
Package ‘dynaSpec’
April 7, 2025

Type Package

Title Dynamic Spectrogram Visualizations

Version 1.0.3

Description A set of tools to generate dynamic spectrogram visualizations in video format.

License GPL (>= 2)

Imports utils, grDevices, graphics, seewave, tuneR, grid, png,
ggplot2, viridis, scales, ari, gganimate, warbleR

Depends R (>= 3.2.1)

LazyData TRUE

SystemRequirements ffmpeg

URL https://github.com/maRce10/dynaSpec

BugReports https://github.com/maRce10/dynaSpec/issues

NeedsCompilation no

Suggests parallel, imager, fs

RoxygenNote 7.3.2

Repository CRAN

Language en-US

Encoding UTF-8

Author Marcelo Araya-Salas [aut, cre]
(<https://orcid.org/0000-0003-3594-619X>)

Maintainer Marcelo Araya-Salas <marcelo.araya@ucr.ac.cr>

Date/Publication 2025-04-07 19:30:02 UTC

Contents
canyon_wren . 2
paged_spectro . 2
prep_static_ggspectro . 4
scrolling_spectro . 8

Index 12

1

https://github.com/maRce10/dynaSpec
https://github.com/maRce10/dynaSpec/issues
https://orcid.org/0000-0003-3594-619X

2 paged_spectro

canyon_wren Acoustic recording of a Catherpes mexicanus (canyon wren) song.

Description

Acoustic recording of a Catherpes mexicanus (canyon wren) song.

Usage

data(canyon_wren)

Format

One Wave object:

canyon_wren Catherpes mexicanus recording

paged_spectro Make a paged dynamic spectrogram similar to spectral display in
Adobe Audition

Description

This function works on an object generated with prep_static_ggspectro, an alias for prepStat-
icSpec(). Video generation is very time consuming, and all the desired spectrogram parameters
should be set in the prep step. The output is an mp4 video of a dynamic spectrogram video. If
the input sound file was segmented in the prep step, the resulting video will be a concatenation of
multiple dynamic spectrogram "pages." Each page has a sliding window revealing the part of the
static spectrogram being played. Temporal width of each page is defined by the xLim parameter in
prep_static_ggspectro. You can also output temporary segmented files, if desired.

Usage

paged_spectro(
specParams,
destFolder,
vidName,
framerate = 30,
highlightCol = "#4B0C6BFF",
highlightAlpha = 0.6,
cursorCol = "white",
delete_temp_files = TRUE

)

paged_spectro 3

Arguments

specParams an object returned from prep_static_ggspectro

destFolder destination of output video; this setting overwrites setting from specParams ob-
ject

vidName expects "FileName", .mp4 not necessary; if not supplied, will be named after
the file you used in prep_static_ggspectro()

framerate by default, set to 30 (currently this is not supported, as animate doesn’t honor
the setting)

highlightCol default "#4B0C6BFF" (a purple color to match the default viridis ’inferno’
palette)

highlightAlpha opacity of the highlight box; default is 0.6

cursorCol Color of the leading edge of the highlight box; default "white"
delete_temp_files

Default= TRUE, deletes temporary files (specs & WAV files used to create con-
catenated video)

Value

Nothing is returned, though progress and file save locations are output to user. Video should play
after rendering.

Author(s)

Matthew R Wilkins (<matt@galacticpolymath.com>)

References

Araya-Salas M & Wilkins M R. (2020). *dynaSpec: dynamic spectrogram visualizations in R*. R
package version 1.0.0.

See Also

prep_static_ggspectro

Examples

Not run:
#show wav files included with dynaSpec
f <- list.files(pattern=".wav", full.names = TRUE,

path = system.file(package="dynaSpec"))

femaleBarnSwallow<-prep_static_ggspectro(f[1],destFolder=tempdir(),
onlyPlotSpec = FALSE, bgFlood= TRUE)

paged_spectro(femaleBarnSwallow,destFolder=tempdir())

maleBarnSwallow<-prep_static_ggspectro(f[2],destFolder=tempdir(),
onlyPlotSpec = FALSE, bgFlood= TRUE,min_dB=-40)

4 prep_static_ggspectro

paged_spectro(femaleBarnSwallow,destFolder=tempdir())

Make a multipage dynamic spec of a humpback whale song
Note, we're saving PNGs of our specs in the working directory; to add
axis labels, we set onlyPlotSpec to F, and to make the same background
color for the entire figure, we set bgFlood= TRUE;
The yLim is set to only go to 0.7kHz, where the sounds are for these big whales;
#also applying an amplitude transform to boost signal.
#This is a longer file, so we're taking the first 12 seconds with crop=12
#xLim=3 means each "page" will be 3 seconds, so we'll have 4 dynamic spec pages that get combined

humpback <- prep_static_ggspectro(
"http://www.oceanmammalinst.org/songs/hmpback3.wav",destFolder=tempdir(),savePNG= FALSE,
onlyPlotSpec=FALSE,bgFlood= TRUE,yLim=c(0,.7),crop=12,xLim=3,ampTrans=3)

#to generate multipage dynamic spec (movie), run the following
paged_spectro(humpback,destFolder=tempdir())

see more examples at https://marce10.github.io/dynaSpec/

End(Not run)

prep_static_ggspectro Generate ggplot2-based spectrogram(s), which can be passed to
paged_spectro

Description

Can be used to generate single or segmented static spectrograms. Works as standalone, but the re-
turned object is also intended to feed into paged_spectro. Workflow: 1) use prep_static_ggspectro
to crop, filter, segment and tweak all spectrogram parameters; 2) pass these settings to paged_spectro
to generate dynamic spectrogram video.

Usage

prep_static_ggspectro(
soundFile,
destFolder,
outFilename = NULL,
savePNG = FALSE,
colPal = "inferno",
crop = NULL,
bg = NULL,
filter = NULL,
xLim = NULL,
yLim = c(0, 10),
title = NULL,
plotLegend = FALSE,
onlyPlotSpec = TRUE,

prep_static_ggspectro 5

ampTrans = 1,
resampleRate = 15000,
min_dB = -30,
wl = 512,
ovlp = 90,
wn = "blackman",
specWidth = 9,
specHeight = 3,
colbins = 30,
ampThresh = 0,
bgFlood = FALSE,
fontAndAxisCol = NULL,
optim = NULL,
...

)

Arguments

soundFile should work with URLs, full and relative paths; handles .mp3 and .wav

destFolder path to directory to save output. Needs to be like "figures/spectrograms/" to be
relative to working directory. Default=parent folder of soundFile. Specify "wd"
to output to the working directory, gotten from [get_wd()]

outFilename name for output PNG. default=NULL will use input name in output filename.

savePNG logical; Save static spectrograms as PNGs? They will be exported to destFolder.

colPal color palette; one of "viridis","magma","plasma","inferno","cividis" from the
viridis package OR a 2 value vector (e.g. c("white","black")), defining the
start and end of a custom color gradient

crop subset of recording to include; default crop=NULL will use whole file, up to 10
sec; if a number, interpreted as crop first X.X sec; if c(X1,X2), interpreted as
trimming out a specific time interval in sec; if crop=FALSE, will not crop at all,
even for recordings over 10 sec.

bg background color (defaults to 1st value of chosen palette)

filter apply a bandpass filter? Defaults to none (NULL). Expects ’c(0,2)’ where sound
from 0 to 2kHz would be filtered out

xLim the time limit (x-axis width) in seconds for all spectrograms; i.e. page width
in seconds for multi-page dynamic spectrograms (defaults to WAV file length,
unless file duration >5s). To override the 5s limit, put xLim=Inf or specify the
desired spectrogram x-axis limit.

yLim the frequency limits (y-axis); default is c(0,10) aka 0-10kHz

title string for title of plots; default=NULL

plotLegend logical; include a legend showing amplitude colors? default=FALSE

onlyPlotSpec logical; do you want to just plot the spec and leave out the legend, axes, and axis
labels? default= TRUE

6 prep_static_ggspectro

ampTrans amplitude transform for boosting spectrum contrast; default=1 (actual dB val-
ues); specify a decimal number for the lambda value of scales::modulus_trans();
2.5 is a good place to start. (This amplifies your loud values the most, while not
increasing background noise much at all)

resampleRate a number in Hz to downsample audio for spectrogram only. This will simplify
audio data and speed up generation of spectrogram. Passed to [tuneR::downsample()].
Default=15000 shaves off a few seconds without losing much quality. Put NULL
to keep original sample rate for spectrogram. Audiofile will not be resampled
for MP4.

min_dB the minimum decibel (quietest sound) to include in the spec; defaults to -30 (-40
would include quieter sounds; -20 would cut out all but very loud sounds)

wl window length for the spectrogram (low values= higher temporal res; high val-
ues= higher freq. res). Default 512 is a good tradeoff; human speech would look
better at 1024 or higher, giving higher frequency resolution.

ovlp how much overlap (as percent) between sliding windows to generate spec? De-
fault 90 looks good, but takes longer

wn window name (slight tweaks on algorithm that affect smoothness of output) see
spectro

specWidth what width (in inches) would you like to make your PNG output be, if saving a
static spec?

specHeight what height (in inches) would you like to make your PNG output be, if saving a
static spec?

colbins default 30: increasing can smooth the color contours, but take longer to generate
spec

ampThresh amplitude threshold as a percent to cut out of recording (try 5 to start); default=
no filtering (high data loss with this; not recommended; play with min_dB and
ampTrans first)

bgFlood do you want the background color to spill into the axis margins? Default=FALSE
(i.e. white margins)

fontAndAxisCol the color of legend text if onlyPlotSpec=TRUE (since margins will be white,
with black text); if bgFlood=TRUE, this will be the color of axis margins, labels
and legend text. If you don’t supply this, it will be picked automatically to be
white or black based on supplied bg color

optim NULL by default; this is an experimental feature to simplify the dataframe of
the FFT-processed waveform used to generate the spectrogram (currently does
nothing)

... Other arguments to be passed for rendering the spec (i.e. to seewave::spectro)

Value

a list with all spectrogram parameters, segmented WAV files (segWavs) and spectrograms spec;
importantly, spec is a list of n=number of "pages"/segments; the first page is displayed by default

Author(s)

Matthew R Wilkins (<matt@galacticpolymath.com>)

prep_static_ggspectro 7

References

Araya-Salas M & Wilkins M R. (2020). *dynaSpec: dynamic spectrogram visualizations in R*. R
package version 1.0.0.

See Also

paged_spectro

Examples

Not run:
require(dynaSpec)
f <- list.files(pattern=".wav", full.names = TRUE, path = system.file(package="dynaSpec"))

default behavior should be a decent start for good recordings; doesn't save anything, just plots
prep_static_ggspectro(f[1])

to use with paged_spectro or to do other stuff, you need to assign the
resulting object, but it will still always plot the first spec
let's add axes and boost the signal a smidge
femaleBarnSwallow <- prep_static_ggspectro(f[1],destFolder="wd",
onlyPlotSpec = FALSE, bgFlood=TRUE,ampTrans=2)

feels like we're missing a little bit of the quieter signals; let's lower
the minimum amplitude threshold a bit
femaleBarnSwallow<-prep_static_ggspectro(f[1],destFolder="wd",
onlyPlotSpec = FALSE, bgFlood=TRUE,ampTrans=2,min_dB=-35)

#now for a male song
maleBarnSwallow<-prep_static_ggspectro(f[2],destFolder="wd",onlyPlotSpec = FALSE,
bgFlood=TRUE)

#Nice, but the trill is fading out; I'm gonna signal boost and lower the min_dB
maleBarnSwallow<-prep_static_ggspectro(f[2],destFolder="wd",onlyPlotSpec = FALSE,
bgFlood=TRUE,ampTrans=2,min_dB=-40)

#much stronger, now let's combine them
(you need the patchwork package to use the / operator to stack plots)
library(patchwork)
(femaleBarnSwallow$spec[[1]]+ggplot2::xlim(0,5)) /
(maleBarnSwallow$spec[[1]]+ggplot2::xlim(0,5)) +
patchwork::plot_annotation(title="Female and Male barn swallow songs",
caption="Female song (top) is much shorter, but similar
complexity to males. See: MR Wilkins et al. (2020) Animal
Behaviour 168")

ggplot2::ggsave("M&F_barn_swallow_song_specs.jpeg",width=11,height=7)

see more examples at https://marce10.github.io/dynaSpec/

End(Not run)

8 scrolling_spectro

scrolling_spectro Create scrolling dynamic spectrograms

Description

scrolling_spectro create videos of single row spectrograms scrolling from right to left sync’ed
with sound.

Usage

scrolling_spectro(wave, file.name = "scroll.spectro.mp4", hop.size = 11.6, wl = NULL,
ovlp = 70, flim = NULL, pal = seewave::reverse.gray.colors.1, speed = 1, fps = 50,
t.display = 1.5, fix.time = TRUE, res = 70,
width = 700, height = 400, parallel = 1, pb = TRUE,
play = TRUE, loop = 1, lcol = "#07889B99",
lty = 2, lwd = 2, axis.type = "standard", buffer = 1,
ggspectro = FALSE, lower.spectro = TRUE, height.prop = c(5, 1), derivative = FALSE,
osc = FALSE, colwave = "black", colbg = "white",
spectro.call = NULL, annotation.call = NULL, ...)

Arguments

wave object of class ’Wave’.

file.name Character string with the name of the output video file. Must include the .mp4
extension. Default is ’scroll.spectro.mp4’.

hop.size A numeric vector of length 1 specifying the time window duration (in ms). De-
fault is 11.6 ms, which is equivalent to 512 wl for a 44.1 kHz sampling rate.
Ignored if ’wl’ is supplied.

wl A numeric vector of length 1 specifying the window length of the spectrogram,
default is NULL. If supplied, ’hop.size’ is ignored.

ovlp Numeric vector of length 1 specifying the percent overlap between two consec-
utive windows, as in spectro. Default is 70.

flim A numeric vector of length 2 specifying limits in the frequency axis (in kHz).
Default is NULL (which means from 0 to Nyquist frequency).

pal Character string with the color palette to be used. Default is ’reverse.gray.colors.1’.

speed Numeric vector of length 1 indicating the speed at which the sound file will be
reproduced (default is 1, normal speed). Values < 1 (but higher than 0) slow
down while values > 1 speed up. Note that changes in speed are achieved by
modifying the number of frames per second in the output video. Hence, you
may want to adjust ’fps’ if video quality is considerably affected.

fps Numeric vector of length 1 specifying the number of frames per second.

t.display Numeric vector of length 1 specifying the time range displayed in the spectro-
gram.

scrolling_spectro 9

fix.time Logical argument to control if the time axis moves along with the spectrogram
or remains fixed. Default is TRUE (fixed).

res Numeric vector of length 1 specifying the resolution of the image files (see png).

width Numeric vector of length 1 specifying width of the video frame in pixels (see
png). Default is 700.

height Numeric vector of length 1 specifying height of the video frame in pixels (see
png). Default is 400.

parallel Numeric vector of length 1. Controls whether parallel computing is applied
by specifying the number of cores to be used. Default is 1 (i.e. no parallel
computing).

pb Logical argument to control if progress bar is shown. Default is TRUE.

play Logical argument to control if the video is played after generated. Default is
TRUE.

loop Logical argument to control if the video is formatted to be played in a loop (i.e.
if ends at the start of the clip).

lcol Character string with the color to be used for the vertical line at which sounds
are played. Default is "#07889B99".

lty Character string to control the type of the line at which sounds are played.
Line types can either be specified as an integer (0=blank, 1=solid (default),
2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the char-
acter strings "blank", "solid", "dashed", "dotted", "dotdash", "longdash", or
"twodash", where "blank" uses ’invisible lines’ (i.e., does not draw them).Default
is 2.

lwd Character string to control the width of the line at which sounds are played.
Default is 2.

axis.type Character string to control the style of spectrogram axes. Currently there are 3
options:

• standard: Both Y and X axes are printed as in the default spectro view.
• minimal: Single lines are used to denote the range defined by 1 s and 1 kHz

for the X and Y axes respectively.
• none: No axis is printed (also removes ticks, tick labels, and axis labels).

buffer Numeric vector of length 1 (> 0) specifying the time to delay the start of the
spectrogram scrolling (in seconds). Default is 1. Not available when loop is > 1.

ggspectro Logical argument to control if a ggspectro (ggspectro) is used instead. Note
that there is much less control on display parameters when ggpsectro = TRUE.
Default is FALSE.

lower.spectro Logical argument to control if a spectrogram of the full wave object is plotted at
the bottom of the graph. Default is TRUE.

height.prop Numeric vector of length 2 to control the relative height of the scrolling and
lower spectro, respectively. Default is c(5, 1). Ignored if lower.spectro =
FALSE.

derivative Logical argument to control if spectral derivative is used instead of spectrogram
(as in Sound Analysis Pro, see deriche). Default is FALSE.

10 scrolling_spectro

osc Logical argument to control if the oscillogram is plotted at the bottom of the
spectrogram. Default is FALSE. Note that ’osc’ and ’lower.spectro’ are mutually
exclusive.

colwave Character string to control the color of the oscillogram. Default is ’black’.

colbg Character string to control the background color. Default is ’white’.

spectro.call A call from a spectrogram creating function (i.e. spectro, color_spectro)
generated by the function call. This call will replace the internal spectrogram
creating call. Default is NULL.

annotation.call

A call from text generated by the function call. The call should also include
the argmuents ’start’ and ’end’ to indicate the time at which the labels are dis-
played (in s).’fading’ is optional and allows fade-in and fade-out effects on labels
(in s as well). The position (’x’ and ’y’ arguments) should be between 0 and 1:
x = 0, y = 0 corresponds to the bottom left and x = 1, y = 1 corresponds to the
top right position.

... Additional arguments to be passed to spectro for customizing spectrograms.
Note that ’scale’ cannot be included.

Details

The function creates videos (mp4 format) of single row spectrograms scrolling from right to left.
The audio is sync’ed with the spectrograms. Sound files with a sampling rate other than 44.1 kHz
will be resampled to 44.1 kHz as required by ffmpeg when embeding audio to video files.

Value

A video file in mp4 format in the working directory with the scrolling spectrogram.

Author(s)

Marcelo Araya-Salas (<marcelo.araya@ucr.ac.cr>)

References

Araya-Salas M & Wilkins M R. (2020). dynaSpec: dynamic spectrogram visualizations in R. R
package version 1.0.0.

See Also

spectro

Examples

Not run:
load example data
data(list = c("Phae.long1"))

run function
scrolling_spectro(wave = Phae.long1, wl = 300, ovlp = 90,

scrolling_spectro 11

fps = 50, t.display = 1.5, collevels = seq(-40, 0, 5),
pal = reverse.heat.colors, grid = FALSE, flim = c(1, 10),
res = 120)

End(Not run)

Index

∗ datasets
canyon_wren, 2

call, 10
canyon_wren, 2
color_spectro, 10

deriche, 9

ggspectro, 9

paged_spectro, 2, 4, 7
pagedSpec (paged_spectro), 2
pagedSpectro (paged_spectro), 2
png, 9
prep_static_ggspectro, 2, 3, 4
prepStaticGGspec

(prep_static_ggspectro), 4
prepStaticSpec (prep_static_ggspectro),

4

scrolling_spectro, 8
spectro, 6, 8–10

text, 10

viridis, 5

12

	canyon_wren
	paged_spectro
	prep_static_ggspectro
	scrolling_spectro
	Index

