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dtwclust-package Time series clustering along with optimizations for the Dynamic Time

Warping distance

Description

Time series clustering with a wide variety of strategies and a series of optimizations specific to the
Dynamic Time Warping (DTW) distance and its corresponding lower bounds (LBs).

Details

Many of the algorithms implemented in this package are specifically tailored to DTW, hence its
name. However, the main clustering function is flexible so that one can test many different clustering
approaches, using either the time series directly, or by applying suitable transformations and then
clustering in the resulting space. Other implementations included in the package provide some
alternatives to DTW.

DTW is a dynamic programming algorithm that tries to find the optimum warping path between
two series. Over the years, several variations have appeared in order to make the procedure faster
or more efficient. Please refer to the included references for more information, especially Giorgino
(2009), which is a good practical introduction.

Most optimizations require equal dimensionality, which means time series should have equal length.
DTW itself does not require this, but it is relatively expensive to compute. Other distance definitions
may be used, or series could be reinterpolated to a matching length (Ratanamahatana and Keogh
2004).

The main clustering function and entry point for this package is tsclust(), with a convenience
wrapper for multiple tests in compare_clusterings(), and a shiny app in interactive_clustering().
There is another less-general-purpose shiny app in ssdtwclust().
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Please note the random number generator is set to L’Ecuyer-CMRG when dtwclust is attached
in an attempt to preserve reproducibility. You are free to change this afterwards if you wish (see
base: :RNGkind()), but dtwclust will always use L’Ecuyer-CMRG internally.

For more information, please read the included package vignettes, which can be accessed by typing
browseVignettes("dtwclust").
Note

This software package was developed independently of any organization or institution that is or has
been associated with the author.

This package can be used without attaching it with base: : 1ibrary() with some caveats:

* The methods package must be attached. R usually does this automatically, bututils: :Rscript()
only does so in R versions 3.5.0 and above.

* If you want to use the proxy version of dtw: :dtw() (e.g. for clustering), you have to attach
the dtw package manually.

Be careful with reproducibility, R’s random number generator is only changed session-wide if
dtwclust is attached.

Author(s)

Alexis Sarda-Espinosa

References

Please refer to the package’s vignette’s references.

See Also

tsclust(), compare_clusterings(), interactive_clustering(), ssdtwclust(), dtw_basic(),
proxy: :dist().

as.matrix as.matrix

Description
proxy exported a non-generic as.matrix function. This is to re-export the base version and add
coercion methods for pairdist and crossdist.

Usage

as.matrix(x, ...)

Arguments

Xy ou See base::as.matrix().
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See Also

base::as.matrix()

compare_clusterings Compare different clustering configurations

Description

Compare many different clustering algorithms with support for parallelization.

Usage

compare_clusterings(

series = NULL,

types = c("p”, "h", "f", "t"),

configs = compare_clusterings_configs(types),
seed = NULL,

trace = FALSE,

score.clus = function(...) stop("No scoring"),
pick.clus = function(...) stop("No picking"),
shuffle.configs = FALSE,

return.objects = FALSE,

packages = character(QL),

.errorhandling = "stop”
)
Arguments

series A list of series, a numeric matrix or a data frame. Matrices and data frames are
coerced to a list row-wise (see tslist()).

types Clustering types. It must be any combination of (possibly abbreviated): "parti-
tional", "hierarchical", "fuzzy", "tadpole."

configs The list of data frames with the desired configurations to run. See pdc_configs()
and compare_clusterings_configs().

seed Seed for random reproducibility.

trace Logical indicating that more output should be printed to screen.
Further arguments for tsclust(), score.clus or pick.clus.

score.clus A function that gets the list of results (and ...) and scores each one. It may
also be a named list of functions, one for each type of clustering. See Scoring
section.

pick.clus A function to pick the best result. See Picking section.

shuffle.configs

Randomly shuffie the order of configs, which can be useful to balance load when
using parallel computation.
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return.objects Logical indicating whether the objects returned by tsclust() should be given
in the result.

packages A character vector with the names of any packages needed for any functions
used (distance, centroid, preprocessing, etc.). The name "dtwclust" is added
automatically. Relevant for parallel computation.

.errorhandling This will be passed to foreach: : foreach(). See Parallel section below.

Details

This function calls tsclust() with different configurations and evaluates the results with the pro-
vided functions. Parallel support is included. See the examples.

Parameters specified in configs whose values are NA will be ignored automatically.

The scoring and picking functions are for convenience, if they are not specified, the scores and
pick elements of the result will be NULL.

See repeat_clustering() for when return.objects = FALSE.

Value

A list with:
* results: Alist of data frames with the flattened configs and the corresponding scores returned
by score.clus.
 scores: The scores given by score.clus.
* pick: The object returned by pick.clus.
* proc_time: The measured execution time, using base: :proc.time().

* seeds: A list of lists with the random seeds computed for each configuration.

The cluster objects are also returned if return.objects = TRUE.

Parallel computation

The configurations for each clustering type can be evaluated in parallel (multi-processing) with the
foreach package. A parallel backend can be registered, e.g., with doParallel.

If the . errorhandling parameter is changed to "pass" and a custom score. clus function is used,
said function should be able to deal with possible error objects.

If it is changed to "remove", it might not be possible to attach the scores to the results data frame,
or it may be inconsistent. Additionally, if return.objects is TRUE, the names given to the objects
might also be inconsistent.

Parallelization can incur a lot of deep copies of data when returning the cluster objects, since each
one will contain a copy of datalist. If you want to avoid this, consider specifying score.clus
and setting return.objects to FALSE, and then using repeat_clustering().
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Scoring

The clustering results are organized in a list of lists in the following way (where only applicable
types exist; first-level list names in bold):
* partitional - list with
— Clustering results from first partitional config
- eftc.
* hierarchical - list with
— Clustering results from first hierarchical config
— etc.
e fuzzy - list with
— Clustering results from first fuzzy config
— etc.
« tadpole - list with
— Clustering results from first tadpole config
— etc.

If score.clus is a function, it will be applied to the available partitional, hierarchical, fuzzy and/or
tadpole results via:

scores <- lapply(list_of_lists, score.clus, ...)

Otherwise, score.clus should be a list of functions with the same names as the list above, so
that score.clus$partitional is used to score list_of_lists$partitional and so on (via
base: :Map()).

Therefore, the scores returned shall always be a list of lists with first-level names as above.

Picking

If return.objects is TRUE, the results’ data frames and the list of TSClusters objects are given
to pick.clus as first and second arguments respectively, followed by . . .. Otherwise, pick.clus
will receive only the data frames and the contents of . .. (since the objects will not be returned by
the preceding step).

Limitations

Note that the configurations returned by the helper functions assign special names to preprocess-
ing/distance/centroid arguments, and these names are used internally to recognize them.

If some of these arguments are more complex (e.g. matrices) and should not be expanded, consider
passing them directly via the ellipsis (. . .) instead of using pdc_configs(). This assumes that said
arguments can be passed to all functions without affecting their results.

The distance matrices (if calculated) are not re-used across configurations. Given the way the
configurations are created, this shouldn’t matter, because clusterings with arguments that can use
the same distance matrix are already grouped together by compare_clusterings_configs() and
pdc_configs().



Author(s)

Alexis Sarda-Espinosa

See Also

compare_clusterings_configs(), tsclust()

Examples

# Fuzzy preprocessing: calculate autocorrelation up to 50th lag
acf_fun <- function(series, ...) {
lapply(series, function(x) {
as.numeric(acf(x, lag.max = 50, plot = FALSE)$acf)
D
3

# Define overall configuration
cfgs <- compare_clusterings_configs(
types = c("p", "h", "f", "t"),
k = 19L:20L,
controls = list(
partitional = partitional_control(
iter.max = 30L,
nrep = 1L
),
hierarchical = hierarchical_control(
method = "all”
),
fuzzy = fuzzy_control(
# notice the vector
fuzziness = c(2, 2.5),
iter.max = 30L
),
tadpole = tadpole_control(
# notice the vectors
dc = c(1.5, 2),
window.size = 19L:20L

),
preprocs = pdc_configs(
type = "preproc”,
# shared
none = list(),
zscore = list(center = c(FALSE)),
# only for fuzzy
fuzzy = list(
acf_fun = list()

)Y
# only for tadpole
tadpole = list(
reinterpolate = list(new.length = 205L)
)7

compare_clusterings
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# specify which should consider the shared ones
share.config = c("p”, "h")

),
distances = pdc_configs(

type = "distance”,

sbd = list(),

fuzzy = list(

L2 = list()

),

share.config = c("p", "h")
),

centroids = pdc_configs(
type = "centroid”,
partitional = list(
pam = list()
),
# special name 'default'
hierarchical = list(
default = list()
),
fuzzy = list(
femdd = 1ist()
),
tadpole = list(
default = list(),
shape_extraction = list(znorm = TRUE)

)

# Number of configurations is returned as attribute

num_configs <- sapply(cfgs, attr, which = "num.configs")

cat(”"\nTotal number of configurations without considering optimizations:",
sum(num_configs),
"\n\n")

# Define evaluation functions based on CVI: Variation of Information (only crisp partition)
vi_evaluators <- cvi_evaluators("VI", ground.truth = CharTrajLabels)

score_fun <- vi_evaluators$score

pick_fun <- vi_evaluators$pick

#
# Short run with only fuzzy clustering
#

comparison_short <- compare_clusterings(CharTraj, types = c("f"), configs = cfgs,
seed = 293L, trace = TRUE,
score.clus = score_fun, pick.clus = pick_fun,
return.objects = TRUE)

## Not run:
#
# Parallel run with all comparisons
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#

require(doParallel)
registerDoParallel(cl <- makeCluster(detectCores()))
comparison_long <- compare_clusterings(CharTraj, types = c("p”, "h", "f", "t"),
configs = cfgs,
seed = 293L, trace = TRUE,
score.clus = score_fun,
pick.clus = pick_fun,
return.objects = TRUE)

# Using all external CVIs and majority vote
external_evaluators <- cvi_evaluators(”external”, ground.truth = CharTrajLabels)
score_external <- external_evaluators$score
pick_majority <- external_evaluators$pick
comparison_majority <- compare_clusterings(CharTraj, types = c("p”, "h", "f", "t"),
configs = cfgs,
seed = 84L, trace = TRUE,
score.clus = score_external,
pick.clus = pick_majority,
return.objects = TRUE)

# best results
plot(comparison_majority$pick$object)

print(comparison_majority$pick$config)

stopCluster(cl); registerDoSEQ()

#

# A run with only partitional clusterings

#

p_cfgs <- compare_clusterings_configs(
types = "p", k = 19L:21L,
controls = list(
partitional = partitional_control(
iter.max = 20L,

nrep = 8L
)
),
preprocs = pdc_configs(
"preproc”,
none = list(),
zscore = list(center = c(FALSE, TRUE))
),
distances = pdc_configs(
"distance”,
sbd = list(),

dtw_basic = list(window.size = 19L:20L,
norm = c("L1", "L2")),
gak = list(window.size = 19L:20L,
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sigma = 100)
),
centroids = pdc_configs(
"centroid”,
partitional = list(
pam = list(),
shape = list()

# Remove redundant (shape centroid always uses zscore preprocessing)

id_redundant <- p_cfgs$partitional$preproc == "none" &
p_cfgs$partitional$centroid == "shape”

p_cfgs$partitional <- p_cfgs$partitionall[!id_redundant, ]

# LONG! 30 minutes or so, sequentially

comparison_partitional <- compare_clusterings(CharTraj, types = "p",
configs = p_cfgs,
seed = 32903L, trace = TRUE,
score.clus = score_fun,
pick.clus = pick_fun,
shuffle.configs = TRUE,
return.objects = TRUE)

## End(Not run)

compare_clusterings_configs
Create clustering configurations.

Description

Create configurations for compare_clusterings()

Usage

compare_clusterings_configs(
types = c("p”, "h", "f"),
k = 2L,
controls = NULL,
preprocs = pdc_configs("preproc”, none = list()),
distances = pdc_configs("distance”, dtw_basic = list()),
centroids = pdc_configs(”centroid”, default = list()),
no.expand = character(QL)
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Arguments
types Clustering types. It must be any combination of (possibly abbreviated): parti-
tional, hierarchical, fuzzy, tadpole.
k A numeric vector with one or more elements specifying the number of clusters
to test.
controls A named list of tsclust-controls. NULL means defaults. See details.
preprocs Preprocessing configurations. See details.
distances Distance configurations. See details.
centroids Centroid configurations. See details.
no.expand A character vector indicating parameters that should not be expanded between
pdc_configs() configurations. See examples.
Details

Preprocessing, distance and centroid configurations are specified with the helper function pdc_configs(),
refer to the examples in compare_clusterings() to see how this is used.

The controls list may be specified with the usual tsclust-controls functions. The names of the list
must correspond to "partitional”, "hierarchical", "fuzzy" or "tadpole" clustering. Again, please refer
to the examples in compare_clusterings().

Value

A list for each clustering type, each of which includes a data frame with the computed and merged
configurations. Each data frame has an extra attribute num. configs specifying the number of con-
figurations.

Examples

# compare this with leaving no.expand empty
compare_clusterings_configs(
distances = pdc_configs("d"”, dtw_basic = list(window.size = 1L:2L, norm = c("L1", "L2"))),
centroids = pdc_configs("c”, dba = list(window.size = 1L:2L, norm = c("L1", "L2"))),

no.expand = c("window.size", "norm")
)
compute_envelope Time series warping envelopes
Description

This function computes the envelopes for DTW lower bound calculations with a Sakoe-Chiba band
for a given univariate time series using the streaming algorithm proposed by Lemire (2009).
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Usage

compute_envelope(x, window.size, error.check = TRUE)

Arguments
X A univariate time series.
window.size Window size for envelope calculation. See details.
error.check Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.
Details

The windowing constraint uses a centered window. The calculations expect a value in window. size
that represents the distance between the point considered and one of the edges of the window.
Therefore, if, for example, window.size = 10, the warping for an observation x; considers the
points between x; 1o and z; 110, resulting in 10(2) + 1 = 21 observations falling within the window.

Value

A list with two elements (lower and upper envelopes respectively): lower and upper.

Note

This envelope is calculated assuming a Sakoe-Chiba constraint for DTW.

References

Lemire D (2009). “Faster retrieval with a two-pass dynamic-time-warping lower bound .” Pattern
Recognition, 42(9), pp. 2169 - 2180. ISSN 0031-3203, doi:10.1016/j.patcog.2008.11.030, https:
//www.sciencedirect.com/science/article/pii/S0031320308004925.

Examples
data(uciCT)
H <- compute_envelope(CharTraj[[1L]], 18L)

matplot(do.call(cbind, H), type = "1", col = 2:3)
lines(CharTraj[[1L]])


https://doi.org/10.1016/j.patcog.2008.11.030
https://www.sciencedirect.com/science/article/pii/S0031320308004925
https://www.sciencedirect.com/science/article/pii/S0031320308004925
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cvi

Cluster validity indices

Description

Compute different cluster validity indices (CVIs) of a given cluster partition, using the clustering
distance measure and centroid function if applicable.

Usage
cvi(a, b = NULL,

## S4 method for
cvi(a, b = NULL,

## S4 method for
cvi(a, b = NULL,

## S4 method for
cvi(a, b = NULL,

## S4 method for

type = "valid”, ..., log.base = 10)

signature 'matrix’
type = "valid”, ..., log.base = 10)

signature 'PartitionalTSClusters'
type = "valid”, ..., log.base = 10)

signature 'HierarchicalTSClusters'
type = "valid”, ..., log.base = 10)

signature 'FuzzyTSClusters'

cvi(a, b = NULL, type = "valid”, ..., log.base = 10)
Arguments
a An object returned by tsclust(), for crisp partitions a vector that can be co-
erced to integers which indicate the cluster memberships, or the membership
matrix for soft clustering.
b If needed, a vector that can be coerced to integers which indicate the cluster
memberships. The ground truth (if known) should be provided here.
type Character vector indicating which indices are to be computed. See supported
values below.
Arguments to pass to and from other methods.
log.base Base of the logarithm to be used in the calculation of VI (see details).
Details

Clustering is commonly considered to be an unsupervised procedure, so evaluating its performance
can be rather subjective. However, a great amount of effort has been invested in trying to standardize

cluster evaluation metrics by using cluster validity indices (CVIs).

In general, CVIs can be either tailored to crisp or fuzzy partitions. CVIs can be classified as internal,
external or relative depending on how they are computed. Focusing on the first two, the crucial
difference is that internal CVIs only consider the partitioned data and try to define a measure of
cluster purity, whereas external CVIs compare the obtained partition to the correct one. Thus,
external CVIs can only be used if the ground truth is known.
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Note that even though a fuzzy partition can be changed into a crisp one, making it compatible with
many of the existing crisp CVIs, there are also fuzzy CVIs tailored specifically to fuzzy clustering,
and these may be more suitable in those situations. Fuzzy partitions usually have no ground truth
associated with them, but there are exceptions depending on the task’s goal.

Each index defines their range of values and whether they are to be minimized or maximized. In
many cases, these CVIs can be used to evaluate the result of a clustering algorithm regardless of
how the clustering works internally, or how the partition came to be.

Knowing which CVI will work best cannot be determined a priori, so they should be tested for each
specific application. Usually, many CVIs are utilized and compared to each other, maybe using a
majority vote to decide on a final result. Furthermore, it should be noted that many CVIs perform
additional distance calculations when being computed, which can be very considerable if using
DTW or GAK.

Value

The chosen CVIs.

External CVIs

* Crisp partitions (the first 4 are calculated via flexclust::comPart())

— "RI": Rand Index (to be maximized).
— "ARI": Adjusted Rand Index (to be maximized).
— "J": Jaccard Index (to be maximized).
— "FM": Fowlkes-Mallows (to be maximized).
— "VI": Variation of Information (Meila (2003); to be minimized).
* Fuzzy partitions (based on Lei et al. (2017))
— "RI": Soft Rand Index (to be maximized).
— "ARI": Soft Adjusted Rand Index (to be maximized).
— "VI": Soft Variation of Information (to be minimized).
— "NMIM": Soft Normalized Mutual Information based on Max entropy (to be maximized).

Internal CVIs

The indices marked with an exclamation mark (!) calculate (or re-use if already available) the whole
distance matrix between the series in the data. If you were trying to avoid this in the first place, then
these CVIs might not be suitable for your application.

The indices marked with a question mark (?) depend on the extracted centroids, so bear that in mind
if a hierarchical procedure was used and/or the centroid function has associated randomness (such
as shape_extraction() with series of different length).

The indices marked with a tilde (~) require the calculation of a global centroid. Since DBA() and
shape_extraction() (for series of different length) have some randomness associated, these in-
dices might not be appropriate for those centroids.

* Crisp partitions
— "Sil” (!): Silhouette index (Rousseeuw (1987); to be maximized).
— "D" (1): Dunn index (Arbelaitz et al. (2013); to be maximized).
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— "COP" (!): COP index (Arbelaitz et al. (2013); to be minimized).

— "DB" (?): Davies-Bouldin index (Arbelaitz et al. (2013); to be minimized).

— "DBstar” (?): Modified Davies-Bouldin index (DB*) (Kim and Ramakrishna (2005); to
be minimized).

— "CH" (~): Calinski-Harabasz index (Arbelaitz et al. (2013); to be maximized).

— "SF" (~): Score Function (Saitta et al. (2007); to be maximized; see notes).

* Fuzzy partitions (using the nomenclature from Wang and Zhang (2007))

— "MPC": to be maximized.

— "K" (~): to be minimized.

— "T": to be minimized.

— "SC" (~): to be maximized.

— "PBMF" (~): to be maximized (see notes).

Additionally

e "valid": Returns all valid indices depending on the type of a and whether b was provided or
not.

e "internal”: Returns all internal CVIs. Only supported for TSClusters objects.

* "external”: Returns all external CVIs. Requires b to be provided.

Note

In the original definition of many internal and fuzzy CVIs, the Euclidean distance and a mean cen-
troid was used. The implementations here change this, making use of whatever distance/centroid
was chosen during clustering. However, some of the CVIs assume that the distances are symmet-
ric, since cross-distance matrices are calculated and only the upper/lower triangulars are considered.
A warning will be given if the matrices are not symmetric and the CVI assumes so.

Because of the above, calculating CVIs for clusterings made with TADPole() is a special case.
Since TADPole uses 3 distances during its execution (DTW, LB_Keogh and Euclidean), it is not
obvious which one should be used for the calculation of CVIs. Nevertheless, dtw_basic() is used
by default.

The formula for the SF index in Saitta et al. (2007) does not correspond to the one in Arbelaitz et
al. (2013). The one specified in the former is used here.

The formulas for the Silhouette index are not entirely correct in Arbelaitz et al. (2013), refer to
Rousseeuw (1987) for the correct ones.

The formulas for the PBMF index are not entirely unambiguous in the literature, the ones given in
Lin (2013) are used here.

References

Arbelaitz, O., Gurrutxaga, 1., Muguerza, J., Perez, J. M., & Perona, 1. (2013). An extensive com-
parative study of cluster validity indices. Pattern Recognition, 46(1), 243-256.

Kim, M., & Ramakrishna, R. S. (2005). New indices for cluster validity assessment. Pattern Recog-
nition Letters, 26(15), 2353-2363.
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Lei, Y., Bezdek, J. C., Chan, J., Vinh, N. X., Romano, S., & Bailey, J. (2017). Extending information-
theoretic validity indices for fuzzy clustering. IEEE Transactions on Fuzzy Systems, 25(4), 1013-
1018.

Lin, H. Y. (2013). Effective Feature Selection for Multi-class Classification Models. In Proceedings
of the World Congress on Engineering (Vol. 3).

Meila, M. (2003). Comparing clusterings by the variation of information. In Learning theory and
kernel machines (pp. 173-187). Springer Berlin Heidelberg.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of computational and applied mathematics, 20, 53-65.

Saitta, S., Raphael, B., & Smith, I. F. (2007). A bounded index for cluster validity. In International
Workshop on Machine Learning and Data Mining in Pattern Recognition (pp. 174-187). Springer
Berlin Heidelberg.

Wang, W., & Zhang, Y. (2007). On fuzzy cluster validity indices. Fuzzy sets and systems, 158(19),
2095-2117.

Examples

cvi(CharTrajLabels, sample(CharTrajLabels), type = c("ARI", "VI"))

cvi_evaluators Cluster comparison based on CVlIs

Description

Create evaluation functions for compare_clusterings().

Usage

cvi_evaluators(type = "valid”, fuzzy = FALSE, ground.truth = NULL)

Arguments
type A character vector with options supported by cvi().
fuzzy Logical indicating whether to use fuzzy CVIs or not.

ground.truth A vector that can be coerced to integers used for the calculation of external CVIs
(passed as b to cvi()).

Details

Think of this as a factory for compare_clusterings() that creates functions that can be passed as
its score.clus and pick.clus arguments. It is somewhat limited in scope because it depends on
the cluster validity indices available in cvi () for scoring and performs majority voting for picking.
They always assume that no errors occurred.
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The scoring function takes the CVIs that are to be minimized and "inverts" them by taking their
reciprocal so that maximization can be considered uniformly for the purpose of majority voting. Its
ellipsis (. . .) is passed to cvi().

The picking function returns the best configuration if return.objects is FALSE, or a list with the
chosen TSClusters object and the corresponding configuration otherwise.

Refer to the examples in compare_clusterings().

Value

A list with two functions: score and pick.

Note

To avoid ambiguity, if this function is used, configurations for both fuzzy and crisp clusterings
should not be provided in the same call to compare_clusterings(). In such cases the scoring
function may fail entirely, e.g. if it was created with type = "valid".

DBA DTW Barycenter Averaging

Description

A global averaging method for time series under DTW (Petitjean, Ketterlin and Gancarski 2011).

Usage

DBA(
X,
centroid = NULL,

L

window.size = NULL,

norm = "L1",
max.iter = 20L,
delta = 0.001,

error.check = TRUE,
trace = FALSE,
mv.ver = "by-variable”

)

dba(
X,
centroid = NULL,
window.size = NULL,
norm = "L1",
max.iter = 20L,
delta = 0.001,
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error.check = TRUE,

mv.ver = "by-variable”

A matrix or data frame where each row is a time series, or a list where each
element is a time series. Multivariate series should be provided as a list of
matrices where time spans the rows and the variables span the columns of each
matrix.

DBA
trace = FALSE,
)
Arguments
X
centroid

window.size

norm

max.iter

delta

error.check

trace

mv.ver

Details

Optionally, a time series to use as reference. Defaults to a random series of X if
NULL. For multivariate series, this should be a matrix with the same characteris-
tics as the matrices in X.

Further arguments for dtw_basic(). However, the following are already pre-
specified: window. size, norm (passed along), and backtrack.

Window constraint for the DTW calculations. NULL means no constraint. A
slanted band is used.

Norm for the local cost matrix of DTW. Either "L1" for Manhattan distance or
"L2" for Euclidean distance.

Maximum number of iterations allowed.

At iteration i, if all(abs(centroid_{i} - centroid_{i-1}) < delta), con-
vergence is assumed.

Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.

If TRUE, the current iteration is printed to output.

Multivariate version to use. See below.

This function tries to find the optimum average series between a group of time series in DTW space.
Refer to the cited article for specific details on the algorithm.

If a given series reference is provided in centroid, the algorithm should always converge to the
same result provided the elements of X keep the same values, although their order may change.

The windowing constraint uses a centered window. The calculations expect a value in window. size
that represents the distance between the point considered and one of the edges of the window.
Therefore, if, for example, window.size = 10, the warping for an observation x; considers the
points between x;_19 and x;1¢, resulting in 10(2) + 1 = 21 observations falling within the window.

Value

The average time series.
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Parallel Computing

Please note that running tasks in parallel does not guarantee faster computations. The overhead
introduced is sometimes too large, and it’s better to run tasks sequentially.

This function uses the RcppParallel package for parallelization. It uses all available threads by
default (see RcppParallel::defaultNumThreads()), but this can be changed by the user with
RcppParallel: :setThreadOptions().

An exception to the above is when it is called within a foreach parallel loop made by dtwclust. If
the parallel workers do not have the number of threads explicitly specified, this function will default
to 1 thread per worker. See the parallelization vignette for more information - browseVignettes("dtwclust”)

This function appears to be very sensitive to numerical inaccuracies if multi-threading is used in a
32 bit installation. In such systems, consider limiting calculations to 1 thread.

Multivariate series
There are currently 2 versions of DBA implemented for multivariate series (see examples):

e If mv.ver = "by-variable”, then each variable of each series in X and centroid are ex-
tracted, and the univariate version of the algorithm is applied to each set of variables, binding
the results by column. Therefore, the DTW backtracking is different for each variable.

e If mv.ver = "by-series”, then all variables are considered at the same time, so the DTW
backtracking is computed based on each multivariate series as a whole. This version was
implemented in version 4.0.0 of dtwclust, and it is faster, but not necessarily more correct.

Note

The indices of the DTW alignment are obtained by calling dtw_basic() with backtrack = TRUE.

References

Petitjean F, Ketterlin A and Gancarski P (2011). “A global averaging method for dynamic time
warping, with applications to clustering.” Pattern Recognition, 44(3), pp. 678 - 693. ISSN 0031-
3203, doi:10.1016/j.patcog.2010.09.013, https://www.sciencedirect.com/science/article/
pii/S003132031000453X.

Examples

# Sample data
data(uciCT)

# Obtain an average for the first 5 time series
dtw_avg <- DBA(CharTraj[1:5], CharTraj[[1]], trace = TRUE)

# Plot
matplot(do.call(cbind, CharTraj[1:5]), type = "1")
points(dtw_avg)

# Change the provided order
dtw_avg2 <- DBA(CharTraj[5:1], CharTraj[[1]], trace = TRUE)


https://doi.org/10.1016/j.patcog.2010.09.013
https://www.sciencedirect.com/science/article/pii/S003132031000453X
https://www.sciencedirect.com/science/article/pii/S003132031000453X
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# Same result?
all.equal(dtw_avg, dtw_avg2)

## Not run:
#
# Multivariate versions
#

# sample centroid reference
cent <- CharTrajMV[[3L]]

# sample series

x <= CharTrajMV[[1L]]

# sample set of series

X <- CharTrajMV[1L:5L]

# the by-series version does something like this for each series and the centroid
alignment <- dtw_basic(x, cent, backtrack = TRUE)
# alignment$index1 and alginment$index2 indicate how to map x to cent (row-wise)

# the by-variable version treats each variable separately

alignmentl <- dtw_basic(x[,1L], cent[,1L], backtrack = TRUE)
alignment2 <- dtw_basic(x[,2L], cent[,2L], backtrack = TRUE)
alignment3 <- dtw_basic(x[,3L], cent[,3L], backtrack = TRUE)

# effectively doing:

X1 <= lapply(X, function(x) { x[,1L] })
X2 <- lapply(X, function(x) { x[,2L] })
X3 <- lapply(X, function(x) { x[,3L] })

dbal <- dba(X1, cent[,1L])

dba2 <- dba(X2, cent[,2L])

dba3 <- dba(X3, cent[,3L])

new_cent <- cbind(dbal, dba2, dba3)
# sanity check

newer_cent <- dba(X, cent, mv.ver = "by-variable")
all.equal(newer_cent, new_cent, check.attributes = FALSE) # ignore names

## End(Not run)

DistmatLowerTriangular-class
Distance matrix’s lower triangular

Description

Reference class that is used internally for PAM centroids when pam. precompute = TRUE and pam. sparse
= FALSE. It contains Distmat.
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Details

If you wish to, you can use this class to access dist elements with [ as if it were a normal matrix.
You can use methods::new passing the dist object in a distmat argument.

Fields

distmat The lower triangular.

Methods
initialize(..., distmat, series, distance, control, error.check = TRUE) Initialization based

on needed parameters

Examples

dm <- new("DistmatLowerTriangular”,
distmat = proxy::dist(CharTraj[1:5], method = "gak"”, sigma = 5.5, window.size = 10L))

dm[2:3, 4:5]

dtw2 DTW distance with L2 norm

Description

Wrapper for the dtw: :dtw() function using L2 norm for both the local cost matrix (LCM) creation
as well as the final cost aggregation step.

Usage
dtw2(x, vy, ...)
Arguments
X,y A time series. A multivariate series should have time spanning the rows and
variables spanning the columns.
Further arguments for dtw: :dtw().
Details

The L-norms are used in two different steps by the DTW algorithm. First when creating the LCM,
where the element (i, j) of the matrix is computed as the L-norm of x} — y for all variables v. Note
that this means that, in case of multivariate series, they must have the same number of variables, and
that univariate series will produce the same LCM regardless of the L-norm used. After the warping
path is found by DTW, the final distance is calculated as the L-norm of all (4, j) elements of the
LCM that fall on the warping path.
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The dtw: :dtw() function allows changing the norm by means of its dist.method parameter, but
it only uses it when creating the LCM, and not when calculating the final aggregated cost, i.e. the
DTW distance.

This wrapper simply returns the appropriate DTW distance using L2 norm (Euclidean norm). A
proxy: :dist() version is also registered.

The windowing constraint uses a centered window. The calculations expect a value in window. size
that represents the distance between the point considered and one of the edges of the window.
Therefore, if, for example, window.size = 10, the warping for an observation x; considers the
points between x; 1o and ;1 10, resulting in 10(2) + 1 = 21 observations falling within the window.

Value

An object of class dtw.

dtwclustTimings Results of timing experiments

Description

This is the list with data frames containing the results of the timing experiments vignette included
with dtwclust. See browseVignettes("dtwclust”).

Format

The results are organized into different data frames and saved in one list with nested lists. For more
details, refer to the included vignette or the scripts available at https://github.com/asardaes/
dtwclust/tree/master/timing-experiments.

Source

Refer to the timing experiments vignette.

dtw_basic Basic DTW distance

Description

This is a custom implementation of the DTW algorithm without all the functionality included in
dtw: :dtw(). Because of that, it should be faster, while still supporting the most common options.


https://github.com/asardaes/dtwclust/tree/master/timing-experiments
https://github.com/asardaes/dtwclust/tree/master/timing-experiments
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Usage
dtw_basic(
X )
Y,

window.size
norm = "L1",
step.pattern

backtrack

normalize =

sqrt.dist

L

error.check

Arguments

X,y

window.size

norm

step.pattern

backtrack
normalize

sqrt.dist

error.check

Details

dtw_basic

NULL,

= dtw::symmetric2,
FALSE,
FALSE,
TRUE,

= TRUE

Time series. Multivariate series must have time spanning the rows and variables
spanning the columns.

Size for slanted band window. NULL means no constraint.

Norm for the LCM calculation, "L1" for Manhattan or "L2" for (squared) Eu-
clidean. See notes.

Step pattern for DTW. Only symmetricl or symmetric2 supported here. Note
that these are not characters. See dtw::stepPattern.

Also compute the warping path between series? See details.

Should the distance be normalized? Only supported for symmetric2.
Only relevant for norm = "L2", see notes.

Currently ignored.

Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.

If backtrack is TRUE, the mapping of indices between series is returned in a list.

The windowing constraint uses a centered window. The calculations expect a value in window.size
that represents the distance between the point considered and one of the edges of the window.
Therefore, if, for example, window.size = 10, the warping for an observation x; considers the
points between x; 1o and ;1 10, resulting in 10(2) + 1 = 21 observations falling within the window.

Value

The DTW distance. For backtrack = TRUE, a list with:

e distance: The DTW distance.

* index1: x indices for the matched elements in the warping path.

* index2: y indices for the matched elements in the warping path.
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Proxy version

The version registered with proxy: :dist() is custom (loop = FALSE in proxy::pr_DB). The cus-
tom function handles multi-threaded parallelization directly with RcppParallel. It uses all available
threads by default (see RcppParallel: :defaultNumThreads()), but this can be changed by the
user with RcppParallel::setThreadOptions().

An exception to the above is when it is called within a foreach parallel loop made by dtwclust. If
the parallel workers do not have the number of threads explicitly specified, this function will default
to 1 thread per worker. See the parallelization vignette for more information - browseVignettes("dtwclust"”)

It also includes symmetric optimizations to calculate only half a distance matrix when appropriate—
only one list of series should be provided in x. Starting with version 6.0.0, this optimization means
that the function returns an array with the lower triangular values of the distance matrix, similar
to what stats::dist() does; see DistmatLowerTriangular for a helper to access elements as it if
were a normal matrix. If you want to avoid this optimization, call proxy::dist by giving the same
list of series in both x and y.

In order for symmetry to apply here, the following must be true: no window constraint is used
(window. size is NULL) or, if one is used, all series have the same length.

Note

The elements of the local cost matrix are calculated by using either Manhattan or squared Euclidean
distance. This is determined by the norm parameter. When the squared Euclidean version is used,
the square root of the resulting DTW distance is calculated at the end (as defined in Ratanamahatana
and Keogh 2004; Lemire 2009; see vignette references). This can be avoided by passing FALSE in
sgrt.dist.

The DTW algorithm (and the functions that depend on it) might return different values in 32 bit
installations compared to 64 bit ones.

An infinite distance value indicates that the constraints could not be fulfilled, probably due to a too
small window. size or a very large length difference between the series.

Examples

## Not run:
#
# Understanding multivariate DTW
#

# The variables for each multivariate time series are:
# tip force, x velocity, and y velocity

A1 <- CharTrajMV[L[1L]] # A character

B1 <- CharTrajMVL[6L]] # B character

# Let's extract univariate time series
A1_TipForce <- A1[,1L] # first variable (column)
A1_VelX <- A1[,2L] # second variable (column)
A1_VelY <- A1[,3L] # third variable (column)
B1_TipForce <- B1[,1L] # first variable (column)
B1_VelX <- B1[,2L] # second variable (column)
B1_VelY <- B1[,3L] # third variable (column)
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# Looking at each variable independently:

# Just force

dtw_basic(A1_TipForce, B1_TipForce, norm = "L1", step.pattern = symmetricl)
# Corresponding LCM

proxy::dist(A1_TipForce, B1_TipForce, method = "L1")

# Just x velocity

dtw_basic(A1_VelX, B1_VelX, norm = "L1", step.pattern = symmetric1)
# Corresponding LCM

proxy::dist(A1_VelX, B1_VelX, method = "L1")

# Just y velocity

dtw_basic(A1_VelY, B1_VelY, norm = "L1", step.pattern = symmetricl)
# Corresponding LCM

proxy::dist(A1_VelY, B1_VelY, method = "L1")

# NOTES:
# In the previous examples there was one LCM for each *pair* of series.
# Additionally, each LCM has dimensions length(A1_%) x length(B1_x*)

# proxy::dist won't return the LCM for multivariate series,

# but we can do it manually:

mv_lcm <- function(mvtsl, mvts2) {
# Notice how the number of variables (columns) doesn't come into play here
num_obs1 <- nrow(mvts1)
num_obs2 <- nrow(mvts2)

lem <- matrix(@, nrow = num_obs1, ncol = num_obs2)

for (i in 1L:num_obs1) {
for (j in 1L:num_obs2) {
# L1 norm for ALL variables (columns).
# Consideration: mvtsl and mvts2 MUST have the same number of variables
lem[i, j1 <- sum(abs(mvts1[i,] - mvts2[j,]1))

# return
lem

# Let's say we start with only x velocity and y velocity for each character
mvtsl <- cbind(A1_VelX, A1_VelY)
mvts2 <- cbind(B1_VelX, B1_VelY)

# DTW distance

dtw_d <- dtw_basic(mvtsl, mvts2, norm = "L1", step.pattern = symmetricl)
# Corresponding LCM

lem <- mv_lcm(mvts1, mvts2) # still 178 x 174

# Sanity check

all.equal(
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dtw_d,
dtw: :dtw(lcm, step.pattern = symmetricl)$distance # supports LCM as input
)

# Now let's consider all variables for each character
mvtsl <- cbind(mvts1, Al1_TipForce)
mvts2 <- cbind(mvts2, B1_TipForce)

# Notice how the next code is exactly the same as before,
# even though we have one extra variable now

# DTW distance
dtw_d <- dtw_basic(mvts1, mvts2, norm = "L1", step.pattern = symmetricl)
# Corresponding LCM
lem <- mv_lcm(mvts1, mvts2) # still 178 x 174
# Sanity check
all.equal(
dtw_d,
dtw: :dtw(lcm, step.pattern = symmetricl)$distance # supports LCM as input
)

# By putting things in a list,
# proxy::dist returns the *cross-distance matrix*, not the LCM
series_list <- list(mvtsl, mvts2)
distmat <- proxy::dist(series_list, method = "dtw_basic”,

norm = "L1", step.pattern = symmetricl)
# So this should be TRUE
all.equal(distmat[1L, 2L], dtw_d)

# NOTE: distmat is a 2 x 2 matrix, because there are 2 multivariate series.
# Each xcellx in distmat has a corresponding LCM (not returned by the function).
# Proof:
manual_distmat <- matrix(@, nrow = 2L, ncol = 2L)
for (i in 1L:nrow(manual_distmat)) {
for (j in 1L:ncol(manual_distmat)) {
lcm_cell <- mv_lcm(series_list[[i]], series_list[[j1]) # LCM for this pair
manual_distmat[i, j] <- dtw::dtw(lcm_cell, step.pattern = symmetricl)$distance

b
# TRUE

all.equal(
as.matrix(distmat),
manual_distmat

)

## End(Not run)

dtw_1lb DTW distance matrix guided by Lemire’s improved lower bound
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Description

Calculation of a distance matrix with the Dynamic Time Warping (DTW) distance guided by
Lemire’s improved lower bound (LB_Improved).

Usage

dtw_1b(
X,
y = NULL,
window.size = NULL,
norm = "L1",
error.check = TRUE,
pairwise = FALSE,
dtw.func = "dtw_basic”,
nn.margin = 1L,

)
Arguments
X,y A matrix or data frame where rows are time series, or a list of time series.
window.size Window size to use with the LB and DTW calculation. See details.
norm Either "L1" for Manhattan distance or "L2" for Euclidean.
error.check Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.
pairwise Calculate pairwise distances?
dtw. func ‘Which function to use for the core DTW calculations, either "dtw" or "dtw_basic".
See dtw: :dtw() and dtw_basic().
nn.margin Either 1 to search for nearest neighbors row-wise, or 2 to search column-wise.
Only implemented for dtw. func = "dtw_basic".
Further arguments for dtw. func or 1b_improved().
Details

This function first calculates an initial estimate of a distance matrix between two sets of time series
using 1b_improved() (the proxy::dist() version). Afterwards, it uses the estimate to calculate
the corresponding true DTW distance between only the nearest neighbors of each series in x found
in y, and it continues iteratively until no changes in the nearest neighbors occur.

If only x is provided, the distance matrix is calculated between all its time series, effectively return-
ing a matrix filled with the LB_Improved values.

This could be useful in case one is interested in only the nearest neighbor of one or more series
within a dataset.

The windowing constraint uses a centered window. The calculations expect a value in window. size
that represents the distance between the point considered and one of the edges of the window.
Therefore, if, for example, window.size = 10, the warping for an observation x; considers the
points between x;_1¢ and x;1¢, resulting in 10(2) + 1 = 21 observations falling within the window.
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Value

The distance matrix with class crossdist.

Parallel Computing

Please note that running tasks in parallel does not guarantee faster computations. The overhead
introduced is sometimes too large, and it’s better to run tasks sequentially.

This function uses the RcppParallel package for parallelization. It uses all available threads by
default (see RcppParallel: :defaultNumThreads()), but this can be changed by the user with
RcppParallel: :setThreadOptions().

An exception to the above is when it is called within a foreach parallel loop made by dtwclust. If
the parallel workers do not have the number of threads explicitly specified, this function will default
to 1 thread per worker. See the parallelization vignette for more information - browseVignettes("dtwclust”)

Note

This function uses a lower bound that is only defined for time series of equal length.

The proxy: :dist() version simply calls this function.

A considerably large dataset is probably necessary before this is faster than using dtw_basic()
with proxy: :dist(). Also note that 1b_improved() calculates warping envelopes for the series in
Yy, so be careful with the provided order and nn.margin (see examples).

Author(s)

Alexis Sarda-Espinosa

References

Lemire D (2009). “Faster retrieval with a two-pass dynamic-time-warping lower bound .” Pattern
Recognition, 42(9), pp. 2169 - 2180. ISSN 0031-3203, doi:10.1016/j.patcog.2008.11.030, https:
//www.sciencedirect.com/science/article/pii/S0031320308004925.

See Also

1b_keogh(), 1b_improved()

Examples

# Load data
data(ucicCT)

# Reinterpolate to same length
data <- reinterpolate(CharTraj, new.length = max(lengths(CharTraj)))

# Calculate the DTW distance between a certain subset aided with the lower bound
system.time(d <- dtw_lb(data[1:5], data[6:50], window.size = 20L))

# Nearest neighbors
NN1 <- apply(d, 1L, which.min)


https://doi.org/10.1016/j.patcog.2008.11.030
https://www.sciencedirect.com/science/article/pii/S0031320308004925
https://www.sciencedirect.com/science/article/pii/S0031320308004925
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# Calculate the DTW distances between all elements (slower)
system.time(d2 <- proxy::dist(datal[1:5], data[6:50], method = "DTW",
window.type = "sakoechiba”, window.size = 20L))

# Nearest neighbors
NN2 <- apply(d2, 1L, which.min)

# Calculate the DTW distances between all elements using dtw_basic

# (might be faster, see notes)

system.time(d3 <- proxy::dist(datal[1:5], data[6:50], method = "DTW_BASIC",
window.size = 20L))

# Nearest neighbors
NN3 <- apply(d3, 1L, which.min)

# Change order and margin for nearest neighbor search
# (usually fastest, see notes)
system.time(d4 <- dtw_lb(data[6:50], data[1:5],
window.size = 20L, nn.margin = 2L))

# Nearest neighbors *column-wise*
NN4 <- apply(d4, 2L, which.min)

# Same results?

identical (NN1, NN2)
identical (NN1, NN3)
identical(NN1, NN4)

GAK Fast global alignment kernels

Description

Distance based on (triangular) global alignment kernels.

Usage

GAK (
X!
Y,
sigma = NULL,
window.size = NULL,
normalize = TRUE,
error.check = TRUE
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gak(
X!
Y,
sigma = NULL,
window.size = NULL,
normalize = TRUE,
error.check = TRUE

)
Arguments
Y Time series. A multivariate series should have time spanning the rows and vari-
ables spanning the columns.
Currently ignored.
sigma Parameter for the Gaussian kernel’s width. See details for the interpretation of
NULL.
window.size Parameterization of the constraining band (7" in Cuturi (2011)). See details.
normalize Normalize the result by considering diagonal terms.
error.check Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.
Details

This function uses the Triangular Global Alignment Kernel (TGAK) described in Cuturi (2011). It
supports series of different length and multivariate series, so long as the ratio of the series’ lengths
doesn’t differ by more than 2 (or less than 0.5).

The window. size parameter is similar to the one used in DTW, so NULL signifies no constraint, and
its value should be greater than 1 if used with series of different length.

The Gaussian kernel is parameterized by sigma. Providing NULL means that the value will be
estimated by using the strategy mentioned in Cuturi (2011) with a constant of 1. This estimation
is subject to randomness, so consider estimating the value once and re-using it (the estimate is
returned as an attribute of the result). See the examples.

For more information, refer to the package vignette and the referenced article.

Value

The logarithm of the GAK if normalize = FALSE, otherwise 1 minus the normalized GAK. The
value of sigma is assigned as an attribute of the result.

Proxy version

The version registered with proxy: :dist() is custom (loop = FALSE in proxy::pr_DB). The cus-
tom function handles multi-threaded parallelization directly with RcppParallel. It uses all available
threads by default (see RcppParallel: :defaultNumThreads()), but this can be changed by the
user with RcppParallel: :setThreadOptions().
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An exception to the above is when it is called within a foreach parallel loop made by dtwclust. If
the parallel workers do not have the number of threads explicitly specified, this function will default
to 1 thread per worker. See the parallelization vignette for more information - browseVignettes("dtwclust™)

It also includes symmetric optimizations to calculate only half a distance matrix when appropriate—
only one list of series should be provided in x. Starting with version 6.0.0, this optimization means
that the function returns an array with the lower triangular values of the distance matrix, similar
to what stats::dist() does; see DistmatLowerTriangular for a helper to access elements as it if
were a normal matrix. If you want to avoid this optimization, call proxy::dist by giving the same
list of series in both x and y.

Note

The estimation of sigma does not depend on window.size.

If normalize is set to FALSE, the returned value is not a distance, rather a similarity. The proxy: :dist()
version is thus always normalized. Use proxy::simil() with method set to "uGAK" if you want
the unnormalized similarities.

A constrained unnormalized calculation (i.e. with window.size > @ and normalize = FALSE) will
return negative infinity if abs (NROW(x) - NROW(y)) > window.size. Since the function won’t
perform calculations in that case, it might be faster, but if this behavior is not desired, consider
reinterpolating the time series (see reinterpolate()) or increasing the window size.

References

Cuturi, M. (2011). Fast global alignment kernels. In Proceedings of the 28th international confer-
ence on machine learning (ICML-11) (pp. 929-936).

Examples

## Not run:
data(uciCT)

set.seed(832)
GAKd <- proxy::dist(zscore(CharTraj), method = "gak”,
pairwise = TRUE, window.size = 18L)

# Obtained estimate of sigma
sigma <- attr(GAKd, "sigma")

# Use value for clustering
tsclust(CharTraj, k = 20L,
distance = "gak", centroid = "shape",
trace = TRUE,
args = tsclust_args(dist = list(sigma = sigma,
window.size = 18L)))

## End(Not run)

# Unnormalized similarities
proxy::simil(CharTraj[1L:5L], method = "ugak")
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interactive_clustering
A shiny app for interactive clustering

Description

Display a shiny user interface to do clustering based on the provided series.

Usage
interactive_clustering(series, ...)
Arguments
series Time series in the formats accepted by tsclust().
More arguments for shiny: : runApp().
Explore

This part of the app is simply to see some basic characteristics of the provided series and plot some
of them. The field for integer IDs expects a valid R expression that specifies which of the series
should be plotted. Multivariate series are plotted with each variable in a different facet.

Cluster
This part of the app wraps tsclust(), so you should be familiar with it. Some remarks:

 Specifying a custom centroid or hierarchical method expects the name of a function available
in the R session (without quotes). Naturally, any required package should be loaded before
calling interactive_clustering. For example, if you want to use cluster: :agnes(), you
should load cluster beforehand.

* A random seed of 0 means that it will be left as NULL when calling tsclust().

* The input fields for Extra parameters (distance, centroid and ellipsis) expect a comma- sep-
arated sequence of key-value pairs. For example: window.size = 10L, trace = TRUE. You
should be able to pass any variables available in the R session’s global environment.

* Regarding plot parameters:

— The Clusters field is like the integer IDs from the Explore section.

— The Labels field is passed to the plot method (see TSClusters-methods). You can specify
several values like with the Extra parameters, e.g.: nudge_x = 10, nudge_y = 1. You can
type an empty space to activate them with the defaults, and delete everything to hide
them. Note that the location of the labels is random each time.

The plot area reacts to the plot parameters, but the actual clustering with tsclust() won’t be exe-
cuted until you click the Cluster! button. The plot can take a couple of seconds to load! Plotting
multivariate series might generate warnings about missing values, they can be safely ignored.
Some of the control parameters are disabled when dtwclust detects them automatically.

The cross-distance matrix is cached so that it can be re-used when appropriate. The cached version
is invalidated automatically when necessary.
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Evaluate

This part of the app provides results of the current clustering. External CVIs can be calculated if
the name of a variable with the ground truth is provided (see cvi()).

Note

Tracing is printed to the console.

Author(s)

Alexis Sarda-Espinosa

Examples

## Not run:
interactive_clustering(CharTrajMV)

## End(Not run)

1b_improved Lemire’s improved DTW lower bound

Description

This function calculates an improved lower bound (LB) on the Dynamic Time Warp (DTW) distance
between two time series. It uses a Sakoe-Chiba constraint.

Usage

1b_improved(
X,
Y,
window.size = NULL,
norm = "L1",
lower.env = NULL,
upper.env = NULL,
force.symmetry = FALSE,
error.check = TRUE

)
Arguments
X A time series (reference).
y A time series with the same length as x (query).
window.size Window size for envelope calculation. See details.

norm Vector norm. Either "L1" for Manhattan distance or "L2" for Euclidean.
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lower.env Optionally, a pre-computed lower envelope for y can be provided (non-proxy
version only). See compute_envelope().

upper.env Optionally, a pre-computed upper envelope for y can be provided (non-proxy
version only). See compute_envelope().

force.symmetry If TRUE, a second lower bound is calculated by swapping x and y, and whichever
result has a higher distance value is returned. The proxy version can only work
if a square matrix is obtained, but use carefully.

error.check Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.
Details

The reference time series should go in x, whereas the query time series should go in y.

If the envelopes are provided, they should be provided together. If either one is missing, both will
be computed.

The windowing constraint uses a centered window. The calculations expect a value in window. size
that represents the distance between the point considered and one of the edges of the window.
Therefore, if, for example, window.size = 10, the warping for an observation x; considers the
points between x;_10 and x; 10, resulting in 10(2) + 1 = 21 observations falling within the window.

Value

The improved lower bound for the DTW distance.

Proxy version

The version registered with proxy: :dist() is custom (loop = FALSE in proxy::pr_DB). The cus-
tom function handles multi-threaded parallelization directly with RcppParallel. It uses all available
threads by default (see RcppParallel: :defaultNumThreads()), but this can be changed by the
user with RcppParallel: :setThreadOptions().

An exception to the above is when it is called within a foreach parallel loop made by dtwclust. If
the parallel workers do not have the number of threads explicitly specified, this function will default
to 1 thread per worker. See the parallelization vignette for more information - browseVignettes("dtwclust"”)

Note

The lower bound is only defined for time series of equal length and is not symmetric.

If you wish to calculate the lower bound between several time series, it would be better to use
the version registered with the proxy package, since it includes some small optimizations. The
convention mentioned above for references and queries still holds. See the examples.

The proxy version of force. symmetry should only be used when only x is provided or both x and y
are identical. It compares the lower and upper triangular of the resulting distance matrix and forces
symmetry in such a way that the tightest lower bound is obtained.
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References

Lemire D (2009). “Faster retrieval with a two-pass dynamic-time-warping lower bound .” Pattern
Recognition, 42(9), pp. 2169 - 2180. ISSN 0031-3203, doi:10.1016/j.patcog.2008.11.030, https:
//www.sciencedirect.com/science/article/pii/S0031320308004925.

Examples

# Sample data
data(uciCT)

# Lower bound distance between two series
d.1lbi <- lb_improved(CharTraj[[1]1], CharTraj[[2]], window.size = 20)

# Corresponding true DTW distance
d.dtw <- dtw(CharTraj[[1]], CharTraj[[2]],
window.type = "sakoechiba”, window.size = 20)$distance

d.1lbi <= d.dtw

# Calculating the LB between several time series using the 'proxy' package
# (notice how both argments must be lists)

D.lbi <- proxy::dist(CharTraj[1], CharTraj[2:5], method = "LB_Improved”,

window.size = 20, norm = "L2")

# Corresponding true DTW distance

D.dtw <- proxy::dist(CharTraj[1], CharTraj[2:5], method = "dtw_basic”,
norm = "L2", window.size = 20)
D.1bi <= D.dtw
1b_keogh Keogh’s DTW lower bound

Description

This function calculates a lower bound (LB) on the Dynamic Time Warp (DTW) distance between
two time series. It uses a Sakoe-Chiba constraint.

Usage
1b_keogh(
X ’
y )
window.size = NULL,
norm = "L1",

lower.env = NULL,
upper.env = NULL,
force.symmetry = FALSE,


https://doi.org/10.1016/j.patcog.2008.11.030
https://www.sciencedirect.com/science/article/pii/S0031320308004925
https://www.sciencedirect.com/science/article/pii/S0031320308004925
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error.check = TRUE

)
Arguments
X A time series (reference).
y A time series with the same length as x (query).
window.size Window size for envelope calculation. See details.
norm Vector norm. Either "L1" for Manhattan distance or "L2" for Euclidean.
lower.env Optionally, a pre-computed lower envelope for y can be provided (non-proxy
version only). See compute_envelope().
upper.env Optionally, a pre-computed upper envelope for y can be provided (non-proxy

version only). See compute_envelope().

force.symmetry If TRUE, a second lower bound is calculated by swapping x and y, and whichever
result has a higher distance value is returned. The proxy version can only work
if a square matrix is obtained, but use carefully.

error.check Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.
Details

The reference time series should go in x, whereas the query time series should go in y.

If the envelopes are provided, they should be provided together. If either one is missing, both will
be computed.

The windowing constraint uses a centered window. The calculations expect a value in window. size
that represents the distance between the point considered and one of the edges of the window.
Therefore, if, for example, window.size = 10, the warping for an observation x; considers the
points between x;_19 and x; 10, resulting in 10(2) + 1 = 21 observations falling within the window.

Value
A list with:

¢ d: The lower bound of the DTW distance.
* upper.env: The time series of y’s upper envelope.

* lower.env: The time series of y’s lower envelope.

Proxy version

The version registered with proxy: :dist() is custom (loop = FALSE in proxy::pr_DB). The cus-
tom function handles multi-threaded parallelization directly with RcppParallel. It uses all available
threads by default (see RcppParallel: :defaultNumThreads()), but this can be changed by the
user with RcppParallel: :setThreadOptions().

An exception to the above is when it is called within a foreach parallel loop made by dtwclust. If
the parallel workers do not have the number of threads explicitly specified, this function will default
to 1 thread per worker. See the parallelization vignette for more information - browseVignettes("dtwclust”)
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Note

The lower bound is only defined for time series of equal length and is not symmetric.

If you wish to calculate the lower bound between several time series, it would be better to use
the version registered with the proxy package, since it includes some small optimizations. The
convention mentioned above for references and queries still holds. See the examples.

The proxy version of force. symmetry should only be used when only x is provided or both x and y
are identical. It compares the lower and upper triangular of the resulting distance matrix and forces
symmetry in such a way that the tightest lower bound is obtained.

References

Keogh E and Ratanamahatana CA (2005). “Exact indexing of dynamic time warping.” Knowledge
and information systems, 7(3), pp. 358-386.

Examples

# Sample data
data(uciCT)

# Lower bound distance between two series
d.1lbk <- 1b_keogh(CharTraj[[1]], CharTraj[[2]], window.size = 20)$d

# Corresponding true DTW distance
d.dtw <- dtw(CharTraj[[1]], CharTraj[[21],
window.type = "sakoechiba”, window.size = 20)$distance

d.1lbk <= d.dtw

# Calculating the LB between several time series using the 'proxy' package

# (notice how both argments must be lists)

D.1bk <- proxy::dist(CharTraj[1], CharTraj[2:5], method = "LB_Keogh",
window.size = 20, norm = "L2")

# Corresponding true DTW distance
D.dtw <- proxy::dist(CharTraj[1], CharTraj[2:5], method = "dtw_basic”,

norm = "L2", window.size = 20)

D.1bk <= D.dtw

NCCc Cross-correlation with coefficient normalization

Description

This function uses the FFT to compute the cross-correlation sequence between two series. They
need not be of equal length.
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Usage

NCCc(x, y, error.check = TRUE)

Arguments
X,y Univariate time series.
error.check Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.
Value

The cross-correlation sequence with length length(x) + length(y) - 1L.

References

Paparrizos J and Gravano L (2015). “k-Shape: Efficient and Accurate Clustering of Time Series.” In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, series
SIGMOD ’15, pp. 1855-1870. ISBN 978-1-4503-2758-9, doi:10.1145/2723372.2737793.

See Also

SBD()

pam_cent Centroid for partition around medoids

Description

Extract the medoid time series based on a distance measure.

Usage

pam_cent (
series,
distance,
ids = seqg_along(series),
distmat = NULL,

D

error.check = TRUE


https://doi.org/10.1145/2723372.2737793
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Arguments
series The time series in one of the formats accepted by tslist().
distance A character indicating which distance to use. Only needed if distmat is NULL.
The distance must be registered in proxy: : pr_DB().
ids Integer vector indicating which of the series should be considered.
distmat Optionally, a pre-computed cross-distance matrix of all series.
Any extra parameters for the distance function that may be used.
error.check Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.
Details

The medoid’s index is determined by taking the argmin of the distmat’s row-sums (considering
only the rows in ids). The distance matrix is calculated if needed.
Value

The medoid time series.

Examples

# Computes the distance matrix for all series
pam_cent(CharTraj, "dtw_basic”, ids = 6L:10L, window.size = 15L) # series_id = 7L

# Computes the distance matrix for the chosen subset only
pam_cent(CharTraj[6L:10L], "dtw_basic”, window.size = 15L) # series_id = 2L

pdc_configs Helper function for preprocessing/distance/centroid configurations

Description

Create preprocessing, distance and centroid configurations for compare_clusterings_configs().

Usage

pdc_configs(
type = c("preproc”, "distance"”, "centroid"),
partitional = NULL,
hierarchical = NULL,
fuzzy = NULL,
tadpole = NULL,
share.config = c("p”, "h", "f", "t")
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Arguments

type

partitional
hierarchical
fuzzy
tadpole

share.config

Details

41

Which type of function is being targeted by this configuration.

Any number of named lists with functions and arguments that will be shared by
all clusterings. See details.

A named list of lists with functions and arguments for partitional clusterings.
A named list of lists with functions and arguments for hierarchical clusterings.
A named list of lists with functions and arguments for fuzzy clusterings.

A named list of lists with functions and arguments for TADPole clusterings.

A character vector specifying which clusterings should include the shared lists
(the ones specified in . ..). It must be any combination of (possibly abbrevi-
ated): partitional, hierarchical, fuzzy, tadpole.

The named lists are interpreted in the following way: the name of the list will be considered to
be a function name, and the elements of the list will be the possible parameters for the function.
Each function must have at least an empty list. The parameters may be vectors that specify different

values to be tested.

For preprocessing, the special name none signifies no preprocessing.

For centroids, the special name default leaves the centroid unspecified.

Please see the examples in compare_clusterings() to see how this is used.

Value

A list for each clustering, each of which includes a data frame with the computed configurations.

reinterpolate

Wrapper for simple linear reinterpolation

Description

This function is just a wrapper for the native function stats: :approx() to do simple linear rein-
terpolation. It also supports matrices, data frames, and lists of time series.

Usage

reinterpolate(x, new.length, multivariate = FALSE)

Arguments

X

new.length
multivariate

Data to reinterpolate. Either a vector, a matrix/data.frame where each row is to
be reinterpolated, or a list of vectors/matrices.

Desired length of the output series.

Is x a multivariate time series? It will be detected automatically if a list is pro-
vided in x.
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Details

Multivariate series must have time spanning the rows and variables spanning the columns.

Value

Reinterpolated time series

Examples

data(uciCT)

# list of univariate series
series <- reinterpolate(CharTraj, 205L)

# list of multivariate series
series <- reinterpolate(CharTrajMVv, 205L)

# single multivariate series
series <- reinterpolate(CharTrajMVL[1L]], 205L, TRUE)

repeat_clustering Repeat a clustering configuration

Description

Repeat a clustering made with compare_clusterings() in order to obtain the TSClusters object.

Usage
repeat_clustering(series, clusterings, config_id, ...)
Arguments
series The same time series that were given to compare_clusterings().
clusterings The list returned by compare_clusterings().
config_id The character indicating which configuration should be re-computed. Obtained
from the clusterings’ results’ data frames.
More arguments for tsclust() (e.g. trace).
Details

Since the purpose of compare_clusterings() is to test many configurations, it is desirable to set
its return.objects parameter to FALSE in order to save RAM. This function can then be used to
compute the clustering object for a specific config_id.
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Value

A TSClusters object.

Limitations

If the preprocessing function is subject to randomness, the clustering will not be correctly re-
created by this function, since compare_clusterings() applies all preprocessing before calling
tsclust().

If any parameters were given to compare_clusterings() through its ellipsis, they should probably
be given to this function too.

SBD Shape-based distance

Description

Distance based on coefficient-normalized cross-correlation as proposed by Paparrizos and Gravano
(2015) for the k-Shape clustering algorithm.

Usage

SBD(x, y, znorm = FALSE, error.check = TRUE, return.shifted = TRUE)

sbd(x, y, znorm = FALSE, error.check = TRUE, return.shifted = TRUE)
Arguments
X,y Univariate time series.
znorm Logical. Should each series be z-normalized before calculating the distance?
error.check Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating

checks.

return.shifted Logical. Should the shifted version of y be returned? See details.

Details

This distance works best if the series are z-normalized. If not, at least they should have appropriate
amplitudes, since the values of the signals do affect the outcome.

If x and y do not have the same length, it would be best if the longer sequence is provided in
y, because it will be shifted to match x. After matching, the series may have to be truncated or
extended and padded with zeros if needed.

The output values lie between 0 and 2, with 0 indicating perfect similarity.
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Value

For return.shifted = FALSE, the numeric distance value, otherwise a list with:

e dist: The shape-based distance between x and y.

» yshift: A shifted version of y so that it optimally matches x (based on NCCc()).

Proxy version

The version registered with proxy: :dist() is custom (loop = FALSE in proxy::pr_DB). The cus-
tom function handles multi-threaded parallelization directly with RcppParallel. It uses all available
threads by default (see RcppParallel: :defaultNumThreads()), but this can be changed by the
user with RcppParallel: :setThreadOptions().

An exception to the above is when it is called within a foreach parallel loop made by dtwclust. If
the parallel workers do not have the number of threads explicitly specified, this function will default
to 1 thread per worker. See the parallelization vignette for more information - browseVignettes("dtwclust”)

It also includes symmetric optimizations to calculate only half a distance matrix when appropriate—
only one list of series should be provided in x. Starting with version 6.0.0, this optimization means
that the function returns an array with the lower triangular values of the distance matrix, similar
to what stats: :dist() does; see DistmatLowerTriangular for a helper to access elements as it if
were a normal matrix. If you want to avoid this optimization, call proxy::dist by giving the same
list of series in both x and y.

In some situations, e.g. for relatively small distance matrices, the overhead introduced by the logic
that computes only half the distance matrix can be bigger than just calculating the whole matrix.

Note

If you wish to calculate the distance between several time series, it would be better to use the version
registered with the proxy package, since it includes some small optimizations. See the examples.

This distance is calculated with help of the Fast Fourier Transform, so it can be sensitive to numeri-
cal precision. Thus, this function (and the functions that depend on it) might return different values
in 32 bit installations compared to 64 bit ones.

References

Paparrizos J and Gravano L (2015). “k-Shape: Efficient and Accurate Clustering of Time Series.” In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, series
SIGMOD ’15, pp. 1855-1870. ISBN 978-1-4503-2758-9, doi:10.1145/2723372.2737793.

See Also

NCCc(), shape_extraction()

Examples

# load data
data(uciCT)

# distance between series of different lengths


https://doi.org/10.1145/2723372.2737793
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sbd <- SBD(CharTraj[[1]], CharTraj[[100]], znorm = TRUE)$dist

# cross-distance matrix for series subset (notice the two-list input)
sbD <- proxy::dist(CharTraj[1:10], CharTraj[1:10], method = "SBD", znorm = TRUE)

sdtw Soft-DTW distance

Description

Soft-DTW distance measure as proposed in Cuturi and Blondel (2017).

Usage
sdtw(x, y, gamma = 0.01, ..., error.check = TRUE)
Arguments
X,y Time series. Multivariate series must have time spanning the rows and variables
spanning the columns.
gamma Positive regularization parameter, with lower values resulting in less smoothing.
Currently ignored.
error.check Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.
Details

Unlike other distances, soft-DTW can return negative values, and sdtw(x, x) is not always equal
to zero. Like DTW, soft-DTW does not fulfill the triangle inequality, but it is always symmetric.

Value

The Soft DTW distance.

Proxy version

The version registered with proxy: :dist() is custom (loop = FALSE in proxy::pr_DB). The cus-
tom function handles multi-threaded parallelization directly with RcppParallel. It uses all available
threads by default (see RcppParallel: :defaultNumThreads()), but this can be changed by the
user with RcppParallel: :setThreadOptions().

An exception to the above is when it is called within a foreach parallel loop made by dtwclust. If
the parallel workers do not have the number of threads explicitly specified, this function will default
to 1 thread per worker. See the parallelization vignette for more information - browseVignettes("dtwclust™)

It also includes symmetric optimizations to calculate only half a distance matrix when appropriate—
only one list of series should be provided in x. Starting with version 6.0.0, this optimization means
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that the function returns an array with the lower triangular values of the distance matrix, similar
to what stats: :dist() does; see DistmatLowerTriangular for a helper to access elements as it if
were a normal matrix. If you want to avoid this optimization, call proxy::dist by giving the same
list of series in both x and y.

Note that, due to the fact that this distance is not always zero when a series is compared against itself,
this optimization is likely problematic for soft-DTW, as the dist object will be handled by many
functions as if it had only zeroes in the diagonal. An exception is tsclust() when using partitional
clustering with PAM centroids—actual diagonal values will be calculated and considered internally
in that case.

References

Cuturi, M., & Blondel, M. (2017). Soft-DTW: a Differentiable Loss Function for Time-Series.
arXiv preprint arXiv:1703.01541.

sdtw_cent Centroid calculation based on soft-DTW

Description

Soft-DTW centroid function as proposed in Cuturi and Blondel (2017).

Usage
sdtw_cent(
series,
centroid = NULL,
gamma = 0.01,

weights = rep(1, length(series)),
error.check = TRUE,
opts = list(algorithm = "NLOPT_LD_LBFGS", maxeval = 20L)

)
Arguments

series A matrix or data frame where each row is a time series, or a list where each
element is a time series. Multivariate series should be provided as a list of
matrices where time spans the rows and the variables span the columns of each
matrix.

centroid Optionally, a time series to use as reference. Defaults to a random series of
series if NULL. For multivariate series, this should be a matrix with the same
characteristics as the matrices in series.

gamma Positive regularization parameter, with lower values resulting in less smoothing.

weights A vector of weights for each element of series.
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Further arguments for the optimization backend (except opts for nloptr, control
for optim, and . .. for both).

error.check Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.
opts List of options to pass to nloptr or stats::optim()’s control. The defaults
in the function’s formals are for nloptr, but the value will be adjusted for optim
if needed.
Details

This function can delegate the optimization to the nloptr package. For that to happen, you must
load it with either base: :library() or base::1loadNamespace(). If the aforementioned is not
fulfilled, the function will delegate to stats: :optim().

Value

The resulting centroid, with the optimization results as attributes (except for the returned centroid).

Parallel Computing

Please note that running tasks in parallel does not guarantee faster computations. The overhead
introduced is sometimes too large, and it’s better to run tasks sequentially.

This function uses the RcppParallel package for parallelization. It uses all available threads by
default (see RcppParallel::defaultNumThreads()), but this can be changed by the user with
RcppParallel: :setThreadOptions().

An exception to the above is when it is called within a foreach parallel loop made by dtwclust. If
the parallel workers do not have the number of threads explicitly specified, this function will default
to 1 thread per worker. See the parallelization vignette for more information - browseVignettes("dtwclust”)

For unknown reasons, this function has returned different results (in the order of 1e-6) when using
multi-threading in x64 Windows installations in comparison to other environments (using nloptr
v1.0.4). Consider limiting the number of threads if you run into reproducibility problems.

References

Cuturi, M., & Blondel, M. (2017). Soft-DTW: a Differentiable Loss Function for Time-Series.
arXiv preprint arXiv:1703.01541.

shape_extraction Shape average of several time series

Description

Time-series shape extraction based on optimal alignments as proposed by Paparrizos and Gravano
(2015) for the k-Shape clustering algorithm.
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shape_extraction

Usage
shape_extraction(X, centroid = NULL, znorm = FALSE, ..., error.check = TRUE)
Arguments
X A matrix or data frame where each row is a time series, or a list where each
element is a time series. Multivariate series should be provided as a list of
matrices where time spans the rows and the variables span the columns.
centroid Optionally, a time series to use as reference. Defaults to a random series of X if
NULL. For multivariate series, this should be a matrix with the same characteris-
tics as the matrices in X. It will be z-normalized.
znorm Logical flag. Should z-scores be calculated for X before processing?

error.check

Details

Further arguments for zscore().

Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.

This works only if the series are z-normalized, since the output will also have this normalization.

The resulting centroid will have the same length as centroid if provided. Otherwise, there are two
possibilities: if all series from X have the same length, all of them will be used as-is, and the output
will have the same length as the series; if series have different lengths, a series will be chosen at
random and used as reference. The output series will then have the same length as the chosen series.

This centroid computation is cast as an optimization problem called maximization of Rayleigh
Quotient. It depends on the SBD() algorithm. See the cited article for more details.

Value

Centroid time series (z-normalized).

References

Paparrizos J and Gravano L (2015). “k-Shape: Efficient and Accurate Clustering of Time Series.” In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, series
SIGMOD ’15, pp. 1855-1870. ISBN 978-1-4503-2758-9, doi:10.1145/2723372.2737793.

See Also

SBD(), zscore()

Examples

# Sample data

data(ucicCT)

# Normalize desired subset
X <- zscore(CharTraj[1:5])


https://doi.org/10.1145/2723372.2737793
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# Obtain centroid series
C <- shape_extraction(X)

# Result
matplot(do.call(cbind, X),

type = "1", col = 1:5)
points(C)

ssdtwclust A shiny app for semi-supervised DTW-based clustering

Description

Display a shiny user interface that implements the approach in Dau et al. (2016).

Usage
ssdtwclust(series, ..., complexity = NULL)
Arguments
series Time series in the formats accepted by compare_clusterings().
More arguments for shiny: : runApp().
complexity A function to calculate a constraint’s complexity. See details in the Cluster
section.
Details

The approach developed in Dau et al. (2016) argues that finding a good value of window.size for
the DTW distance is very important, and suggests how to find one by using user-provided feedback.
After clustering is done, a pair of series is presented at a time, and the user must annotate the pair
as:

* Must link: the series should be in the same cluster.

* Cannot link: the series should not be in the same cluster.

* Skip: the choice is unclear.
After each step, a good value of the window size is suggested by evaluating which clusterings fulfill
the constraint(s) so far, and how (see Dau et al. (2016) for more information), and performing a

majority vote using the window sizes inferred from each constraint. The (main) procedure is thus
interactive and can be abandoned at any point.

Explore

This part of the app is simply to see some basic characteristics of the provided series and plot some
of them. The field for integer IDs expects a valid R expression that specifies which of the series
should be plotted. Multivariate series are plotted with each variable in a different facet.
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Cluster

This part of the app implements the main procedure by leveraging compare_clusterings(). The
interface is similar to interactive_clustering(), so it’s worth checking its documentation too.

Since compare_clusterings() supports parallelization with foreach: : foreach(), you can reg-

ister a parallel backend before opening the shiny app, but you should pre-load the workers with the
necessary packages and/or functions. See parallel: :clusterEvalQ() and parallel::clusterExport(),
as well as the examples below.

The range of window sizes is specified with a slider, and represents the size as a percentage of
the shortest series’ length. The step parameter indicates how spaced apart should the sizes be
(parameter 'by' in base: :seq()). A 0-size window should only be used if all series have the same
length. If the series have different lengths, using small window sizes can be problematic if the
length differences are very big, see the notes in dtw_basic().

A window. size should not be specified in the extra parameters, it will be replaced with the com-
puted values based on the slider. Using dba() centroid is detected, and will use the same window
sizes.

For partitional clusterings with many repetitions, and hierarchical clusterings with many linkage
methods, the resulting partitions are aggregated by calling clue: :cl_medoid() with the specified
aggregation method.

By default, complexity of a constraint is calculated differently from what is suggested in Dau et al.
(2016):

* Allocate a logical flag vector with length equal to the number of tested window sizes.

* For each window size, set the corresponding flag to TRUE if the constraint given by the user is
fulfilled.

* Calculate complexity as: (number of sign changes in the vector) / (number of window sizes -
1L) / (maximum number of contiguous TRUE flags).

You can provide your own function in the complexity parameter. It will receive the flag vector as
only input, and a single number is expected as a result.

The complexity threshold can be specified in the app. Any constraint whose complexity is higher
than the threshold will not be considered for the majority vote. Constraints with a complexity
of 0 are also ignored. An infinite complexity means that the constraint is never fulfilled by any
clustering.

Evaluate

This section provides numerical results for reference. The latest results can be saved in the global
environment, which includes clustering results, constraints so far, and the suggested window size.

Since this includes everything returned by compare_clusterings(), you could also use repeat_clustering()
afterwards.

The constraint plots depict if the constraints are fulfilled or not for the given window sizes, where
1 means it was fulfilled and 0 means it wasn’t. An error about a zero-dimension viewport indicates
the plot height is too small to fit the plots, so please increase the height.
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Note

The optimization mentioned in section 3.4 of Dau et al. (2016) is also implemented here.

Tracing is printed to the console.

Author(s)

Alexis Sarda-Espinosa

References

Dau, H. A, Begum, N., & Keogh, E. (2016). Semi-supervision dramatically improves time se-
ries clustering under dynamic time warping. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management (pp. 999-1008). ACM. https://sites.
google.com/site/dtwclustering/

See Also

interactive_clustering(), compare_clusterings()

Examples

## Not run:
require(doParallel)
workers <- makeCluster(detectCores())
clusterEvalQ(workers, {
library(dtwclust)
RcppParallel: :setThreadOptions(1L)
»
registerDoParallel (workers)
ssdtwclust(reinterpolate(CharTraj[1L:20L], 150L))

## End(Not run)

TADPole TADPole clustering

Description

Time-series Anytime Density Peaks Clustering as proposed by Begum et al. (2015).

Usage

TADPole(

data,

k = 2L,

dc,
window.size,


https://sites.google.com/site/dtwclustering/
https://sites.google.com/site/dtwclustering/
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error.check = TRUE,
1b = "1bk",
trace = FALSE

)

tadpole(
data,
k = 2L,
dc,
window.size,
error.check = TRUE,

1b = "1bk",
trace = FALSE
)
Arguments
data A matrix or data frame where each row is a time series, or a list where each
element is a time series. Multivariate series are not supported.
k The number of desired clusters. Can be a vector with several values.
dc The cutoff distance(s). Can be a vector with several values.
window.size Window size constraint for DTW (Sakoe-Chiba). See details.
error.check Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.
1b Which lower bound to use, "lIbk" for 1b_keogh () or "Ibi" for 1b_improved().
trace Logical flag. If TRUE, more output regarding the progress is printed to screen.
Details

This function can be called either directly or through tsclust().

TADPole clustering adopts a relatively new clustering framework and adapts it to time series clus-
tering with DTW. See the cited article for the details of the algorithm.

Because of the way the algorithm works, it can be considered a kind of Partitioning Around Medoids
(PAM). This means that the cluster centroids are always elements of the data. However, this algo-
rithm is deterministic, depending on the value of dc.

The algorithm first uses the DTW’s upper and lower bounds (Euclidean and LB_Keogh respec-
tively) to find series with many close neighbors (in DTW space). Anything below the cutoff dis-
tance (dc) is considered a neighbor. Aided with this information, the algorithm then tries to prune
as many DTW calculations as possible in order to accelerate the clustering procedure. The series
that lie in dense areas (i.e. that have lots of neighbors) are taken as cluster centroids.

The algorithm relies on the DTW bounds, which are only defined for univariate time series of equal
length.

Parallelization is supported in the following way:

 For multiple dc values, multi-processing with foreach: : foreach().
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* The internal distance calculations use multi-threading with RcppParallel::RcppParallel.

The windowing constraint uses a centered window. The calculations expect a value in window. size
that represents the distance between the point considered and one of the edges of the window.
Therefore, if, for example, window.size = 10, the warping for an observation x; considers the
points between x;_10 and x;10, resulting in 10(2) + 1 = 21 observations falling within the window.

Value

A list with:

 cl: Cluster indices.
* centroids: Indices of the centroids.
* distCalcPercentage: Percentage of distance calculations that were actually performed.

For multiple k/dc values, a list of lists is returned, each internal list having the aforementioned
elements.

Parallel Computing

Please note that running tasks in parallel does not guarantee faster computations. The overhead
introduced is sometimes too large, and it’s better to run tasks sequentially.

This function uses the RcppParallel package for parallelization. It uses all available threads by
default (see RcppParallel::defaultNumThreads()), but this can be changed by the user with
RcppParallel: :setThreadOptions().

An exception to the above is when it is called within a foreach parallel loop made by dtwclust. If
the parallel workers do not have the number of threads explicitly specified, this function will default
to 1 thread per worker. See the parallelization vignette for more information - browseVignettes("dtwclust"”)

References

Begum N, Ulanova L, Wang J and Keogh E (2015). “Accelerating Dynamic Time Warping Cluster-
ing with a Novel Admissible Pruning Strategy.” In Conference on Knowledge Discovery and Data
Mining, series KDD ’15. ISBN 978-1-4503-3664-2/15/08, doi:10.1145/2783258.2783286.

tsclust Time series clustering

Description

This is the main function to perform time series clustering. See the details and the examples
for more information, as well as the included package vignettes (which can be found by typing
browseVignettes("dtwclust"”)). A convenience wrapper is available in compare_clusterings(),
and a shiny app in interactive_clustering().


https://doi.org/10.1145/2783258.2783286
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Usage
tsclust(
series = NULL,
type = "partitional”,
k = 2L,
preproc = NULL,
distance = "dtw_basic”,
centroid = ifelse(type == "fuzzy", "fcm”, "pam"),
control = do.call(paste@(type, "_control”), list()),
args = tsclust_args(),
seed = NULL,
trace = FALSE,
error.check = TRUE
)
Arguments

series A list of series, a numeric matrix or a data frame. Matrices and data frames are
coerced to a list row-wise (see tslist()).

type What type of clustering method to use: "partitional”, "hierarchical”,
"tadpole” or "fuzzy".

k Number of desired clusters. It can be a numeric vector with different values.
Arguments to pass to preprocessing, centroid and distance functions (added to
args). Also passed to method from hierarchical_control() if it happens to
be a function, and to stats: :hclust() if it contains the members parameter.

preproc Function to preprocess data. Defaults to zscore() only if centroid = "shape”,
but will be replaced by a custom function if provided.

distance A registered distance from proxy: :dist (). Ignored for type = "tadpole”.

centroid Either a supported string, or an appropriate function to calculate centroids when
using partitional/hierarchical/tadpole methods. See Centroids section.

control An appropriate list of controls. See tsclust-controls.

args An appropriate list of arguments for preprocessing, distance and centroid func-
tions. See tsclust_args() and the examples.

seed Random seed for reproducibility.

trace Logical flag. If TRUE, more output regarding the progress is printed to screen.

error.check

Details

Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.

Partitional and fuzzy clustering procedures use a custom implementation. Hierarchical clustering is
done with stats: :hclust() by default. TADPole clustering uses the TADPole() function. Speci-
fying type = "partitional”, preproc = zscore, distance = "sbd” and centroid = "shape” is
equivalent to the k-Shape algorithm (Paparrizos and Gravano 2015).
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The series may be provided as a matrix, a data frame or a list. Matrices and data frames are coerced
to a list, both row-wise. Only lists can have series with different lengths or multiple dimensions.
Most of the optimizations require series to have the same length, so consider reinterpolating them
to save some time (see Ratanamahatana and Keogh 2004; reinterpolate()). No missing values
are allowed.

In the case of multivariate time series, they should be provided as a list of matrices, where time spans
the rows of each matrix and the variables span the columns (see CharTrajMV for an example). All
included centroid functions should work with the aforementioned format, although shape is not
recommended. Note that the plot method will simply append all dimensions (columns) one after
the other.

Value

An object with an appropriate class from TSClusters.

If control$nrep > 1 and a partitional procedure is used, length(method) > 1 and hierarchical
procedures are used, or length(k) > 1, a list of objects is returned.

Centroid Calculation

In the case of partitional/fuzzy algorithms, a suitable function should calculate the cluster centroids
at every iteration. In this case, the centroids may also be time series. Fuzzy clustering uses the
standard fuzzy c-means centroid by default.

In either case, a custom function can be provided. If one is provided, it will receive the following
parameters with the shown names (examples for partitional clustering are shown in parentheses):
e x: The whole data list (1ist(ts1, ts2, ts3))

e cl_id: An integer vector with length equal to the number of series in data, indicating which
cluster a series belongs to (c(1L, 2L, 2L))

¢ k: The desired number of total clusters (2L)
e cent: The current centroids in order, in a list (1ist(centroidl, centroid2))
e cl_old: The membership vector of the previous iteration (c(1L, 1L, 2L))
* The elements of ... that match its formal arguments
In case of fuzzy clustering, the membership vectors (2nd and 5th elements above) are matrices

with number of rows equal to amount of elements in the data, and number of columns equal to the
number of desired clusters. Each row must sum to 1.

The other option is to provide a character string for the custom implementations. The following
options are available:
* "mean": The average along each dimension. In other words, the average of all xz among the
j series that belong to the same cluster for all time points ;.
* "median": The median along each dimension. Similar to mean.

* "shape": Shape averaging. By default, all series are z-normalized in this case, since the result-
ing centroids will also have this normalization. See shape_extraction() for more details.

* "dba": DTW Barycenter Averaging. See DBA() for more details.

e "sdtw_cent": Soft-DTW centroids, See sdtw_cent () for more details.
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* "pam": Partition around medoids (PAM). This basically means that the cluster centroids are
always one of the time series in the data. In this case, the distance matrix can be pre-computed
once using all time series in the data and then re-used at each iteration. It usually saves
overhead overall for small datasets (see tsclust-controls).

* "fcm": Fuzzy c-means. Only supported for fuzzy clustering and used by default in that case.

» "fcmdd": Fuzzy c-medoids. Only supported for fuzzy clustering. It always precomputes/uses
the whole cross-distance matrix.

The dba, shape and sdtw_cent implementations check for parallelization. Note that only shape,
dba, sdtw_cent, pam and fcmdd support series of different length. Also note that for shape, dba
and sdtw_cent, this support has a caveat: the final centroids’ length will depend on the length of
those series that were randomly chosen at the beginning of the clustering algorithm. For example, if
the series in the dataset have a length of either 10 or 15, 2 clusters are desired, and the initial choice
selects two series with length of 10, the final centroids will have this same length.

As special cases, if hierarchical or tadpole clustering is used, you can provide a centroid function
that takes a list of series as first input. It will also receive the contents of args$cent that match its
formal arguments, and should return a single centroid series. These centroids are returned in the
centroids slot. By default, the medoid of each cluster is extracted (similar to what pam_cent ()
does).

In the following cases, the centroids list will have an attribute series_id with an integer vector
indicating which series were chosen as centroids:

* Partitional clustering using "pam" centroid.

* Fuzzy clustering using "fcmdd" centroid.

* Hierarchical clustering with the default centroid extraction.

* TADPole clustering with the default centroid extraction.

Distance Measures

The distance measure to be used with partitional, hierarchical and fuzzy clustering can be modi-
fied with the distance parameter. The supported option is to provide a string, which must rep-
resent a compatible distance registered with proxy’s proxy::dist(). Registration is done via
proxy: :pr_DB(), and extra parameters can be provided in args$dist (see the examples).

Note that you are free to create your own distance functions and register them. Optionally, you can
use one of the following custom implementations (all registered with proxy):

o "dtw": DTW, optionally with a Sakoe-Chiba/Slanted-band constraint. Done with dtw: :dtw().

e "dtw2": DTW with L2 norm and optionally a Sakoe-Chiba/Slanted-band constraint. See
dtw2().

e "dtw_basic": A custom version of DTW with less functionality, but faster. See dtw_basic().

e "dtw_1b": DTW with L1 or L2 norm and a Sakoe-Chiba constraint. Some computations are
avoided by first estimating the distance matrix with Lemire’s lower bound and then iteratively
refining with DTW. See dtw_1b(). Not suitable for pam.precompute = TRUE nor hierarchical
clustering.

e "1bk": Keogh’s lower bound for DTW with either L1 or L2 norm for the Sakoe-Chiba con-
straint. See 1b_keogh().
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e "1bi": Lemire’s lower bound for DTW with either L1 or L2 norm for the Sakoe-Chiba con-
straint. See 1b_improved().

* "shd": Shape-based distance. See sbd ().
* "gak": Global alignment kernels. See gak().
e "sdtw": Soft-DTW. See sdtw().

Out of the aforementioned, only the distances based on DTW lower bounds don’t support series of
different length. The lower bounds are probably unsuitable for direct clustering unless series are
very easily distinguishable.

If you know that the distance function is symmetric, and you use a hierarchical algorithm, or a par-
titional algorithm with PAM centroids, or fuzzy c-medoids, some time can be saved by calculating
only half the distance matrix. Therefore, consider setting the symmetric control parameter to TRUE
if this is the case (see tsclust-controls).

Preprocessing

It is strongly advised to use z-normalization in case of centroid = "shape”, because the resulting
series have this normalization (see shape_extraction()). Therefore, zscore() is the default in
this case. The user can, however, specify a custom function that performs any transformation on the
data, but the user must make sure that the format stays consistent, i.e. a list of time series.

Setting to NULL means no preprocessing (except for centroid = "shape”). A provided function
will receive the data as first argument, followed by the contents of args$preproc that match its
formal arguments.

It is convenient to provide this function if you’re planning on using the stats: :predict() generic
(see also TSClusters-methods).

Repetitions

Due to their stochastic nature, partitional clustering is usually repeated several times with different
random seeds to allow for different starting points. This function uses parallel: :nextRNGStream()
to obtain different seed streams for each repetition, utilizing the seed parameter (if provided) to ini-
tialize it. If more than one repetition is made, the streams are returned in an attribute called rng.

Multiple values of k can also be provided to get different partitions using any type of clustering.

Repetitions are greatly optimized when PAM centroids are used and the whole distance matrix is
precomputed, since said matrix is reused for every repetition.

Parallel Computing

Please note that running tasks in parallel does not guarantee faster computations. The overhead
introduced is sometimes too large, and it’s better to run tasks sequentially.

The user can register a parallel backend, e.g. with the doParallel package, in order to attempt to
speed up the calculations (see the examples). This relies on foreach::foreach(), i.e. it uses
multi-processing.

Multi-processing is used in partitional and fuzzy clustering for multiple values of k and/or nrep (in
partitional_control()). See TADPole() to know how it uses parallelization. For cross-distance
matrix calculations, the parallelization strategy depends on whether the distance is included with
dtwclust or not, see the caveats in tsclustFamily.
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If you register a parallel backend and special packages must be loaded, provide their names in the
packages element of control. Note that "dtwclust" is always loaded in each parallel worker, so
that doesn’t need to be included. Alternatively, you may want to pre-load dtwclust in each worker
with parallel::clusterEvalQ().

Note
The lower bounds are defined only for time series of equal length. They are not symmetric, and
DTW is not symmetric in general.

Author(s)

Alexis Sarda-Espinosa

References

Please refer to the package vignette references (which can be loaded by typing vignette("dtwclust”)).

See Also

TSClusters, TSClusters-methods, tsclustFamily, tsclust-controls, compare_clusterings(), interactive_clustering(),
ssdtwclust().

Examples

#' NOTE: More examples are available in the vignette. Here are just some miscellaneous
#' examples that might come in handy. They should all work, but some don't run
#' automatically.

# Load data
data(uciCT)

#
# Simple partitional clustering with Euclidean distance and PAM centroids
#

# Reinterpolate to same length
series <- reinterpolate(CharTraj, new.length = max(lengths(CharTraj)))

# Subset for speed
series <- series[1:20]
labels <- CharTrajLabels[1:20]

# Making many repetitions
pc.12 <- tsclust(series, k = 4L,
distance = "L2", centroid = "pam”,
seed = 3247, trace = TRUE,
control = partitional_control(nrep = 10L))

# Cluster validity indices
sapply(pc.12, cvi, b = labels)
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#
# Hierarchical clustering with Euclidean distance
#

# Re-use the distance matrix from the previous example (all matrices are the same)
# Use all available linkage methods for function hclust

hc.12 <- tsclust(series, type = "hierarchical”,
k = 4L, trace = TRUE,
control = hierarchical_control(method = "all”,

distmat = pc.12[[1L]]@distmat))

# Plot the best dendrogram according to variation of information
plot(hc.12[[which.min(sapply(hc.12, cvi, b = labels, type = "VI"))11)

#
# Multivariate time series
#

# Multivariate series, provided as a list of matrices
mv <- CharTrajMV[1L:20L]

# Using GAK distance
mvc <- tsclust(mv, k = 4L, distance = "gak"”, seed = 390,
args = tsclust_args(dist = list(sigma = 100)))

# Note how the variables of each series are appended one after the other in the plot
plot(mvc)

## Not run:
#
# This function is more verbose but allows for more explicit fine-grained control
#

tsc <- tsclust(series, k = 4L,
distance = "gak", centroid = "dba",
preproc = zscore, seed = 382L, trace = TRUE,
control = partitional_control(iter.max = 30L),
args = tsclust_args(preproc = list(center = FALSE),
dist = list(window.size = 20L,

sigma = 100),
cent = list(window.size = 15L,
norm = "L2",

trace = TRUE)))

#
# Registering a custom distance with the 'proxy' package and using it
#

# Normalized asymmetric DTW distance

ndtw <- function(x, y, ...) {
dtw::dtw(x, y, step.pattern = asymmetric,
distance.only = TRUE, ...)$normalizedDistance
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# Registering the function with 'proxy'
if (!pr_DB$entry_exists(”"nDTW"))
proxy: :pr_DB$set_entry(FUN = ndtw, names=c("nDTW"),
loop = TRUE, type = "metric"”, distance = TRUE,
description = "Normalized asymmetric DTW")

# Subset of (original) data for speed
pc.ndtw <- tsclust(series[-1L], k = 4L,
distance = "nDTW",
seed = 8319,
trace = TRUE,
args = tsclust_args(dist = list(window.size = 18L)))

# Which cluster would the first series belong to?
# Notice that newdata is provided as a list
predict(pc.ndtw, newdata = series[1L])

tsclust

#

# Custom hierarchical clustering

#

require(cluster)

hc.diana <- tsclust(series, type = "h", k = 4L,
distance = "L2", trace = TRUE,
control = hierarchical_control(method = diana))

»

plot(hc.diana, type = "sc")

#

# TADPole clustering

#

pc.tadp <- tsclust(series, type = "tadpole", k = 4L,
control = tadpole_control(dc = 1.5,
window.size = 18L))

# Modify plot, show only clusters 3 and 4
plot(pc.tadp, clus = 3:4,
labs.arg = list(title = "TADPole, clusters 3 and 4",
x = "time", y = "series"))

# Saving and modifying the ggplot object with custom time labels
require(scales)

t <- seq(Sys.Date(), len = length(series[[1L]]), by = "day")

gpc <- plot(pc.tadp, time = t, plot = FALSE)

gpc + ggplot2::scale_x_date(labels = date_format("%b-%Y"),
breaks = date_breaks("2 months"))

#

# Specifying a centroid function for prototype extraction in hierarchical clustering
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#

# Seed is due to possible randomness in shape_extraction when selecting a basis series
hc.sbd <- tsclust(CharTraj, type = "hierarchical”,

k = 20L, distance = "sbd",

preproc = zscore, centroid = shape_extraction,

seed = 320L)

plot(hc.sbd, type = "sc")

#
# Using parallel computation to optimize several random repetitions
# and distance matrix calculation

#
require(doParallel)

# Create parallel workers

cl <- makeCluster(detectCores())
invisible(clusterEvalQ(cl, library(dtwclust)))
registerDoParallel(cl)

## Use constrained DTW and PAM
pc.dtw <- tsclust(CharTraj, k = 20L, seed = 3251, trace = TRUE,
args = tsclust_args(dist = list(window.size = 18L)))

## Use constrained DTW with DBA centroids
pc.dba <- tsclust(CharTraj, k = 20L, centroid = "dba",
seed = 3251, trace = TRUE,
args = tsclust_args(dist = list(window.size = 18L),
cent = list(window.size = 18L)))

#' Using distance based on global alignment kernels
pc.gak <- tsclust(CharTraj, k = 20L,
distance = "gak",
centroid = "dba",
seed = 8319,
trace = TRUE,
control = partitional_control(nrep = 8L),
args = tsclust_args(dist = list(window.size = 18L),
cent = list(window.size = 18L)))

# Stop parallel workers
stopCluster(cl)

# Return to sequential computations. This MUST be done if stopCluster() was called
registerDoSEQ()

## End(Not run)

tsclust-controls Control parameters for clusterings with tsclust()
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Description

Control parameters for fine-grained control.

Usage

partitional_control(
pam.precompute = TRUE,
iter.max = 100L,
nrep = 1L,
symmetric = FALSE,
packages = character(oL),
distmat = NULL,
pam.sparse = FALSE,
version = 2L

)

hierarchical_control(
method = "average"”,
symmetric = FALSE,
packages = character(QL),
distmat = NULL

)

fuzzy_control(
fuzziness = 2,
iter.max = 100L,
delta = 0.001,
packages = character(QL),
symmetric = FALSE,
version = 2L,
distmat = NULL
)

tadpole_control(dc, window.size, lb = "1lbk")

tsclust_args(preproc = list(), dist = list(), cent = list())

Arguments

pam.precompute Logical flag. Precompute the whole distance matrix once and reuse it on each it-
eration if using PAM centroids. Otherwise calculate distances at every iteration.
See details.

iter.max Integer. Maximum number of allowed iterations for partitional/fuzzy clustering.

nrep Integer. How many times to repeat clustering with different starting points (i.e.,
different random seeds).

symmetric Logical flag. Is the distance function symmetric? In other words, is dist(x,y)
== dist(y,x)? If TRUE, only half the distance matrix needs to be computed.
Automatically detected and overridden for the distances included in dtwclust.
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packages

distmat

pam.sparse
version

method

fuzziness

delta

dc
window.size
1b

preproc
dist

cent

Details
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Character vector with the names of any packages required for custom proxy
functions. Relevant for parallel computation, although since the distance entries
are re-registered in each parallel worker if needed, this is probably useless, but
just in case.

If available, the cross-distance matrix can be provided here. Only relevant for
partitional with PAM centroids, fuzzy with FCMdd centroids, or hierarchical
clustering.

Attempt to use a sparse matrix for PAM centroids. See details.
Which version of partitional/fuzzy clustering to use. See details.

Character vector with one or more linkage methods to use in hierarchical pro-
cedures (see stats: :hclust()), the character "all” to use all of the available
ones, or a function that performs hierarchical clustering based on distance ma-
trices (e.g. cluster::diana()). See details.

Numeric. Exponent used for fuzzy clustering. Commonly termed m in the liter-
ature.

Numeric. Convergence criterion for fuzzy clustering.

The cutoff distance for the TADPole algorithm.

The window.size specifically for the TADPole algorithm.

The lower bound to use with TADPole. Either "1bk" or "1bi".

A list of arguments for a preprocessing function to be used in tsclust().
A list of arguments for a distance function to be used in tsclust().

A list of arguments for a centroid function to be used in tsclust().

The functions essentially return their function arguments in a classed list, although some checks are

performed.

Regarding parameter version: the first version of partitional/fuzzy clustering implemented in the
package always performed an extra iteration, which is unnecessary. Use version 1 to mimic this

previous behavior.

Partitional

When pam. precompute = FALSE, using pam. sparse = TRUE defines a sparse matrix (refer to Matrix
and updates it every iteration (except for "dtw_1b" distance). For most cases, precomputing the
whole distance matrix is still probably faster. See the timing experiments in browseVignettes("dtwclust”).

Parallel computations for PAM centroids have the following considerations:

 If pam.precompute is TRUE, both distance matrix calculations and repetitions are done in
parallel, regardless of pam. sparse.

* If pam.precompute is FALSE and pam.sparse is TRUE, repetitions are done sequentially, so
that the distance calculations can be done in parallel and the sparse matrix updated iteratively.

* If both pam.precompute and pam.sparse are FALSE, repetitions are done in parallel, and
each repetition performs distance calculations sequentially, but the distance matrix cannot be
updated iteratively.

::sparseMatrix())
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Hierarchical

There are some limitations when using a custom hierarchical function in method: it will receive
the lower triangular of the distance matrix as first argument (see stats: :as.dist()) and the result
should support the stats::as.hclust() generic. This functionality was added with the cluster
package in mind, since its functions follow this convention, but other functions could be used if
they are adapted to work similarly.

TADPole

When using TADPole, the dist argument list includes the window. size and specifies norm = "L2".

TSClusters-class Class definition for TSClusters and derived classes

Description

Formal S4 classes for time-series clusters. See class hierarchy and slot organization at the bottom.

Details

The base class is TSClusters. The 3 classes that inherit from it are: PartitionalTSClusters,
HierarchicalTSClusters and FuzzyTSClusters.

HierarchicalTSClusters also contain stats: :hclust() as parent class.

Package clue is supported, but generics from flexclust are not. See also TSClusters-methods.

Slots

call The function call.

family An object of class tsclustFamily.

control An appropriate control object for tsclust(). See tsclust-controls.
datalist The provided data in the form of a list, where each element is a time series.
type A string indicating one of the supported clustering types of tsclust().
distance A string indicating the distance used.

centroid A string indicating the centroid used.

preproc A string indicating the preprocessing used.

k Integer indicating the number of desired clusters.

cluster Integer vector indicating which cluster a series belongs to (crisp partition). For fuzzy
clustering, this is based on distance, not on fcluster. For hierarchical, this is obtained by
calling stats: :cutree() with the given value of k.

centroids A list with the centroid time series.
distmat If computed, the cross-distance matrix.

proctime Time during function execution, as measured with base: :proc. time().
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dots The contents of the original call’s ellipsis (...).

args The contents of the original call’s args parameter. See tsclust_args().
seed The random seed that was used.

iter The number of iterations used.

converged A logical indicating whether the function converged.

clusinfo A data frame with two columns: size indicates the number of series each cluster has,
and av_dist indicates, for each cluster, the average distance between series and their respec-
tive centroids (crisp partition).

cldist A column vector with the distance between each series in the data and its corresponding
centroid (crisp partition).

method A string indicating which hierarchical method was used.

fcluster Numeric matrix that contains membership of fuzzy clusters. It has one row for each
series and one column for each cluster. The rows must sum to 1. Only relevant for fuzzy
clustering.

TSClusters
The base class contains the following slots:

e call

e family

e control
e datalist
* type

e distance
* centroid
* preproc
* k

e cluster
e centroids
e distmat
* proctime
e dots

e args

* seed

Partitional TSClusters
This class adds the following slots to the base class:

e iter

e converged
e clusinfo
* cldist
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Hierarchical TSClusters
This class adds the following slots to the base class:

¢ method
e clusinfo

e cldist

FuzzyTSClusters
This class adds the following slots to the base class:

e iter
e converged

e fcluster

See Also

TSClusters-methods

tsclusters-methods

tsclusters-methods Methods for TSClusters

Description

Methods associated with TSClusters and derived objects.

Usage
## S4 method for signature 'TSClusters'
initialize(.Object, ..., override.family = TRUE)

## S4 method for signature 'TSClusters'
show(object)

## S3 method for class 'TSClusters'
update(object, ..., evaluate = TRUE)

## S4 method for signature 'TSClusters'
update(object, ..., evaluate = TRUE)

## S3 method for class 'TSClusters'
predict(object, newdata = NULL, ...)

## S4 method for signature 'TSClusters'
predict(object, newdata = NULL, ...)
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## S3 method for class 'TSClusters'

plot(
X,
Y,

clus =

series

time =

plot =

type =

labels
)

seq_len(x@k),
labs.arg = NULL,

= NULL
NULL,
TRUE,
NULL,
= NULL

’

## S4 method for signature 'TSClusters,missing'

plot(
X’
Y,
clus =
series
time =
plot =

type
labels

Arguments

.Object

override.

object, x

evaluate

newdata

clus

seq_len(x@k),
labs.arg = NULL,

= NULL
NULL,
TRUE,
NULL,
= NULL

family

’

A TSClusters prototype. You shouldn’t use this, see Initialize section and the
examples.

For initialize, any valid slots. For plot, passed to ggplot2::geom_line()
for the plotting of the cluster centroids, or to stats: :plot.hclust(); see Plot-
ting section and the examples. For update, any supported argument. Otherwise
ignored.

Logical. Attempt to substitute the default family with one that conforms to the
provided elements? See Initialize section.

An object that inherits from TSClusters as returned by tsclust().

Logical. Defaults to TRUE and evaluates the updated call, which will result in a
new TSClusters object. Otherwise, it returns the unevaluated call.

New data to be assigned to a cluster. It can take any of the supported formats of
tsclust (). Note that for multivariate series, this means that it must be a list of
matrices, even if the list has only one matrix.

Ignored.

A numeric vector indicating which clusters to plot.
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labs.arg A list with arguments to change the title and/or axis labels. See the examples
and ggplot2: :1labs() for more information.

series Optionally, the data in the same format as it was provided to tsclust().

time Optional values for the time axis. If series have different lengths, provide the
time values of the longest series.

plot Logical flag. You can set this to FALSE in case you want to save the ggplot object
without printing anything to screen

type What to plot. NULL means default. See details.

labels Whether to include labels in the plot (not for dendrogram plots). See details and

note that this is subject to randomness.

Details

The update method takes the original function call, replaces any provided argument and optionally
evaluates the call again. Use evaluate = FALSE if you want to get the unevaluated call. If no
arguments are provided, the object is updated to a new version if necessary (this is due to changes
in the internal functions of the package, here for backward compatibility).

Value

The plot method returns a gg object (or NULL for dendrogram plot) invisibly.

Initialize

The initialize method is used when calling methods: :new(). The family slot can be substituted
with an appropriate one if certain elements are provided by the user. The initialize methods of
derived classes also inherit the family and can use it to calculate other slots. In order to get a fully
functional object, at least the following slots should be provided:

* type: "partitional”, "hierarchical", "fuzzy" or "tadpole".
* datalist: The data in one of the supported formats.

* centroids: The time series centroids in one of the supported formats.

* cluster: The cluster indices for each series in the datalist.

* control=: A tsclust-controls object with the desired parameters.

* distancex*: A string indicating the distance that should be used.

* centroid*: A string indicating the centroid to use (only necessary for partitional clustering).

*Necessary when overriding the default family for the calculation of other slots, CVIs or prediction.
Maybe not always needed, e.g. for plotting.
Prediction

The predict generic can take the usual newdata argument. If NULL, the method simply returns
the obtained cluster indices. Otherwise, a nearest-neighbor classification based on the centroids
obtained from clustering is performed:

1. newdata is preprocessed with object@family@preproc using the parameters in object@args$preproc.
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2. A cross-distance matrix between the processed series and object@centroids is computed
with object@family@dist using the parameters in object@args$dist.

3. For non-fuzzy clustering, the series are assigned to their nearest centroid’s cluster. For fuzzy
clustering, the fuzzy membership matrix for the series is calculated. In both cases, the function
in object@family@cluster is used.

Plotting

The plot method uses the ggplot?2 plotting system (see ggplot2: :ggplot()).

The default depends on whether a hierarchical method was used or not. In those cases, the dendro-
gram is plotted by default; you can pass any extra parameters to stats::plot.hclust() via the
ellipsis (. . .).

Otherwise, the function plots the time series of each cluster along with the obtained centroid.
The default values for cluster centroids are: linetype = "dashed”, linewidth =1.5, colour =
"black”, alpha = @.5. You can change this by means of the ellipsis (. . .).

You can choose what to plot with the type parameter. Possible options are:

* "dendrogram”: Only available for hierarchical clustering.

* "series”: Plot the time series divided into clusters without including centroids.

* "centroids”: Plot the obtained centroids only.

* "sc": Plot both series and centroids
In order to enable labels on the (non-dendrogram) plot, you have to select an option that plots the
series and at least provide an empty list in the labels argument. This list can contain arguments
for ggrepel: :geom_label_repel() and will be passed along. The following are set by the plot
method if they are not provided:

* "mapping": set to aes(x =t, y = value, label = label)

e "data": a data frame with as many rows as series in the datalist and 4 columns:

— t: x coordinate of the label for each series.

value: y coordinate of the label for each series.

cl: index of the cluster to which the series belongs (i.e. x@cluster).

label: the label for the given series (i.e. names(x@datalist)).

You can provide your own data frame if you want, but it must have those columns and, even if you
override mapping, the c1 column must have that name. The method will attempt to spread the labels
across the plot, but note that this is subject to randomness, so be careful if you need reproducibility
of any commands used after plotting (see examples).

If created, the function returns the gg object invisibly, in case you want to modify it to your liking.
You might want to look at ggplot2: :ggplot_build() if that’s the case.

If you want to free the scale of the X axis, you can do the following:
plot(x, plot = FALSE) + facet_wrap(~cl, scales ="free")

For more complicated changes, you're better off looking at the source code at https://github.
com/asardaes/dtwclust/blob/master/R/S4-TSClusters-methods.R and creating your own
plotting function.


https://github.com/asardaes/dtwclust/blob/master/R/S4-TSClusters-methods.R
https://github.com/asardaes/dtwclust/blob/master/R/S4-TSClusters-methods.R
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Examples

data(uciCT)

# Assuming this was generated by some clustering procedure
centroids <- CharTraj[seq(1L, 100L, 5L)]
cluster <- unclass(CharTrajLabels)

pc_obj <- new("PartitionalTSClusters”,
type = "partitional”, datalist = CharTraj,
centroids = centroids, cluster = cluster,

distance = "sbd”, centroid = "dba",
control = partitional_control(),
args = tsclust_args(cent = list(window.size = 8L, norm = "L2")))

fc_obj <- new("FuzzyTSClusters”,
type = "fuzzy”, datalist = CharTraj,
centroids = centroids, cluster = cluster,
distance = "sbhd"”, centroid = "fcm",
control = fuzzy_control())

show(fc_obj)

## Not run:
plot(pc_obj, type = "c”, linetype = "solid”,
labs.arg = list(title = "Clusters' centroids"”))

set.seed(15L)
plot(pc_obj, labels = list(nudge_x = -5, nudge_y = 0.2),
clus = c(1L,4L))

## End(Not run)

tsclustFamily-class Class definition for tsclustFamily

Description

Formal S4 class with a family of functions used in tsclust().

Details

The custom implementations also handle parallelization.

Since the distance function makes use of proxy, it also supports any extra proxy: :dist() param-
etersin . ...

The prototype includes the cluster function for partitional methods, as well as a pass-through
preproc function. The initializer expects a control from tsclust-controls. See more below.
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Slots

dist The function to calculate the distance matrices.
allcent The function to calculate centroids on each iteration.
cluster The function used to assign a series to a cluster.

preproc The function used to preprocess the data (relevant for stats: :predict()).

Distance function

The family’s dist() function works like proxy: :dist() but supports parallelization and optimized
symmetric calculations. If you like, you can use the function more or less directly, but provide a
control argument when creating the family (see examples). However, bear in mind the following
considerations.

* The second argument is called centroids (inconsistent with proxy: :dist()).

* If control$distmat is not NULL, the function will try to subset it.

e If control$symmetric is TRUE, centroids is NULL, and there is no argument pairwise that

is TRUE, only half the distance matrix will be computed.

Note that all distances implemented as part of dtwclust have custom proxy loops that use multi-
threading independently of foreach, so see their respective documentation to see what optimizations
apply to each one.

For distances not included in dtwclust, the computation can be in parallel using multi-processing
with foreach: : foreach(). If you install and load or attach (see base: :1ibrary() or base: : loadNamespace())
the bigmemory package, the function will take advantage of said package when all of the following
conditions are met, reducing the overhead of data copying across processes:
e control$symmetric is TRUE
e centroidsis NULL
e pairwise is FALSE or NULL
* The distance was registered in proxy::pr_DB with 1oop = TRUE
* A parallel backend with more than 1 worker has been registered with foreach

This symmetric, parallel case makes chunks for parallel workers, but they are not perfectly balanced,
so some workers might finish before the others.

Centroid function

The default partitional allcent() function is a closure with the implementations of the included cen-
troids. The ones for DBA(), shape_extraction() and sdtw_cent() can use multi-process paral-
lelization with foreach: : foreach(). Its formal arguments are described in the Centroid Calcula-
tion section from tsclust().

Note

This class is meant to group together the relevant functions, but they are not linked with each other
automatically. In other words, neither dist nor allcent apply preproc. They essentially don’t
know of each other’s existence.
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See Also

dtw_basic(), dtw_1b(), gak(), lb_improved(), 1b_keogh(), sbd(), sdtw().

Examples

## Not run:

data(uciCT)

# See "GAK" documentation

fam <- new("tsclustFamily”, dist = "gak")

# This is done with symmetric optimizations, regardless of control$symmetric
crossdist <- fam@dist(CharTraj, window.size = 18L)

# This is done without symmetric optimizations, regardless of control$symmetric
crossdist <- fam@dist(CharTraj, CharTraj, window.size = 18L)

# For non-dtwclust distances, symmetric optimizations only apply
# with an appropriate control AND a single data argument:
fam <- new("tsclustFamily”, dist = "dtw",

control = partitional_control(symmetric = TRUE))
fam@dist(CharTraj[1L:5L])

# If you want the fuzzy family, use fuzzy = TRUE
ffam <- new("tsclustFamily”, control = fuzzy_control(), fuzzy = TRUE)

## End(Not run)

tslist Coerce matrices or data frames to a list of time series

Description

Change a matrix or data frame to a list of univariate time series

Usage

tslist(series, simplify = FALSE)

Arguments
series A matrix or data frame where each row is a time series.
simplify Coerce all series in the resulting list to either matrix (multivariate) or numeric

(univariate).
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Details

Almost all functions in dtwclust work internally with lists of time series. If you want to avoid
constant coercion, create a list of time series once by calling this function.

For matrices and data frames, each row is considered as one time series. A list input is simply
passed through.
Value

A list of time series.

Note

The function assumes that matrix-like objects can be first coerced via base: :as.matrix(), so that
the result can be indexed with series[i, ].

No consistency checks are performed by this function.

uciCT Subset of character trajectories data set

Description

Subset: only 5 examples of each considered character. See details.

Format

Lists with 100 elements. Each element is a time series. Labels included as factor vector.

Details

Quoting the source:

"Multiple, labelled samples of pen tip trajectories recorded whilst writing individual characters. All
samples are from the same writer, for the purposes of primitive extraction. Only characters with a
single pen-down segment were considered."

The subset included in CharTraj has only 5 examples of the X velocity for each character. A vector
with labels is also loaded in CharTrajLabels.

The subset included in CharTrajMV has 5 examples too, but includes tip force as well as X and Y
velocity. Each element of the list is a multivariate series with 3 variables.

Please note that even though both CharTraj and CharTrajMV have the same series names, the actual
series in each subset are not the same, i.e., CharTraj$A.V1 is not in CharTrajMV$A. V1.

Source

https://archive.ics.uci.edu/ml/datasets/Character+Trajectories


https://archive.ics.uci.edu/ml/datasets/Character+Trajectories
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zscore Wrapper for z-normalization

Description

Wrapper for function base: :scale() that returns zeros instead of NaN. It also supports matrices,
data frames, and lists of time series.

Usage

zscore(
X)
multivariate = FALSE,
keep.attributes = FALSE,
error.check = TRUE

Arguments

X Data to normalize. Either a vector, a matrix/data.frame where each row is to be
normalized, or a list of vectors/matrices.

Further arguments to pass to base: :scale().

multivariate Is x a multivariate time series? It will be detected automatically if a list is pro-
vided in x.

keep.attributes
Should the mean and standard deviation returned by base::scale() be pre-
served?

error.check Logical indicating whether the function should try to detect inconsistencies and
give more informative errors messages. Also used internally to avoid repeating
checks.

Details

Multivariate series must have time spanning the rows and variables spanning the columns.

Value

Normalized data in the same format as provided.
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