
Introduction to doMPI

Steve Weston
stephen.b.weston@gmail.com

May 1, 2017

1 Introduction

The doMPI package is what I call a “parallel backend” for the foreach package. Since the foreach

package is not a parallel programming system, but a parallel programming framework, it needs
a parallel programming system to do the actual work in parallel. The doMPI package acts as an
adaptor to the Rmpi package, which in turn is an R interface to an implementation of MPI. MPI,
or Message Passing Interface, is a specification for an API for passing messages between different
computers. There are a number of MPI implementations available that allow data to be moved
between computers quite efficiently.

Programming with MPI is rather difficult, however, since it is a rather large and complex API. For
example, the Rmpi package defines about 110 R functions, only a few of which are only for internal
use. And the MPI standard includes many more functions that aren’t supported by Rmpi, such as
the file functions. Of course, you only need to learn a small percentage of those functions in order
to start using MPI effectively, but it can take awhile just to figure out which functions are really
important, and which ones you can safely ignore.

The foreach package is an attempt to make parallel computing much simpler by providing a
parallel for-loop construct for R. As an adaptor to MPI, the doMPI package is an attempt to give you
the best of both worlds: the ease of use of parallel for-loops, with the efficiency of MPI.

Unfortunately, there are still a wide variety of problems that you may run into. First, you need
to have MPI installed on your computers, and then you have to build and install Rmpi to use that
MPI installation. That is where many people run into problems, particularly on Windows. However,
on Debian / Ubuntu, it is very easy to install Open MPI, and Rmpi works quite well with it.

Another thing to be aware of is that you have to run your R programs differently in order to
execute on multiple computers, and the exact method varies depending on your MPI implementation.
If you just start a normal R session, your workers will only run on your local machine. That’s great
for testing, but the point of using doMPI is to execute on multiple computers. To do that, you’ll
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need to start your R session using a command such as mpirun or mpiexec, depending on your MPI

installation.

Hopefully, this document will help you to get started, but it primarily deals with programming
issues, not configuring or administering computers. And for running doMPI scripts, I only discuss
the use of Open MPI. Very likely you will have some problem that I couldn’t help you with anyway,
and so I highly recommend that you join the R-sig-hpc mailing list. It is a very friendly and helpful
community, and there isn’t even a lot of traffic on it.

2 Installing the software

Assuming that you already have R and MPI installed on your computers, you will need to install
doMPI and the packages that it depends on. That can be done with a single “install.packages”
command, but you might want to explicitly install Rmpi first, so you can clearly see if it installs
correctly or not. On Debian / Ubuntu, you can actually install Rmpi by using apt-get to install
the Debian r-cran-rmpi package. That’s the most fool-proof way to install Rmpi on Ubuntu, for
example, since apt-get will automatically install a compatible version of MPI, if necessary. But on
other systems you can install it with:

> install.packages("Rmpi")

As I mentioned, if you have problems, I strongly recommend the R-sig-hpc mailing list if you
don’t have a local expert.

Once Rmpi is installed, the rest should be easy:

> install.packages("doMPI", dependencies=TRUE)

That will also install packages such as foreach and iterators.

3 Getting Started

So if I haven’t scared you off with my introduction, and you got all of the software installed, then
it’s time to see if it actually works! For testing purposes, we’ll just run on a single computer. In
that case, you just start a normal R session. I’ll talk about running on multiple computers later, in
section 8.

Once you’ve started an R session, load the doMPI package:

> library(doMPI)
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You’ll no doubt get an error at this point if Rmpi isn’t properly installed. If that happens, you
should restart the R session, load Rmpi, make a copy of the error message, google around for the
error, scratch your head for awhile, and then post a polite, well-thought-out request for help to R-
sig-hpc that includes the entire error message. Very possibly, someone on the list has encountered
that error before, and will offer advice on how to fix it. But don’t be too surprised if someone
suggests that you switch to Ubuntu.

Once you can successfully load doMPI, the next step is to create an MPI cluster object. There are
lots of options, but here’s one way to do that1:

> cl <- startMPIcluster(count=2)

This starts two cluster workers, or slaves, as MPI calls them. Note that if you’re using Open

MPI, those two processes will immediately start using as much of your CPU as they can. This is a
known issue with Open MPI. They are waiting for the master process to send them a message, but
they are “busy waiting” for that message. That doesn’t make much sense in this context, but it can
give better performance in some contexts. At any rate, it is an issue that the Open MPI group is
planning to address in a future release.

The next step is to register the MPI cluster object with the foreach package. This is done with
the “registerDoMPI” function:

> registerDoMPI(cl)

This tells foreach that you want to use doMPI as the parallel backend, and that you want to
use the specified MPI cluster object to execute the tasks. If you don’t register a cluster object, your
tasks won’t be executed in parallel, even though you use foreach with the %dopar% operator.

When you are finished using the MPI cluster object, it is important to shut it down, otherwise
you may leak processes on your cluster.2 You do that with the closeCluster function:

> closeCluster(cl)

And finally, you should probably call mpi.quit to exit your R session when using doMPI. You
could call mpi.finalize instead if you want to use doMPI interactively during testing. Both of
these functions will “finalize” MPI, which is a requirement for MPI programs. I’m not sure what the
consequences are of not finalizing MPI, but I have seen error messages from mpirun when I forgot
to finalize.

1I’m using the count argument because we’re in an interactive R session. However, in section 8, I’ll explain why
I don’t recommend using the count argument for most other circumstances.

2Shutting down the workers is particularly important with Open MPI, since they use CPU time even when they
are “idle”.
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4 A simple example

Now we’re ready to run a little test that actually runs in parallel. I always do that with a very
simple program that executes the sqrt function in parallel. It’s not a practical use of foreach,
because the sqrt function runs so fast that it makes no sense to execute it in parallel. But it makes
a great test.

> foreach(i=1:3) %dopar% sqrt(i)

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051

There are a lot of things to comment on in this little example. First of all, notice that a list
containing three numbers is returned by this command. That is quite different from a for-loop. If
we did this in a for-loop, we would execute sqrt three times, but the result would be thrown away.
A for-loop normally uses assignments to save its results, but foreach works more like lapply in
this respect, and that is what makes it work well for parallel execution.

Secondly, notice that we’re using a strange binary operator, named %dopar%. R doesn’t really
make it easy to define new control structures, but since arguments to functions are lazily evaluated,
it is possible. You don’t have to worry about that, however. Just keep in mind that you need to
put %dopar% in between the foreach and the loop body.

In a real program, you’ll obviously want to save the results of the computations. You may also
have several operations to perform, so the way you’ll usually write the previous example is as:

> x <- foreach(i=1:3) %dopar% {

+ sqrt(i)

+ }

> x

[[1]]

[1] 1

[[2]]
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[1] 1.414214

[[3]]

[1] 1.732051

The braces are a good practice since they force the correct operator precedence. And if you
squint hard, it looks just like a for-loop.

5 The .combine option

But what if we want our results to be returned in a vector, rather than a list? We could convert it
to a list afterwards, but there’s another way. The foreach function takes a number of additional
arguments, all of which start with a “.” to distinguish them from the “variable” arguments. The
one we need in this case is named .combine. You can use it to specify a function that will be
used to combine the results. This function must take at least two input arguments, and return a
value which is a “combined” or possibly “reduced” version of its input arguments. To combine many
numeric values into a single vector of numeric values, we can use the standard c function, which
concatenates its arguments:

> x <- foreach(i=1:3, .combine="c") %dopar% {

+ sqrt(i)

+ }

> x

[1] 1.000000 1.414214 1.732051

This works well for numeric, character, and logical values.

I also use the cbind function as a .combine function quite often. I use it to turn vectors into
matrices:

> x <- foreach(seed=c(7, 11, 13), .combine="cbind") %dopar% {

+ set.seed(seed)

+ rnorm(3)

+ }

> x

result.1 result.2 result.3

[1,] 2.2872472 -0.59103110 0.5543269

[2,] -1.1967717 0.02659437 -0.2802719

[3,] -0.6942925 -1.51655310 1.7751634
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6 Computing the sinc function

Now let’s try a slightly more realistic example. Let’s evaluate the sinc function over a grid of
values. We’d like to return the results in a matrix, as in the previous example, so we’ll use cbind

to combine the results:

> x <- seq(-8, 8, by=0.5)

> v <- foreach(y=x, .combine="cbind") %dopar% {

+ r <- sqrt(x^2 + y^2) + .Machine$double.eps

+ sin(r) / r

+ }

> persp(x, x, v)

x

x

v
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One thing to note in this example is that I’m doing an assignment to the variable r in the loop.
You can do that with foreach, but if you want your code to work correctly in parallel, you need to
be careful not to use variable assignments as a way of communicating between different iterations
of the loop. That’s what parallel programmers call a “loop dependence”. In this case I’m only using
it to communicate within a single iteration, so it’s safe.

Also note that I’m using the variable x inside the loop, which was defined before the loop. In
many other parallel computing systems, you’d have to explicitly export that variable somehow or
other. With foreach, it’s done automatically.

As a comparison, let’s write this program using the standard lapply function:

> x <- seq(-8, 8, by=0.5)

> sinc <- function(y) {

+ r <- sqrt(x^2 + y^2) + .Machine$double.eps

+ sin(r) / r

+ }

> r <- lapply(x, sinc)

> v <- do.call("cbind", r)

> persp(x, x, v)

As you can see, there is a similarity between these two versions. But it makes me very happy
that the parallel version is actually shorter and easier to explain than the sequential version.

I should also point out that in this sinc example, I’ve been very careful to make use of vector
operations in the loop. The primary rule for getting good performance in R is to use vector operations
whenever possible. I flagrantly broke that rule in the sqrt example. In the sinc example, I used
vector operations to compute the columns, and I used foreach to execute those vector operations
in parallel. The sinc example is still not really compute intensive enough to really merit executing
it in parallel, but at least it uses much better R programming style.

7 Processing a directory of data files

Now let’s try a different kind of example that you probably haven’t seen in any parallel programming
book, but simply reeks of practicality. Let’s say that you have a directory full of CSV data files,
and you want to read each of them, analyze the data in some way, and produce a plot of the results
that you write to output files. Obviously, it’s embarrassingly parallel, it can be time consuming,
and it’s a common task to perform.

Let’s perform that kind of operation using Andy Liaw’s randomForest package:

> ifiles <- list.files(pattern="\\.csv$")

> ofiles <- sub("\\.csv$", ".png", ifiles)
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> foreach(i=ifiles, o=ofiles, .packages="randomForest") %dopar% {

+ d <- read.csv(i)

+ rf <- randomForest(Species~., data=d, proximity=TRUE)

+ png(filename=o)

+ MDSplot(rf, d$Species)

+ dev.off()

+ NULL

+ }

Note that we’re iterating over two different vectors in this example: ifiles and ofiles, which
are both the same length. The foreach function let’s you specify any number of variables to iterate
over, and it stops when one of them runs out of values.

Also note the NULL at the end of the loop body. There is no value to return in this case, so I
used a NULL to make sure that I wasn’t needlessly sending anything large back to the master, which
would hurt the performance somewhat. The real results of executing the loop are written to disk
by the workers directly.

8 Running doMPI on a cluster

Now that we’ve run some interesting examples on a single computer, let’s try running on multiple
computers, which is the real purpose of the doMPI package.

To execute doMPI scripts on multiple computers, you need to execute the R interpreter using a
command such as mpirun or mpiexec. In this vignette, I’ll only discuss the Open MPI version of
mpirun, although it should be pretty simple to translate my instructions for other implementations.

When you execute mpirun, you can specify the hosts to use as a comma-separated list using
the -H or -host option, or by specifying a “host file” using the -hostfile option. You can also
use the -n or -np option to specify how many copies of your script to run on those nodes. If you
specify that only one copy should be executed, then doMPI will start workers for you using the Rmpi

mpi.comm.spawn function when you execute startMPIcluster. If you specify that more than one
copy of your script should be executed on those hosts, then doMPI will not spawn workers, assuming
that you have started all of the workers that you wanted using mpirun3. That means that multiple
instances of your script are going to start running, or in other words, the workers are going to
execute your script. In that case, your script should call the startMPIcluster function near the
beginning. The startMPIcluster function will notice when a “worker” calls it, and will execute the
workerLoop function, in order to execute tasks submitted by the master, or “rank 0” process.

Now let’s try some examples. Here’s an example that will run the script “sincMPI.R” using two

3Actually, startMPIcluster will always spawn workers unless the comm argument is 0, but comm defaults to 0 if
mpi.comm.size(0) is greater than one. See the documentation on startMPIcluster for more information.
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workers:

$ mpirun -H localhost,n2,n3 R --slave -f sincMPI.R

The mpirun command will run the R interpreter on “localhost”, “n2”, and “n3”, and R will execute
the script named “sincMPI.R” in the current directory. sincMPI.R is an example that comes in the
doMPI package, so you can try this command out by going to the “examples” directory of the doMPI

installation.

The sincMPI.R script first loads doMPI, and then calls startMPIcluster. The copy of sincMPI.R
running on the master, or “rank 0” process, will return from startMPIcluster, but the other two
processes (which are running on hosts “n2” and “n3”) will not return, since they will execute the
workerLoop function. That is why it’s a good idea to execute startMPIcluster near the beginning
of the script, otherwise the workers may run into problems executing code that was intended to be
executed by the master.

The last example used what I call “non-spawn” or “static” mode. Now let’s run in “spawn” or
“dynamic” mode. We’ll start the master on node “n1”, but we’ll also list hosts “n2” and “n3”. That
will include those nodes in the MPI “universe”, so that startMPIcluster will be able to spawn
processes to them:

$ mpirun -H n1,n2,n3 -n 1 R --slave -f sincMPI.R

Because we specified -n 1, the mpirun command only starts one copy of the R interpreter running.
startMPIcluster will then spawn two workers, since it notices that mpi.universe.size() is three.
They will execute on hosts “n2” and “n3”, since MPI knows that they are part of the “universe”.

So which of these two methods should you use? The Open MPI documentation advices using
“non-spawn” mode, since that will give better performance. You probably also need to use “non-
spawn” mode to run with a batch queueing system, such as “slurm”. But if your script needs to
perform other operations before startMPIcluster that would fail on the worker processes, or if
you need to create multiple clusters, then you should use the “spawn” mode, by specifying -n 1.

Here’s a final example that starts multiple processes on the hosts using “non-spawn” mode:

$ mpirun -H localhost,n2,n3 -n 6 R --slave -f sincMPI.R

This will start two processes on each of the hosts for a total of six processes. The master and
one worker will run on “localhost”, and “n2” and “n3” will both run two workers. In order to spawn
five workers, you would use -n 1, but you’d also have to modify the script to call startMPIcluster
with count set to 5.

In general, I’d suggest not using the startMPIcluster count argument unless you’re doing
something fancy, like creating multiple clusters. I think that’s the best method, since it let’s you
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control the number of workers strictly from the mpirun command, which is what we’ve been doing
in all of these examples. But if you do specify a value for count while in “non-spawn” mode, it’s got
to be equal to mpi.comm.size(0) - 1, or startMPIcluster will issue an error. That’s one reason
that none of the examples or benchmarks that come with doMPI use the count argument.

9 Host setup

Of course, in order for any of these examples to work, you’ve got to set up a lot of things correctly
on all of the hosts specified via -H. Generally speaking, I would strongly suggest that you setup
your hosts so they have an environment that is almost identical to your local machine. That is,
they should all have the same user account, with the same home directory, with passwordless ssh
enabled, and all of the same software installed using the same file paths. For example, R should be
installed in the same place on all machines, and the doMPI package should be installed in the same
directory on all machines, as well. That’s a pretty big requirement, but that’s the way most people
do things with MPI, and so that’s the way that many computer clusters are configured.

There are various tricks that you can use to make differently configured machines work together.
One trick is to create symbolic links on the worker machines to make them look more like the master
machine. And if your user account has different names on different machines, you can edit the ssh
configuration file on the master machine to use the appropriate user name for each worker machine.
But if you’re going to do much parallel execution, it’s worth the time and effort to set up your
computers so that you don’t have to depend on tricks.

10 Conclusion

I’d like to end by saying how easy parallel computing on a computer cluster can be if you use
foreach and doMPI. And it is a lot simpler than many of the alternatives. But running on networks
of computers always seems to present challenges. Hopefully, by using foreach and doMPI, most of
those will be system administration challenges, and not programming challenges. Since foreach

allows you to separate your parallel program from your parallel environment, you can develop your
program on a single computer, without using any parallel backend at all, let alone a tricky one.
Once your program is debugged and working, you can run it on a multicore workstation using a
“low maintenance” parallel backend such as doMC4. And once you’ve got a computer cluster set up
that has all the software installed by some friendly sysadmin, with an NFS-mounted home directory,
you can use the doMPI package to run that same parallel program very efficiently using MPI without
having to learn anything about message passing.

4The doMC package is also available on CRAN.
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