factor_2_numeric
```

converts factor to numeric preserving numeric levels and order in character levels.

Description

before converting we check whether the levels contain a number, if they do the number will be preserved.

Usage

```
manip_factor_2_numeric(vec)
```

Arguments

vec vector

Value

vector

See Also

str_detect

mtcars2

Examples

```
fac_num = factor( c(1,3,8) )
fac_chr = factor( c('foo','bar') )
fac_chr_ordered = factor( c('a','b','c'), ordered = TRUE )
manip_factor_2_numeric( fac_num )
manip_factor_2_numeric( fac_chr )
manip_factor_2_numeric( fac_chr_ordered )
# does not work for decimal numbers
manip_factor_2_numeric(factor(c("A12", "B55", "10e4")))
manip_factor_2_numeric(factor(c("1.56", "4.56", "8.4")))
```

mtcars2	mtcars dataset with cyl, vs, am ,gear, carb as factor variables and car
	model names as id

Description

mtcars dataset with cyl, vs, am ,gear, carb as factor variables and car model names as id

Usage

mtcars2

Format

A data frame with 32 rows and 12 variables

mpg Miles/(US) gallon
cyl Number of cylinders
disp Displacement (cu.in.)
hp Gross horsepower
drat Rear axle ratio
wt Weight (1000 lbs)
qsec 1/4 mile time
vs Engine
am Transmission
gear Number of forward gears
carb Number of carburetors
ids car model name

Source

datasets

palette_filter

Description

filters are based on rgb values

Usage

```
palette_filter(
   palette = palette_qualitative(),
   similar = F,
   greys = T,
   reds = T,
   greens = T,
   blues = T,
   dark = T,
   medium = T,
   bright = T,
   thresh_similar = 25
)
```

Arguments

palette	any vector with hex color values, Default: palette_qualitative()
similar,	logical, allow similar colours, similar colours are detected using a threshold (thresh_similar), two colours are similar when each value for RGB is within threshold range of the corresponding RGB value of the second colour, Default: F
greys,	logical, allow grey colours, blue == green == blue , Default: T
reds,	logical, allow red colours, blue < 50 & green < 50 & red > 200 , Default: T
greens,	logical, allow green colours, green > red & green > blue, Default: T
blues,	logical, allow blue colours, blue > green & green > red, Default: T
dark,	logical, allow colours of dark intensity, sum(red, green, blue) < 420 , Default: T
medium,	logical, allow colours of medium intensity, between(sum(red, green, blue), 420, 600) , Default: T
bright,	logical, allow colours of bright intensity, sum(red, green, blue) > 600, Default: T
thresh_similar	,
	int threshold for defining similar colours see similar Default: 25

int, threshold for defining similar colours, see similar, Default: 25

Value

vector with hex colors

palette_increase_length

Examples

```
require(magrittr)
palette_qualitative() %>%
   palette_filter(thresh_similar = 0) %>%
   palette_plot_intensity()
## Not run:
# more examples------
palette_qualitative() %>%
   palette_filter(thresh_similar = 25) %>%
   palette_plot_intensity()
palette_qualitative() %>%
   palette_filter(thresh_similar = 0, blues = FALSE) %>%
   palette_plot_intensity()
## End(Not run)
```

palette_increase_length

increases length of palette by repeating colours

Description

works for any vector

Usage

```
palette_increase_length(palette = palette_qualitative(), n = 100)
```

Arguments

palette	any vector, Default: palette_qualitative()
n,	int, length, Default: 100

Value

vector with increased length

Examples

require(magrittr)

length(palette_qualitative())

```
palette_qualitative() %>%
    palette_increase_length(100) %>%
    length()
```

palette_plot_intensity

plot colour intensity of palette

Description

sum of red green and blue values

Usage

```
palette_plot_intensity(palette)
```

Arguments

palette	any vector containing	color hex values

Value

ggplot2 plot

See Also

palette_plot_rgp

Examples

```
## Not run:
if(interactive()){
palette_qualitative() %>%
palette_filter( thresh = 25) %>%
palette_plot_intensity()
}
## End(Not run)
```

26

palette_plot_rgp plot rgb values of palette

Description

grouped bar chart

Usage

```
palette_plot_rgp(palette)
```

Arguments

palette any vector containing color hex values

Value

ggplot2 plot

See Also

palette_plot_intensity

Examples

```
## Not run:
if(interactive()){
palette_qualitative() %>%
palette_filter( thresh = 50) %>%
palette_plot_rgp()
}
## End(Not run)
```

palette_qualitative compose palette from qualitative RColorBrewer palettes

Description

uses c('#FF0065', '#009850', '#A56F2B', '#005EAA', '#710500', '#7B5380', '#9DD1D1') and then adds all unique values found in all qualitative RColorBrewer palettes

Usage

palette_qualitative()

Value

vector with hex values

See Also

RColorBrewer

Examples

palette_qualitative()

plot_all_hists plot marginal histograms of alluvial plot

Description

will create gtable with density histograms and frequency plots of all variables of a given alluvial plot.

Usage

```
plot_all_hists(p, data_input, top = TRUE, keep_labels = FALSE, ...)
```

Arguments

р	alluvial plot
data_input	dataframe, input data that was used to create dataframe
top	logical, position of histograms, if FALSE adds them at the bottom, Default: TRUE
keep_labels	logical, keep title and caption, Default: FALSE
	additional arguments for specific alluvial plot types: pred_train can be used to pass training predictions for model response alluvials

Value

gtable

See Also

arrangeGrob

add_marginal_histograms

28

plot_condensation

Examples

```
## Not run:
p = alluvial_wide(mtcars2, max_variables = 3)
plot_all_hists(p, mtcars2)
## End(Not run)
```

plot_condensation Plot dataframe condensation potential

Description

plotting the condensation potential is meant as a decision aid for which variables to include in an alluvial plot. All variables are transformed to categoric variables and then two variables are selected by which the dataframe will be grouped and summarized by. The pair that results in the greatest condensation of the original dataframe is selected. Then the next variable which offers the greatest condensation potential is chosen until all variables have been added. The condensation in percent is then plotted for each step along with the number of groups (flows) in the dataframe. By experience it is not advisable to have more than 1500 flows because then the alluvial plot will take a long time to render. If there is a particular variable of interest in the dataframe this variable can be chosen as a starting variable.

Usage

plot_condensation(df, first = NULL)

Arguments

df	dataframe
first	unquoted expression or string denoting the first variable to be picked for con- densation, Default: NULL

Value

ggplot2 plot

See Also

quosure reexports RColorBrewer

Examples

plot_condensation(mtcars2)

plot_condensation(mtcars2, first = 'disp')

plot_hist

Description

helper function used by add_marginal_histograms

Usage

```
plot_hist(var, p, data_input, ...)
```

Arguments

var	character vector, variable name
р	alluvial plot
data_input	dataframe used to create alluvial plot
	additional arguments for specific alluvial plot types: pred_train can be used to pass training predictions for model response alluvials

Value

ggplot object

|--|

Description

plot important features of model response alluvial as bars

Usage

```
plot_imp(p, data_input, truncate_at = 50, color = "darkgrey")
```

Arguments

р	alluvial plot
data_input	dataframe used to generate alluvial plot
truncate_at	integer, limit number of features to that value, Default: 50
color	character vector, Default: 'darkgrey'

Value

ggplot object

quarterly_flights

Examples

quarterly_flights Quarterly mean arrival delay times for a set of 402 flights

Description

Created from nycflights13::flights

Usage

quarterly_flights

Format

A data frame with 1608 rows and 6 variables

tailnum a unique identifier created from tailnum, origin, destination and carrier

carrier carrier code

origin origin code

dest destination code

qu quarter

mean_arr_delay average delay on arrival as either on_time or late

Source

nycflights13::flights

quarterly_sunspots Quarterly mean relative sunspots number from 1749-1983

Description

Quarterly mean relative sunspots number from 1749-1983

Usage

quarterly_sunspots

Format

A data frame with 940 rows and 4 variables

year

qu quarter

spots total number of sunspots

mean_spots_per_year

Source

Andrews, D. F. and Herzberg, A. M. (1985) Data: A Collection of Problems from Many Fields for the Student and Research Worker. New York: Springer-Verlag.

tidy_imp

tidy up dataframe containing model feature importance

Description

returns dataframe with exactly two columns, vars and imp and aggregates dummy encoded variables. Helper function called by all functions that take an imp parameter. Can be called manually if formula for aggregating dummy encoded variables must be modified.

Usage

tidy_imp(imp, df, .f = max, resp_var = NULL)

Arguments

imp	dataframe or matrix with feature importance information
df	dataframe, modeling training data
.f	window function, Default: max
resp_var	character, prediction variable, can usually be inferred from imp and df. It does not work for all models and needs to be specified in those cases.

titanic

Value

dataframe

vars character column with feature names

imp numerical column, importance values

Examples

```
# randomforest
df = mtcars2[, ! names(mtcars2) %in% 'ids' ]
m = randomForest::randomForest( disp ~ ., df)
imp = m$importance
tidy_imp(imp, df)
```

titanic

titanic data set'

Description

titanic data set'

Usage

titanic

Format

A data frame with 891 rows and 10 variables

Survived Survived

Pclass Pclass

Sex Sex

Age Age SibSp SibSp

Parch Parch

Fare Fare

Cabin Cabin

Embarked Embarked

title title

Source

datasets

Index

* datasets mtcars2, 23 quarterly_flights, 31 quarterly_sunspots, 32 titanic, 33 add_imp_plot, 2 add_marginal_histograms, 3, 28 alluvial_long, 5 alluvial_model_response, 7, 10, 12 alluvial_model_response_caret, 9, 10 alluvial_model_response_parsnip, 12 alluvial_wide, 6, 9, 11, 13, 14, 16, 18 arrangeGrob, *3*, *4*, *28* check_pkg_installed, 16 extractPrediction, 11, 13 geom_flow, 6, 16 geom_stratum, 6, 16 get_data_space, 8–13, 17 get_pdp_predictions, 8, 9, 11, 13, 18, 21 get_pdp_predictions_seq, 20 manip_bin_numerics, 6, 9, 11, 13, 15, 16, 18, 21 manip_factor_2_numeric, 22 mtcars2, 23 palette_filter, 24 palette_increase_length, 25 palette_plot_intensity, 26, 27 palette_plot_rgp, 26, 27 palette_qualitative, 27 plan, 11, 13, 19 plot_all_hists, 28 plot_condensation, 29 plot_hist, 30 plot_imp, 3, 30

quarterly_flights, 31
quarterly_sunspots, 32
quosure, 29

RColorBrewer, 28, 29 reexports, 29

 $\texttt{str_detect}, \texttt{22}$

tidy_imp, 32
titanic, 33

varImp, *11*, *13*