Package ‘duckdbfs’

April 5, 2025

Title High Performance Remote File System, Database and 'Geospatial’
Access Using 'duckdb’

Version 0.1.0

Description Provides friendly wrappers for creating 'duckdb’-backed connections
to tabular datasets (‘'csv', parquet, etc) on local or remote file systems.
This mimics the behaviour of * " open_dataset" in the 'arrow’ package,
but in addition to 'S3' file system also generalizes to any list of 'http' URLs.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2

URL https://github.com/cboettig/duckdbfs,
https://cboettig.github.io/duckdbfs/

BugReports https://github.com/cboettig/duckdbfs/issues
Depends R (>=4.2)
Imports DBI, dbplyr, dplyr, duckdb (>=1.1), fs, glue

Suggests curl, sf, jsonlite, spelling, minioclient, testthat (>=
3.0.0)

Config/testthat/edition 3
Language en-US
NeedsCompilation no

Author Carl Boettiger [aut, cre] (<https://orcid.org/0000-0002-1642-628X>),
Michael D. Sumner [ctb] (<https://orcid.org/0000-0002-2471-7511>)

Maintainer Carl Boettiger <cboettig@gmail.com>
Repository CRAN
Date/Publication 2025-04-04 23:40:02 UTC

https://github.com/cboettig/duckdbfs
https://cboettig.github.io/duckdbfs/
https://github.com/cboettig/duckdbfs/issues
https://orcid.org/0000-0002-1642-628X
https://orcid.org/0000-0002-2471-7511

2 as_dataset
Contents
as_dataset e e 2
AS_ VIEW © o o o s, 3
cached_connection e 3
close_connection e 5
duckdb_s3_config e 5
duckdb_Secrets e 7
load_h3 s 8
load_spatial e e 9
open_dataset e e e e 10
spatial_join L. e e 11
stread_Meta e e e e e e e e 13
to_h3j . . . 14
TO_JSOM . o v v vt o e e e e e e e e e e e e 14
0 ST . 15
write_dataset L e e e 16
WILE_ZEO .« . v v v v o e 17
Index 18
as_dataset as_dataset
Description
Push a local (in-memory) dataset into a the duckdb database as a table. This enables it to share the

connection source with other data. This is equivalent to the behavior of copy=TRUE on many (but
not all) of the two-table verbs in dplyr.

Usage
as_dataset(df, conn = cached_connection())

Arguments
df a local data frame. Otherwise will be passed back without side effects
conn A connection to a database.

Value

aremote dplyr: :tbl connection to the table.

as_view 3

as_view as_view

Description
Create a View of the current query. This can be an effective way to allow a query chain to remain
lazy

Usage

as_view(x, tblname = tmp_tbl_name(), conn = cached_connection())

Arguments
X a duckdb spatial dataset
tblname The name of the table to create in the database.
conn A connection to a database.

Examples

path <- system.file("extdata/spatial-test.csv”, package="duckdbfs")
df <- open_dataset(path)
library(dplyr)

df |> filter(latitude > 5) |> as_view()

cached_connection create a cachable duckdb connection

Description

This function is primarily intended for internal use by other duckdbfs functions. However, it can
be called directly by the user whenever it is desirable to have direct access to the connection object.

Usage

cached_connection(
dbdir = ":memory:",
read_only = FALSE,
bigint = "numeric”,
config = list(temp_directory = tempfile()),
autoload_exts = getOption("duckdbfs_autoload_extensions”, TRUE)

Arguments

dbdir

read_only

bigint

config

autoload_exts

Details

cached_connection

Location for database files. Should be a path to an existing directory in the file
system. With the default (or "), all data is kept in RAM.

Set to TRUE for read-only operation. For file-based databases, this is only applied
when the database file is opened for the first time. Subsequent connections (via
the same drv object or a drv object pointing to the same path) will silently
ignore this flag.

How 64-bit integers should be returned. There are two options: "numeric”
and "integer64”. If "numeric” is selected, bigint integers will be treated as
double/numeric. If "integer64” is selected, bigint integers will be set to bit64
encoding.

Named list with DuckDB configuration flags, see https://duckdb.org/docs/
configuration/overview#configuration-reference for the possible op-
tions. These flags are only applied when the database object is instantiated.
Subsequent connections will silently ignore these flags.

should we auto-load extensions? TRUE by default, can be configured with
options(duckdbfs_autoload_extensions = FALSE)

When first called (by a user or internal function), this function both creates a duckdb connection
and places that connection into a cache (duckdbfs_conn option). On subsequent calls, this function
returns the cached connection, rather than recreating a fresh connection.

This frees the user from the responsibility of managing a connection object, because functions
needing access to the connection can use this to create or access the existing connection. At the
close of the global environment, this function’s finalizer should gracefully shutdown the connection
before removing the cache.

By default, this function creates an in-memory connection. When reading from on-disk or remote
files (parquet or csv), this option can still effectively support most operations on much-larger-than-
RAM data. However, some operations require additional working space, so by default we set a
temporary storage location in configuration as well.

Value

a duckdb: :duckdb () connection object

Examples

con <- cached_connection()
close_connection(con)

https://duckdb.org/docs/configuration/overview#configuration-reference
https://duckdb.org/docs/configuration/overview#configuration-reference

close_connection 5

close_connection close connection

Description

close connection

Usage

close_connection(conn = cached_connection())

Arguments
conn a duckdb connection (leave blank) Closes the invisible cached connection to
duckdb
Details

Shuts down connection before gc removes it. Then clear cached reference to avoid using a stale
connection This avoids complaint about connection being garbage collected.

Value

returns nothing.

Examples

close_connection()

duckdb_s3_config Configure S3 settings for database connection

Description

This function is used to configure S3 settings for a database connection. It allows you to set var-
ious S3-related parameters such as access key, secret access key, endpoint, region, session token,
uploader settings, URL compatibility mode, URL style, and SSL usage.

6 duckdb_s3_config

Usage

duckdb_s3_config(
conn = cached_connection(),
s3_access_key_id = NULL,
s3_secret_access_key = NULL,
s3_endpoint = NULL,
s3_region = NULL,
s3_session_token = NULL,
s3_uploader_max_filesize = NULL,
s3_uploader_max_parts_per_file = NULL,
s3_uploader_thread_limit = NULL,
s3_url_compatibility_mode = NULL,
s3_url_style = NULL,
s3_use_ssl = NULL,
anonymous = NULL

Arguments

conn A database connection object created using the cache_connection function
(default: cache_connection()).
s3_access_key_id
The S3 access key ID (default: NULL).
s3_secret_access_key
The S3 secret access key (default: NULL).
s3_endpoint The S3 endpoint (default: NULL).
s3_region The S3 region (default: NULL).
s3_session_token
The S3 session token (default: NULL).
s3_uploader_max_filesize
The maximum filesize for S3 uploader (between SOGB and STB, default 800GB).
s3_uploader_max_parts_per_file
The maximum number of parts per file for S3 uploader (between 1 and 10000,
default 10000).
s3_uploader_thread_limit
The thread limit for S3 uploader (default: 50).
s3_url_compatibility_mode
Disable Globs and Query Parameters on S3 URLSs (default: 0, allows globs/queries).
s3_url_style The style of S3 URLSs to use. Default is "vhost" unless s3_endpoint is set, which
makes default "path" (i.e. MINIO systems).

s3_use_ssl Enable or disable SSL for S3 connections (default: 1 (TRUE)).
anonymous request anonymous access (sets s3_access_key_id and s3_secret_access_key
to "", allowing anonymous access to public buckets).

Details

see https://duckdb.org/docs/sql/configuration.html

https://duckdb.org/docs/sql/configuration.html

duckdb_secrets

Value

Returns silently (NULL) if successful.

Examples

Configure S3 settings

duckdb_s3_config(
s3_access_key_id = "YOUR_ACCESS_KEY_ID",
s3_secret_access_key = "YOUR_SECRET_ACCESS_KEY",
s3_endpoint = "YOUR_S3_ENDPOINT",
s3_region = "YOUR_S3_REGION",
s3_uploader_max_filesize = "800GB",
s3_uploader_max_parts_per_file = 100,
s3_uploader_thread_limit = 8,
s3_url_compatibility_mode = FALSE,
s3_url_style = "vhost",
s3_use_ssl = TRUE,
anonymous = TRUE)

duckdb_secrets duckdb secrets

Description

Configure the duckdb secrets for remote access.

Usage
duckdb_secrets(
key = Sys.getenv("AWS_ACCESS_KEY_ID", ""),
secret = Sys.getenv("AWS_SECRET_ACCESS_KEY", ""),

endpoint = Sys.getenv("AWS_S3_ENDPOINT"”, "s3.amazonaws.com"),
region = Sys.getenv("AWS_REGION", "us-east-1"),

bucket = NULL,

url_style = NULL,

use_ssl = Sys.getenv("AWS_HTTPS"”, "TRUE"),
url_compatibility_mode = TRUE,

session_token = Sys.getenv("AWS_SESSION_TOKEN", ""),

type = "S3",
conn = cached_connection()
)
Arguments
key key
secret secret

endpoint endpoint address

8 load _h3

region AWS region (ignored by some other S3 providers)

bucket restricts the "SCOPE" of this key to only objects in this bucket-name. note that
the bucket name is currently insensitive to endpoint

url_style path or vhost, for S3

use_ssl Use SSL address (https instead of http), default TRUE

url_compatibility_mode
optional mode for increased compatibility with some endpoints

session_token AWS session token, used in some AWS authentication with short-lived tokens

type Key type, e.g. S3. See duckdb docs for details. references https://duckdb.
org/docs/configuration/secrets_manager.html
conn A connection to a database.
load_h3 load the duckdb geospatial data plugin
Description

load the duckdb geospatial data plugin

Usage

load_h3(conn = cached_connection())

Arguments
conn A database connection object created using the cache_connection function
(default: cache_connection()).
Value

loads the extension and returns status invisibly.

References

https://github.com/isaacbrodsky/h3-duckdb

Examples

library(dplyr)
load_h3()
ex <- system.file("extdata/spatial-test.csv"”, package="duckdbfs")

zoom <- 9L # Zoom must be explicit integer, L
query <- ex |>
open_dataset(format = "csv") |>

https://duckdb.org/docs/configuration/secrets_manager.html
https://duckdb.org/docs/configuration/secrets_manager.html
https://github.com/isaacbrodsky/h3-duckdb

load_spatial

mutate(h3id = h3_latlng_to_cell_string(latitude, longitude,

as data.frame
collect(query)

write to a file
path <- tempfile(fileext = ".h3j")
query |> to_h3j(path)

zoom))

load_spatial load the duckdb geospatial data plugin

Description

load the duckdb geospatial data plugin

Usage

load_spatial(
conn = cached_connection(),
nightly = getOption("duckdbfs_use_nightly", FALSE),
force = FALSE

Arguments

conn A database connection object created using the cache_connection function

(default: cache_connection()).

nightly should we use the nightly version or not? default FALSE, configurable as

duckdbfs_use_nightly option.

force force re-install?

Value

loads the extension and returns status invisibly.

References

https://duckdb.org/docs/extensions/spatial.html

https://duckdb.org/docs/extensions/spatial.html

10

open_dataset

open_dataset

Open a dataset from a variety of sources

Description

This function opens a dataset from a variety of sources, including Parquet, CSV, etc, using either
local file system paths, URLSs, or S3 bucket URI notation.

Usage

open_dataset(
sources,

schema = NULL,

hive_style

unify_schemas

TRUE,

= FALSE,

format = c("parquet”, "csv", "tsv", "sf"),
conn = cached_connection(),
tblname = tmp_tbl_name(),

mode = "VIEW",
filename = FALSE,
recursive = TRUE,
)
Arguments
sources A character vector of paths to the dataset files.
schema The schema for the dataset. If NULL, the schema will be inferred from the
dataset files.
hive_style A logical value indicating whether to the dataset uses Hive-style partitioning.

unify_schemas

format

conn
tblname

mode

A logical value indicating whether to unify the schemas of the dataset files
(union_by_name). If TRUE, will execute a UNION by column name across
all files (NOTE: this can add considerably to the initial execution time)

n

The format of the dataset files. One of "parquet”, "csv"”, "tsv", or "sf”
(spatial vector files supported by the sf package / GDAL). if no argument is
provided, the function will try to guess the type based on minimal heuristics.

A connection to a database.
The name of the table to create in the database.

The mode to create the table in. One of "VIEW"” or "TABLE". Creating a VIEW,
the default, will execute more quickly because it does not create a local copy
of the dataset. TABLE will create a local copy in duckdb’s native format, down-
loading the full dataset if necessary. When using TABLE mode with large data,
please be sure to use a conn connections with disk-based storage, e.g. by calling
cached_connection(), e.g. cached_connection("storage_path"), other-
wise the full data must fit into RAM. Using TABLE assumes familiarity with R’s
DBI-based interface.

spatial_join 11

filename A logical value indicating whether to include the filename in the table name.

recursive should we assume recursive path? default TRUE. Set to FALSE if trying to open
a single, un-partitioned file.

optional additional arguments passed to duckdb_s3_config(). Note these ap-
ply after those set by the URI notation and thus may be used to override or
provide settings not supported in that format.

Value

A lazy dplyr::tbl object representing the opened dataset backed by a duckdb SQL connec-
tion. Most dplyr (and some tidyr) verbs can be used directly on this object, as they can be
translated into SQL commands automatically via dbplyr. Generic R commands require using
dplyr::collect() on the table, which forces evaluation and reading the resulting data into mem-
ory.

Examples

A remote, hive-partitioned Parquet dataset

base <- paste@("https://github.com/duckdb/duckdb/raw/main/",
"data/parquet-testing/hive-partitioning/union_by_name/")

f1 <- paste@(base, "x=1/f1.parquet”)

f2 <- paste@(base, "x=1/f2.parquet”)

f3 <- paste@(base, "x=2/f2.parquet”)

open_dataset(c(f1,f2,f3), unify_schemas = TRUE)

Access an S3 database specifying an independently-hosted (MINIO) endpoint
efi <- open_dataset("s3://neon4cast-scores/parquet/aquatics”,

s3_access_key_id="",
s3_endpoint="data.ecoforecast.org")

spatial_join spatial_join

Description

spatial_join

Usage

spatial_join(
X,
Y,
by = c("st_intersects”, "st_within”, "st_dwithin”, "st_touches”, "st_contains”,
"st_containsproperly”, "st_covers”, "st_overlaps", "st_crosses”, "st_equals”,
"st_disjoint"),

nn

args = "",

12

spatial_join

join = "left”,
tblname = tmp_tbl_name(),
conn = cached_connection()

Arguments

X

y

by
args
join
tblname

conn

Details

a duckdb table with a spatial geometry column called "geom"

a duckdb table with a spatial geometry column called "geom"

A spatial join function, see details.

additional arguments to join function (e.g. distance for st_dwithin)
JOIN type (left, right, inner, full)

name for the temporary view

the duckdb connection (imputed by duckdbfs by default, must be shared across
both tables)

Possible spatial joins include:

Function
st_intersects
st_disjoint
st_within
st_dwithin
st_touches
st_contains
st_containsproperly
st_covers
st_overlaps
st_equals
st_crosses

Description

Geometry A intersects with geometry B

The complement of intersects

Geometry A is within geometry B (complement of contains)

Geometries are within a specified distance, expressed in the same units as the coordinate reference syste
Two polygons touch if the that have at least one point in common, even if their interiors do not touch.
Geometry A entirely contains to geometry B. (complement of within)

stricter version of st_contains (boundary counts as external)

geometry B is inside or on boundary of A. (A polygon covers a point on its boundary but does not contz
geometry A intersects but does not completely contain geometry B

geometry A is equal to geometry B

Lines or points in geometry A cross geometry B.

All though SQL is not case sensitive, this function expects only lower case names for "by" functions.

Value

a (lazy) view of the resulting table. Users can continue to operate on using dplyr operations and call
to_st() to collect this as an sf object.

Examples

note we can read in remote data in a variety of vector formats:

countries <-

paste@("/vsicurl/",
"https://github.com/cboettig/duckdbfs/",

https://postgis.net/workshops/postgis-intro/spatial_relationships.html

st read_meta 13

"raw/spatial-read/inst/extdata/world.gpkg") |>
open_dataset(format = "sf")

cities <-
paste@("/vsicurl/https://github.com/cboettig/duckdbfs/raw/",

"spatial-read/inst/extdata/metro.fgb") |>
open_dataset(format = "sf")

countries |>
dplyr::filter(iso_a3 == "AUS") |>
spatial_join(cities)

st_read_meta read spatial metadata

Description

At this time, reads a subset of spatial metadata. This is similar to what is reported by ogrinfo

-json
Usage
st_read_meta(
path,
layer = 1L,

tblname = tbl_name(path),
conn = cached_connection(),

)
Arguments
path URL or path to spatial data file
layer layer number to read metadata for, defaults to first layer.
tblname metadata will be stored as a view with this name, by default this is based on the
name of the file.
conn A connection to a database.
optional additional arguments passed to duckdb_s3_config(). Note these ap-
ply after those set by the URI notation and thus may be used to override or
provide settings not supported in that format.
Value

A lazy dplyr: : tbl object containing core spatial metadata such as projection information.

14 to_json

Examples

st_read_meta("https://github.com/duckdb/duckdb_spatial/raw/main/test/data/amsterdam_roads.fgb")

to_h3j Write H3 hexagon data out as an h3j-compliant JSON file NOTE: the
column containing H3 hashes must be named hexid

Description
Write H3 hexagon data out as an h3j-compliant JSON file NOTE: the column containing H3 hashes
must be named hexid

Usage

to_h3j(dataset, path, conn = cached_connection())

Arguments
dataset a remote tbl object from open_dataset, or an in-memory data.frame.
path a local file path or S3 path with write credentials
conn duckdbfs database connection

Examples

example code

to_json to_json write data out as a JSON object

Description

to_json write data out as a JSON object

Usage
to_json(
dataset,
path,
conn = cached_connection(),
array = TRUE,

options = NULL

to_sf 15

Arguments
dataset a remote tbl object from open_dataset, or an in-memory data.frame.
path a local file path or S3 path with write credentials
conn duckdbfs database connection
array generate a JSON array?
options additional options as a char string, see
to_sf Convert output to sf object
Description

Convert output to sf object

Usage

to_sf(x, crs = NA, conn = cached_connection())

Arguments
X a remote duckdb tbl (from open_dataset) or dplyr-pipeline thereof.
crs The coordinate reference system, any format understood by sf: :st_crs.
conn the connection object from the tbl. Takes a duckdb table (from open_dataset)
or a dataset or dplyr pipline and returns an sf object. Important: the table must
have a geometry column, which you will almost always have to create first.
Note: to_sf () triggers collection into R. This function is suitable to use at the
end of a dplyr pipeline that will subset the data. Using this function on a large
dataset without filtering first may exceed available memory.
Value

an sf class object (in memory).

Examples

library(dplyr)
csv_file <- system.file("extdata/spatial-test.csv”, package="duckdbfs")

Note that we almost always must first create a ~geometry™ column, e.g.
from lat/long columns using the “st_point™ method.
sf <-

open_dataset(csv_file, format = "csv") |>

mutate(geom = ST_Point(longitude, latitude)) |>

to_sf()

16 write_dataset

We can use the full space of spatial operations, including spatial
and normal dplyr filters. All operations are translated into a
spatial SQL query by “to_sf":
open_dataset(csv_file, format = "csv") |>
mutate(geom = ST_Point(longitude, latitude)) |>
mutate(dist = ST_Distance(geom, ST_Point(0,0))) |>
filter(site %in% c("a", "b", "e")) |>
to_sf()

write_dataset write_dataset

Description

write_dataset

Usage
write_dataset(
dataset,
path,
conn = cached_connection(),
format = c("parquet”, "csv"),

partitioning = dplyr::group_vars(dataset),
overwrite = TRUE,

)
Arguments
dataset a remote tbl object from open_dataset, or an in-memory data.frame.
path a local file path or S3 path with write credentials
conn duckdbfs database connection
format export format

partitioning names of columns to use as partition variables
overwrite allow overwriting of existing files?

additional arguments to duckdb_s3_config()

Value

Returns the path, invisibly.

write_geo 17

Examples

write_dataset(mtcars, tempfile())

write_dataset(mtcars, tempdir())

write_geo Write H3 hexagon data out as an h3j-compliant JSON file NOTE: the
column containing H3 hashes must be named hexid

Description
Write H3 hexagon data out as an h3j-compliant JSON file NOTE: the column containing H3 hashes
must be named hexid

Usage

write_geo(dataset, path, conn = cached_connection())

Arguments
dataset a remote tbl object from open_dataset, or an in-memory data.frame.
path a local file path or S3 path with write credentials
conn duckdbfs database connection

Examples

example code

Index

as_dataset, 2
as_view, 3

cached_connection, 3
cached_connection(), 10
close_connection, 5

dplyr::collect(), 11

duckdb: :duckdb (), 4
duckdb_s3_config, 5
duckdb_s3_config(), 11, 13, 16
duckdb_secrets, 7

load_h3, 8
load_spatial, 9

open_dataset, 10

spatial_join, 11
st_read_meta, 13

to_h3j, 14
to_json, 14
to_sf, 15

write_dataset, 16
write_geo, 17

18

	as_dataset
	as_view
	cached_connection
	close_connection
	duckdb_s3_config
	duckdb_secrets
	load_h3
	load_spatial
	open_dataset
	spatial_join
	st_read_meta
	to_h3j
	to_json
	to_sf
	write_dataset
	write_geo
	Index

