
Using the eChem Package
2018-06-25

Functions to Simulate Electrochemistry Experiments

Table 1 lists the four functions in this package that simulate electrochemistry experiments. Each function
takes a set of arguments that define the experiment and each returns an extensive set of results as a list.

Table 1: Functions to Simulate Electrochemistry Experiments

function electrochemistry experiment
simulateCA chronoamperometry (single and double pulse)
simulateCC chronocoulometry (single and double pulse)
simulateCV cyclic voltammetry
simulateLSV linear-sweep voltammetry (with and without stirring)

Simulating a Cyclic Voltammetry Experiment

The format for the function simulateCV is shown here

simulateCV = function(e.start = 0.0, e.switch = -0.5, e.form = -0.25,
mechanism = c("E", "EC", "CE"),
ko = 1, kcf = 0, kcr = 0,
n = 1, alpha = 0.50, d = 1e-5, area = 0.01,
temp = 298.15, scan.rate = 1.0, conc.bulk = 1e-3,
t.units = 2000, x.units = 180, sd.noise = 0)

with its arguments and their default values defined below (units shown in parentheses):

• e.start: initial potential (V); defaults to 0.0 V
• e.switch: swiching potential (V); defaults to –0.5 V
• e.form: standard state formal potential for the redox couple (V); defaults to –0.25 V
• mechanism: options for redox reaction only, E, a redox reaction with a following chemical reaction, EC,

or a redox reaction with a preceding chemical reaction, CE; defaults to E
• ko: standard heterogeneous electron transfer rate constant (cm/s); defaults to 1.0 cm/s
• kcf, kcr: homogeneous rate constants for the forward and the reverse chemical reaction (s–1); defaults

to 0 as the default mechanism is redox-only
• n: electrons for redox couple (unitless); defaults to 1
• alpha: transfer coefficient (unitless); defaults to 0.5
• d: diffusion coefficient for Ox and Red (cm2/s); defaults to 1.0× 10−5 cm2/s
• area: surface area of the electrode (cm2); defaults to 0.010 cm2

• temp: temperature in Kelvin; defaults to 298.15 K
• scan.rate: rate at which the potential is changed (V/s); defaults to 1.0 V/s
• conc.bulk: total concentration of Ox, Red, and Z (mol/L); defaults to 1.0× 10−3 mol/L
• t.units: number of time units in diffusion grid (unitless); defaults to 2000
• x.units: number of distance units in diffusion grid (unitless); defaults to 180
• sd.noise: standard deviation for noise as percent of maximum current (µA); defaults to 0

To use the simulateCV function, we assign it to an object and pass along values for the function’s arguments.
For example, if we wish to accept the function’s default values—as defined above—then we enter the following
line of code where cv1 is the object that contains the simulation’s results.

1

cv1 = simulateCV()

If we wish to change the value for any of the function’s arguments, then we simply enter those values within
the parentheses; thus, to simulate a two-electron reduction and a scan rate of 0.1 V/s—and here we also
change the number of time units and the number of distance units to decrease the size of the resulting file—we
enter the following line of code
cv2 = simulateCV(n = 2, scan.rate = 0.1, t.units = 1000, x.units = 100)

Once created, we can use R’s structure command, str(), to examine the information stored within the object
as a list:
str(cv2)

List of 31
$ expt : chr "CV"
$ mechanism : chr "E"
$ file_type : chr "full"
$ current : num [1:1001] 0.00 1.23e-07 9.87e-08 9.15e-08 8.95e-08 ...
$ potential : num [1:1001] 0 -0.001 -0.002 -0.003 -0.004 -0.005 -0.006 -0.007 -0.008 -0.009 ...
$ time : num [1:1001] 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ...
$ distance : num [1:101] 0 0.0006 0.0012 0.0018 0.0024 0.003 0.0036 0.0042 0.0048 0.0054 ...
$ oxdata : num [1:1001, 1:101] 1 1 1 1 1 ...
$ reddata : num [1:1001, 1:101] 0.00 3.82e-09 4.13e-09 4.46e-09 4.83e-09 ...
$ chemdata : num [1:1001, 1:101] 0 0 0 0 0 0 0 0 0 0 ...
$ formalE : num -0.25
$ initialE : num 0
$ switchE : num -0.5
$ electrons : num 2
$ ko : num 1
$ kcf : num 0
$ kcr : num 0
$ alpha : num 0.5
$ diffcoef : num 1e-05
$ area : num 0.01
$ temperature: num 298
$ scanrate : num 0.1
$ conc.bulk : num 0.001
$ tunits : num 1000
$ xunits : num 100
$ sdnoise : num 0
$ direction : num -1
$ k_f : num [1:1001] 5.95e-05 6.18e-05 6.43e-05 6.68e-05 6.95e-05 ...
$ k_b : num [1:1001] 16820 16178 15561 14967 14395 ...
$ jox : num [1:1001] 0.00 -6.37e-17 -5.11e-17 -4.74e-17 -4.64e-17 ...
$ jred : num [1:1001] 0.00 6.37e-17 5.11e-17 4.74e-17 4.64e-17 ...

In addition to returning the function’s many inputs, the list also includes scalers that return the direction
in which the potential was scanned (–1 for a cathodic scan or +1 for a anodic scan) and the type of file
(full data or reduced data; more on this later), vectors that return the times and distances, the current as
a function of time, the potential as a function of time, the forward and the reverse heterogenous electron
transfer rate constants as a function of time, and the flux of Ox and Red as a function of time, and matrices
that return values for the concentrations of Ox, Red, and Z as a function of time and of distance. Items in
this list are used by other functions that display the result of the simulated cyclic voltrammetry experiment.

2

Simulating a Linear Sweep Voltammetry Experiment

The format for simulateLSV is shown here

simulateLSV = function(e.start = 0.0, e.end = -1, e.form = -0.25,
mechanism = c("E", "EC", "CE"),
ko = 1, kcf = 0, kcr = 0,
n = 1, alpha = 0.50, d = 1e-5, area = 0.01,
temp = 298.15, scan.rate = 1.0, conc.bulk = 1e-3,
t.units = 2000, x.units = 180, sd.noise = 0,
stir.rate = c("off", "slow", "medium", "fast"))

With two exceptions, the arguments passed to simulateLSV are identical to those included in simulateCV;
the two unique arguments are

• e.end: final potential (V); defaults to -1.0 V
• stir.rate: rate at which the solution is stirred (unitless); one of off, slow, medium, or fast, with a

default of off

The function is used in the same way as with simulateCV, returning the results as a list; thus, to simulate a
linear sweep voltammogram using all default conditions but with maximum stirring, we enter the following R
code
lsv1 = simulateLSV(stir.rate = "fast")

Simulating a Chronoamperometry Experiment

The format for simulateCA is shown here

simulateCA = function(e.start = 0.0, e.pulse = -0.5, e.form = -0.25,
mechanism = c("E", "EC", "CE"),
ko = 1, kcf = 0, kcr = 0,
pulses = c("single", "double"),
t.1 = 10, t.2 = 0, t.end = 30,
n = 1, alpha = 0.50, d = 1e-5, area = 0.01,
temp = 298.15, conc.bulk = 1e-3,
t.units = 2000, x.units = 180, sd.noise = 0)

Many of the arguments passed to simulateCA are identical to those included in simulateCV; arguments
unique to simulateCA are

• e.pulse: potential at the end of the first pulse (V); defaults to –0.5 V
• pulses: either single or double with the first pulse from e.start to e.pulse and the second pulse,

when included, returning the potential to e.start; defaults to a single pulse experiment
• t.1: time at which the first pulse is applied (s); defaults to 10 s
• t.2: time at which the second pulse is applied (s); defaults to 0 s for a single pulse experiment
• t.end: time at which experiment ends (s); defaults to 30 s

The function is used in the same way as with simulateCV, returning the results as a list; thus, to simulate a
double step chonoamperometry experiment with potential pulses at 5 s and 10 s, a total time of 15 s—and all
other conditions set to their default values—we enter the following R code
ca1 = simulateCA(pulses = "double", t.1 = 5, t.2 = 10, t.end = 15)

Simulating a Chronocoulometry Experiment

The format for ccSim, which is shown here

3

simulateCC = function(filename)

takes as its only argument the name of an object created using simulateCA. The function completes a
trapezoidal integration to convert the chronoamperogram (current vs. time) into a chronocoulomgram (charge
vs. time) and returns to its assigned object a list of results; thus, to simulate the chronocoulogram based on
the chronoamperometry experiment described above, we enter the following R code
cc1 = simulateCC(ca1)

Functions to Reduce the Size of a Simulation’s File

The four simulation functions described above create moderately large data files because they return data for
all aspects of the simulation’s computation. For example, the file returned when running a simulation using
the default condtions simulateCV is 2.4 Mb in size. The four sample functions

Table 2: Functions to Sample a Simulation

function operates on object created using. . .
sampleCA simulateCA
sampleCC simulateCC
sampleCV simulateCV
sampleLSV simulateLSV

return a limited amount of data: the type of experiment, an indication that the data is reduced, and
vectors of currents (sampleCA, sampleCV, and sampleLSV) or charges (sampleCC), and vectors of potentials
(sampleCV and sampleLSV) or times (sampleCA and sampleCC). All four functions have the same general
format, as shown here for sampleCV

sampleCV = function(filename, data.reduction = 1)

where filename is the name of the object that contains results for the original simulation, and data.reduction
is the percent of data to retain (which is evenly spaced over time); thus, the following R code returns 10% of
the data from a simulated cyclic voltammetry experiment.
cv2_sample = sampleCV(cv2, data.reduction = 10)
str(cv2_sample)

List of 4
$ expt : chr "CV"
$ file_type: chr "reduced"
$ current : num [1:101] 0.00 1.13e-07 2.28e-07 4.89e-07 1.06e-06 ...
$ potential: num [1:101] 0 -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 ...

Functions to Examine the Result of a Simulation

As described in the previous sections, the functions in Table 1 and Table 2 return a list of values that include
parameters passed to the functions and the results of the simulation itself. In this section we consider how to
examine the results of a simulation either as a static visualization or as a dynamic visualization.

4

Static Visualizations

There are two basic types of static visualizations: plot, which provides a variety of options for visualizing
the results of one or, in some cases, more electrochemical simulations

Table 3: Static Visualizations Using the plot Functions

function operates on object created by. . . displays. . .
plotCA simulateCA, sampleCA current vs. time for 1–5 simulations

plotCC simulateCC, sampleCC charge vs. time for 1–5 simulations

plotCV simulateCV, sampleCV current vs. potential for 1–5 simulations

plotLSV simulateLSV, sampleLSV current vs. potential for 1–5 simulations

plotPotential simulateCA, simulateCC,
simulateCV, simulateLSV

potential vs. time

plotDiffusion simulateCA, simulateCC,
simulateCV, simulateLSV

concentrations of Ox, Red, and Z vs. distance at
a specified time

plotGrid simulateCA, simulateCC,
simulateCV, simulateLSV

diffusion profiles for Ox, Red, and Z at eight
equally-spaced times, arranged around a central
plot that shows the chronoamperogram,
chronocoulogram, cyclic voltammogram, or
linear sweep voltammogram

plotDiffGrid simulateCA, simulateCC,
simulateCV, simulateLSV

concentration of Ox, Red, Z, or all three as a
function of time and distance

and annotate, which displays the result for a single simulation along with the characteristic values used to
evaluate electrochemical and chemical reversibility.

Table 4: Static Visualizations Using the annotate Functions

function operates on object created by. . . displays. . .
annotateCA simulateCA current vs. time annotated with characteristic

values for the current at a specified time
following each pulse and, for a double-pulse
experiment, the resulting current ratio

annotateCC simulateCC charge vs. time annotated with characteristic
values for the charge at a specified time following
each pulse and, for a double-pulse experiment,
the resulting charge ratio

annotateCV simulateCV current vs. potential annotated with
characteristic values for the peak potentials, the
peak currents, the average and the difference in
the peak potentials, and the peak current ratio

5

function operates on object created by. . . displays. . .
annotateLSV simulateLSV current vs. potential annotated with

characteristic values for the peak potential and
the peak current

Static Visualizations for a Cyclic Voltammetry Simulation

To view the potential profile for a simulation, we use the plotPotential function, which takes the following
form

plotPotential = function(filename, main_title = NULL)

where filename is the name of an object that contains the results of a simulation and main_title is an
optional title supplied as a character string; thus
plotPotential(cv2, main_title = "Potential Profile for a Simulated Cyclic Voltammogram")

0 2 4 6 8 10

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0

Potential Profile for a Simulated Cyclic Voltammogram

time (sec)

po
te

nt
ia

l (
V

)

To examine the diffusion profile for a simulation, we choose from among three options:

plotDiffusion = function(filename, t = 1)
plotGrid = function(filename)
plotDiffGrid = function(filename, species = c(TRUE, TRUE, FALSE),

scale.factor = 1)

where filename is the name of an object that contains the results of a simulation, t is the selected time,
species indicates whether the diffusion profile is returned for, in order, Ox, Red, and Z, and scale.factor
allows for adjusting the distances being displayed. The function plotDiffusion returns the diffusion profiles
for Ox, Red, and Z (where appropriate) as a function of distance from the electrode at the specified time.
plotDiffusion(cv2, t = 8)

6

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

8 sec & −0.2 V

distance from electrode (cm)

co
nc

en
tr

at
io

n
(m

M
)

Ox
Red

The function plotGrid returns a 3 × 3 grid that consists of eight diffusion profiles—equally spaced in
time—arranged around a central plot of the simulation’s cyclic voltammogram.
plotGrid(cv2)

0.00 0.02 0.04 0.06

0.
0

0.
4

0.
8

2 sec & −0.2 V

distance from electrode (cm)

co
nc

en
tr

at
io

n
(m

M
)

Ox
Red

0.00 0.02 0.04 0.06

0.
0

0.
4

0.
8

3 sec & −0.3 V

distance from electrode (cm)

co
nc

en
tr

at
io

n
(m

M
)

Ox
Red

0.00 0.02 0.04 0.06

0.
0

0.
4

0.
8

4 sec & −0.4 V

distance from electrode (cm)

co
nc

en
tr

at
io

n
(m

M
)

Ox
Red

0.00 0.02 0.04 0.06

0.
0

0.
4

0.
8

1 sec & −0.1 V

distance from electrode (cm)

co
nc

en
tr

at
io

n
(m

M
)

Ox
Red

0.0 −0.2 −0.4

−
6

0
4

8

points show times

potential (V)

cu
rr

en
t (

µA
)

1 2

3
4

67

8
9

0.00 0.02 0.04 0.06

0.
0

0.
4

0.
8

6 sec & −0.4 V

distance from electrode (cm)

co
nc

en
tr

at
io

n
(m

M
)

Ox
Red

0.00 0.02 0.04 0.06

0.
0

0.
4

0.
8

9 sec & −0.1 V

distance from electrode (cm)

co
nc

en
tr

at
io

n
(m

M
)

Ox
Red

0.00 0.02 0.04 0.06

0.
0

0.
4

0.
8

8 sec & −0.2 V

distance from electrode (cm)

co
nc

en
tr

at
io

n
(m

M
)

Ox
Red

0.00 0.02 0.04 0.06

0.
0

0.
4

0.
8

7 sec & −0.3 V

distance from electrode (cm)

co
nc

en
tr

at
io

n
(m

M
)

Ox
Red

The function plotDiffGrid returns a heatmap showing the concentrations of Ox, Red, and/or Z as a function
of time and distance; here we choose to display only Ox and to display only the first 25% of the distance
from the electrode surface
plotDiffGrid(cv2, species = c(TRUE, FALSE, FALSE), scale.factor = 0.25)

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

0
2

4
6

8
10

distance (cm)

tim
e

(s
)

0.2

0.4

0.6

0.8

1.0

[Ox] (mM)

The function plotCV is used to display the cyclic voltammogram for 1–5 simulations, making it easy to
examine how a change in simulation parameters affects the cyclic voltammogram. The function’s format is
shown here

7

plotCV = function(filenames = list(file1 = NULL, file2 = NULL),
legend_text = NULL,
legend_position = c("topleft", "topright",

"bottomleft", "bottomright"),
main_title = NULL,
line_widths = c(2, 2, 2, 2, 2),
line_types = c(1, 2, 3, 4, 5),
point_symbols = c(21, 22, 23, 24, 25),
line_colors = c("blue", "blue", "blue",

"blue", "blue"))

where filenames is a list that contains 1–5 objects created using simulateCV or sampleCV, legend_text is
an optional vector with descriptive character strings for each simulation, legend_position is a character
string that indicates where the legend is placed if legend_text is not NULL, main_title is an optional
character string, and line_widths, line_types, and line_colors specify the width, type, and color of the
lines used for each cyclic voltammogram. The code below, for example, plots the full and reduced cyclic
voltammograms that we created earlier and adds a legend.
plotCV(filenames = list(cv2, cv2_sample),

legend_text = c("full data", "reduced data"),
line_colors = c("black", "blue"),
line_types = c(1, 1))

0.0 −0.1 −0.2 −0.3 −0.4 −0.5

−
4

−
2

0
2

4
6

potential (V)

cu
rr

en
t (

µA
)

full data
reduced data

The line types are 1 = solid, 2 = dashed, 3 = dotted, 4 = dot dash, and 5 = long dash, and the point symbols
are circle = 21, square = 22, diamond = 23, upward triangle = 24, and downward triangle = 25. As is
evident from this example, it is not necessary to match the number of values in line_widths, line_types,
and line_colors to the number of files passed to the function.

Finally, the annotateCV function returns a plot of the cyclic voltammogram that is annotated with key
characteristic values used to evaluate electrochemical and chemical reversibility: the cathodic peak potential,
Ep,c, the anodic peak potential, Ep,a, the difference between the peak potentials, ∆E, the average peak
potential, Eavg, the cathodic peak current, ip,c, the anodic peak current, ip,a, and the peak current ratio,
|ip,c|/|ip,a|. The function’s format is shown here

annotateCV = function(filename, forward.per = 5, reverse.per = 5,
threshold = 0.05)

where filename is a single object that contains the results of a simulated cyclic voltammogram. The
arguments forward.per and reverse.per define the percentage of data used to determine the peak currents
for the forward and the reverse scans: for the forward scan the default is the first 5% of the data and for
the reverse scan the default is the first 5% of the data following the switching potential. The threshold
argument is the minimum measurable current to report, in µA.
annotateCV(cv2)

8

0.0 −0.1 −0.2 −0.3 −0.4 −0.5

−
4

−
2

0
2

4
6

potential (V)

cu
rr

en
t (

µA
)

Epc: −0.268 V

ipc: 6.81 µA

Epa: −0.232 V

ipa: −6.68 µA

∆E: 0.036 V
Eavg: −0.250 V

|ipa ipc|: 0.98

See the document Additional Examples for other ideas on how to create static visualizations for chronom-
perometry, chronocoulometry, cyclic voltammetry, and linear sweep voltammetry experiments.

Dynamic Visualizations

A static visualization provides a single fixed view of a simulation; a dynamic visualization displays the
simulation as an animation that consists of 40 frames. As outlined in Table 5, each of the animate functions
shows both how the diffusion profiles for Ox, Red, and Z (when using an EC or a CE mechanism) develop
over time as the chronoamperogram, the chronocoulogram, the cyclic voltammogram, or the linear sweep
voltammogram develops.

Table 5: Dynamic Visualizations Using the animate Functions

function operates on object created by. . . shows. . .
animateCA simulateCA how the diffusion profiles for Ox, Red, and

(where appropriate) Z changes as a function of
time and how the current changes as a function
of time

animateCC simulateCC how the diffusion profiles for Ox, Red, and
(where appropriate) Z changes as a function of
time and how the charge changes as a function of
time

animateCV simulateCV how the diffusion profiles for Ox, Red, and
(where appropriate) Z changes as a function of
time and how the current changes as a function
of potential

animateLSV simulateLSV how the diffusion profiles for Ox, Red, and
(where appropriate) Z changes as a function of
time and how the current changes as a function
of potential

Dynamic Visualization for a Cyclic Voltammetry Simulation

The animateCV function takes the following form

animateCV = function(filename, out_type = c("html", "gif"), out_name = "aniCV")

9

where filename is the name of the object created using simulateCV, out_type gives the type of animation,
which is either an html (default) or a gif animation, and out_name is used to construct names for the files
the function creates. For example, the following code
animateCV(cv1, out_type = "gif", out_name = "cv1")

which is not executed here, creates a single file with name cv1.gif, which contains the images that make up
the animation. When using the option to create an html animation, the function creates folders with the
necessary CSS styling and javascript, a folder with the name cv1_dir that contains image files that make up
the animation, and an html file with the name cv1.html with the html code to display the animation in
a browser. The other animate functions work in the same way. Note that all files created by the animate
functions are saved to the current working directory.

10

	Functions to Simulate Electrochemistry Experiments
	Simulating a Cyclic Voltammetry Experiment
	Simulating a Linear Sweep Voltammetry Experiment
	Simulating a Chronoamperometry Experiment
	Simulating a Chronocoulometry Experiment

	Functions to Reduce the Size of a Simulation's File
	Functions to Examine the Result of a Simulation
	Static Visualizations
	Static Visualizations for a Cyclic Voltammetry Simulation
	Dynamic Visualizations
	Dynamic Visualization for a Cyclic Voltammetry Simulation

