Package ‘drawer’

October 13, 2022
Title An Interactive HTML Image Editing Tool
Version 0.2.0.1
Date 2022-08-19

Description An interactive image editing tool that can be added as part of the HTML in Shiny,
R markdown or any type of HTML document. Often times, plots, photos are embedded
in the web application/file. 'drawer' can take screenshots of these image-like elements, or
any part of the HTML document and send to an image editing space called 'canvas' to allow users
immediately edit the screenshot(s) within the same document. Users can quickly
combine, compare different screenshots, upload their own images
and maybe make a scientific figure.

Depends R (>=4.0.0)

Imports htmltools, magrittr, glue, bsplus, utils, shiny, stringr
Suggests testthat, ggplot2

License GPL (>= 3)

Encoding UTF-8

BugReports https://github.com/1z100/drawer/issues

URL https://github.com/1z100/drawer
RoxygenNote 7.2.1

Config/testthat/edition 3

NeedsCompilation no

Author Le Zhang [aut, cre]

Maintainer Le Zhang <lezhang100@gmail.com>
Repository CRAN

Date/Publication 2022-08-19 18:30:06 UTC

R topics documented:

CANVAS . . v v v v v e e e e e e e e e e e 2
toCanvasBtn e 7
toCanvasTextBtn e 8

https://github.com/lz100/drawer/issues
https://github.com/lz100/drawer

2 canvas

Index 10
canvas drawer main canvas workbench compinent

Description

use this function on Shiny UI or R markdown to create the image editing area.

Usage

canvas(

canvaslID,

title = "drawer”,
height = "100vh",
width = "100%",

logo_src
log_link
on_start

rmarkdown

Arguments

canvasID
title
height

width

logo_src
log_link
on_start

rmarkdown

Details

"drawer/img/drawer.png"”,
"https://github.com/1z10@/drawer”,
TRUE,

FALSE

string, an unique HTML ID
string, title of the canvas

string, css value of initial height of the canvas, like "100vh" for full height cur-
rent window, "50vh" for half.

string, css value of initial width of the canvas

string, link of an image you want to display as logo on the top left
string, a link, when the logo is clicked, where should it jump to
TRUE or a CSS selector. See details

bool, are you using inside R markdown? If yes, drawer will copy all image icons
that required by the canvas to current directory to ./drawer/img/. ..

outside Shiny or Rmarkdown:

If you are not working in Shiny or R markdown, you need to add the required full "'Boot-
strap3" javascript and CSS + latest ""jquery'' dependencies by yourself.

height and width:
There are two options for canvas height and width:

* dynamic CSS units like "100vh" (viewpoint height), "100vw" (view point width), or "100%"
for both. This kind of units adapt to all kinds of user screen settings.

canvas 3

* fixed unit, px (pixels). This does not change across users, but fixes the on_start problem
(read below).

height:

* height, css style vh is safer than % is not safe, unless the parent has some defined height, "%"
will work. Otherwise, if the parent height is "auto" or not defined, and you choose "100%",
canvas will still have O height.

Width usually does not have this problem. As long as an element is displayed, it has some width.

on_start:

This argument specify if you want to initiate the canvas when the document is loaded. If TRUE,
then when the document loading is done, start the canvas. The problem is if you set the height to
be "vh" (view height) units and if the canvas is hidden, like in a different tab and not displayed on
start, the view height is 0, because it is hidden on another tab (display property is none), so it will
cause the canvas cannot be initiated properly.

The solution is to bind the initiation with a clicking event, like on a tab or a button. For example,
make a button on the second tab and bind on_start to that button: on_start = "#buttonID".
Then when users click on that button, canvas initiate. Remember this is a Jquery CSS selector,
which means you need to append "#" in front your button ID.

If you want to do it automatically, like clicking on a certain tab, some CSS knowledge may
required. For example, in Shiny, you can use shiny::tabsetPanel to create a tab panel.

tabsetPanel (id = "tabs",

tabPanel ("Tab A", value = "A", ...),
tabPanel ("Tab B”, value = "B", ...),
)
Then, bind to it canvas(on_start = '#tabs 1i a[data-value="B"]', ...). This means we

are selecting the element with ID "tabs", which is the main tabsetPanel ID, then a list item (11)
which is the tab titles you see on UI, and finally, the link jump to tab B, (a[data-value="B"]).
See examples for a real case.

Another way to fix it is by given the height and width a fixed pixel unit:

canvas(
canvasID = "canvas_f",
height = "900px",
width = "1500px"

)

Upload your own image to canvas:

non

You can drag your own images to the canvas. Support major image formats, like "jpg", "png",

non non

"svg", "gif", "webp", "bmp". Moving images like "gif", "webp" will be animated on left side
preview, but will not move on canvas.

Value

a HTML component to be added to a Shiny app or document

Examples

#

basic usage

if(interactive()){

}

#

library(shiny)
ui <- fluidPage(
h3("Try to drag pictures locally to canvas”),

canvas("canvas_a")

)

server <- function(input, output, session) {

3

shinyApp(ui, server)

multiple canvas on a page

if(interactive()){

library(shiny)

ui <- fluidPage(
h3("multiple canvas on a page"),
p("They are independent”),
p("Dragging from one canvas to another is not supported currently”),
column(6, canvas("canvas_left")),
column(6, canvas("canvas_right"))

)

server <- function(input, output, session) {

shinyApp(ui, server)

with capture buttons buttons
if(interactive()){

library(shiny)
library(ggplot2)
ui <- fluidPage(
fluidRow(
id = "new_row",
column(
6,
h3("this is a title"),
column(6, tags$label("plot 1"), plotOutput(”plot_1")),
column(6, tags$label(”"plot 2"), plotOutput(”plot_2")),
),
column(
6,
h2("To canvas buttons"”),

canvas

canvas

h4("pure button with ‘toCanvasBtn‘"),

toCanvasBtn(
dom = "plot_1",
label = "capture plot 1",
canvasID = "canvas_b"

), brQ,

toCanvasBtn(
dom = "capture_button”,
label = "capture this button itself”,
canvasID = "canvas_b",
id = "capture_button”

), brQ,

toCanvasBtn(
dom = "#new_row .col-sm-6:first-of-type”,
label = "complex selector to select left column”,
canvasID = "canvas_b",
isID = FALSE

), brQ,

h4("button text input for any part of document with ‘toCanvasBtn‘"),

toCanvasTextBtn(
label = "try #plot_2 to for plot 2 or other selector”,
canvasID = "canvas_b",
text_value = "#plot_2"

)

)
),
canvas("canvas_b")

)

server <- function(input, output, session) {
output$plot_1 <- renderPlot({
ggplot(mpg, aes(cty, hwy)) +
geom_count(col="tomato3", show.legend=F)
»
output$plot_2 <- renderPlot({
ggplot(mpg, aes(cty, hwy)) +
geom_point()
»
}

shinyApp(ui, server)

3

start canvas as hidden, initiate later in tab panels
if(interactive()){
library(shiny)

ui <- fluidPage(
tabsetPanel(
id = "tabs",
tabPanel(
"Home page",
value = "tab_1",

canvas

h4("Content on home page"),
p("Canvas is hidden on start, go to other tabs")
),
tabPanel(
"Canvas C",
value = "tab_2",
markdown (
canvas hidden on start
In this example, you will see if the canvas is hidden,
not on the first tab in a ‘tabsetPanel‘, or other similar
UI where you do not see canvas on start. Then, the canvas
cannot be initiate properly using the default height value (100vh).
Using the dynamic computed CSS height like "100%", or "100vh"” with "hidden"
(display = none) elements give the height of ‘@ on start.
So, you **should not see the canvas*x on this tab, but a broken
structure and no canvas grid.
To fix it, either give it a fixed ‘height® and ‘width‘ pixel unit, like
- ‘height = "800px"", ‘width = "1500px"*
or bind the initiation event to a click of a button, the tab title or
any other element you specify with the ‘on_start‘ argument. See the
example code and watch how we do it in "canvas D-F".
),
canvas(canvasID = "canvas_c")
),
tabPanel(

"Canvas D",
value = "tab_3",
h4("Initiate canvas by a button"),

actionButton("start_canvas”, "Start Canvas C"),
canvas(
canvasID = "canvas_d",
on_start = "#start_canvas"
)
),
tabPanel(
"Canvas E",

value = "tab_4",
h4("Initiate canvas by clicking tab title"),
p("Canvas initiate when first time users come to this tab"),

canvas(
canvasID = "canvas_e",
on_start = "#tabs 1i a[data-value='tab_4']"
)
),
tabPanel(
"Canvas F",

value = "tab_5",
h4("Initiate canvas with fixed height and width"),

toCanvasBtn 7

canvas(
canvasID = "canvas_f",
height = "800px",
width = "1500px"

)

)
)
)

server <- function(input, output, session) {

3

shinyApp(ui, server)

}

toCanvasBtn Screenshot HTML elements to canvas button

Description

A bootstrap button that allows users to take a screenshot of specified HTML element (usually an
image) and send it to the drawer canvas for editing. In addition, you can download it as "png" or
"jpg" by opening up the dropdown menu.

Usage
toCanvasBtn(
dom,
canvaslID,
isID = TRUE,
id = nn R
label = "To Canvas”,
color_class = "primary”
)
Arguments
dom a HTML DOM selector, mostly common is to select the element by ID: e.g. a
plot with ID "plotl", to select, use dom = "plot1” to select the plot if isID =
TRUE. If isID = FALSE, use dom = "#plot1”
Other complex selector is supported. First turn isID = FALSE, then try things
like dom =" .btn i" selects an icon inside an element with "btn" class. If more
than one element is matched, only the first one will be screenshoted.
canvasID string, the ID of canvas. Unlike dom, you should not add "#" for canvasID even
if isID=FALSE
isID bool, TRUE if you want to select the dom by HTML ID, FALSE if the selector is

other than ID.

8 toCanvasTextBtn

id string, ID for this button, optional
label label of this button, optional
color_class bootstrap button color class suffix, usually one of ’default’, ’primary’, ’info’,

’success’, *warning’, *danger’

Details

This component will not work unless a drawer canvas has been loaded on current document.

Value

a button

Examples

see example of "canvas", ‘?canvas‘

toCanvasTextBtn Screenshot HTML elements to canvas text-button

Description

Unlike toCanvasBtn only screenshot a defined element, this function can take screenshot of any
element you specify in the text box and sent to canvas by using Jquery selector format.

Usage
toCanvasTextBtn(
canvaslID,
label = "",
text_value = "",
placeholder = "type a selector”,
tooltip = "Screenshot any element to drawer canvas”,
placement = "bottom”,
btn_label = "To Canvas”,
color_class = "primary”,
style = nn
)
Arguments
canvasID string, the ID of canvas.
label string, label of the whole group, on the top
text_value string, nitial value of the text input
placeholder string, placeholder text of the text input

tooltip a tooltip of the group

toCanvasTextBtn 9

placement where should the tooltip go?
btn_label text on the button
color_class bootstrap button color class suffix, usually one of ’default’, ’primary’, ’info’,
’success’, ‘warning’, ’danger’
style additional CSS style of the group, like "width: 50%"
Details

This component will not work unless a drawer canvas has been loaded on current document.

Input selector:
The selector uses Jquery selector.
* If you are not familiar with it, just remember the mostly commonly used is the element ID,

which is the inputID, ID arguments in most Shiny components. Jquery selector is almost the
same for ID, but requires you to add "#" in front, "#element-ID".

* If you have no idea about shiny or HTML selector, right click on the element, and click
inspect, you should see the document HTML code in the inspector and the element you want
should be highlighted. Find the attribute of "id", that’s what you need. Again, append "#" in
front of that value. Some elements do not have an "id", in this case, you need some advanced
selectors. Learn about them by Google "CSS selector".

Value

a shiny input group

Examples

see the example of "canvas"”, ‘?canvas’

Index

canvas, 2
shiny: :tabsetPanel, 3

toCanvasBtn, 7, 8
toCanvasTextBtn, 8

10

	canvas
	toCanvasBtn
	toCanvasTextBtn
	Index

