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1This document is included as a vignette (a LATEX document created using the R function Sweave()) of the package
dlnm. It is automatically downloaded together with the package and can be simply accessed through R by typing
vignette("dlnmExtended") .
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1 Preamble

This vignette dlnmExtended illustrates recent extensions to the R package dlnm, some of them
implementing development of the modelling framework of distributed lag linear and non-linear models
(DLMs and DLNMs). Primarily, this document describes the generalization of the DLM/DLNM
methodology beyond time series data, described in more detail in Gasparrini [2014]. In addition, this
vignette illustrates other developments, speci�cally the de�nition of extended prediction summaries,
the �exible application of existing or user-de�ned functions, and a more general use of the functions
for regression analysis. The results included in this document are not meant to represent scienti�c
�ndings, but are reported with the only purpose of illustrating the capabilities of the dlnm package.

A general overview of functions included in the package, with information on its installation and a brief
summary of the DLNM methodology are included in the vignette dlnmOverview, which represents
the main documentation of dlnm. The user can refer to that vignette for a general introduction to the
package.

Please send comments or suggestions and report bugs to antonio.gasparrini@lshtm.ac.uk.

2 Data

These extensions of the software are illustrated mainly through two examples, using the data sets drug
and nested included as data frames objects in the package. In particular, these data are ideal for
illustrating the main development presented in this vignette, namely the extension of the modelling
framework beyond time series.

These data sets contain simulated data from an hypothetical trial on a drug and a nested case-
control study, respectively, both including measures of time-varying exposures. They are described in
the related help pages, available by typing help(drug) or help(nested), and in the main vignette
dlnmOverview.

After loading the package in the R session, let's have a look at the �rst three observations of the data
frame drug:

> library(dlnm)

> head(drug, 3)

id out sex day1.7 day8.14 day15.21 day22.28

1 1 46 M 0 0 40 37

2 2 50 F 0 47 55 0

3 3 7 F 56 22 0 0

The data set contains data from a trial, with records for 200 randomized subjects, each receiving doses
of a drug for two out of four random weeks, with daily doses varying each week. The exposure level
is reported on 7-day intervals corresponding to each week. The data set contains also information on
the outcome measured on the 28th day and the sex of the subject.

The second data frame nested includes one record for each of 300 cancer cases and 300 controls
matched by age. The �rst four observations are:

> head(nested, 4)

id case age riskset exp15 exp20 exp25 exp30 exp35 exp40 exp45 exp50 exp55

1 1 1 81 240 5 84 34 45 128 81 14 52 11
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2 2 1 69 129 11 8 25 6 8 12 19 60 16

3 3 1 73 180 14 15 7 69 10 143 18 19 44

4 4 0 52 19 10 16 5 30 24 33 14 122 NA

exp60

1 16

2 10

3 23

4 NA

The variable case de�nes the case/control status, while other variables report the age of the subject
and the risk set he/she belongs to. The time-varying occupational exposure pro�les are stored in the
variables exp15�exp60, corresponding to average yearly exposure experienced in age intervals 15�19,
20�24 and so on up to 65 years. Note how the fourth subject, a control sampled at the age of 52, has
the exposure pro�le set to NA from age 55 on.

3 The matrix of exposure histories

The main di�erence between the extended and standard DLNM framework is the de�nition of a matrix

of exposure histories, namely the series of exposures experienced at lag ℓ for each of the n observations,
with ℓ = ℓ0, . . . , L and ℓ0 and L as minimum and maximum lag, respectively. This n × (L − ℓ0 + 1)
matrix needs to be put together in di�erent ways depending on the study design and the information
available on the time-varying exposure. The same process applies to time series data, although in this
case the matrix is reconstructed internally from the vector of exposure series. In time series data the
value for the entry [t, ℓ] of the matrix of exposure histories is equal to the entry at [t+1, ℓ+1], due to
the ordered nature of time series data. This correspondence does not apply any more in the extended
framework, as the exposure histories for two observations can be completely unrelated.

In the �rst example, I build the matrix of exposure histories for the trial data in the data frame drug
(see Section 2). The exposure pro�le for each subject is used to reconstruct the matrix of exposure
histories. In this case, the exposure at lag 0 corresponds to that experienced on the 28th day when
the outcome is measured for all the subjects. The rest of the exposure history is traced backward up
to lag 27, corresponding to exposure in the �rst day. This is a simple code to expand and reverse the
exposure pro�les stored by week into a matrix of daily exposure histories:

> Qdrug <- as.matrix(drug[,rep(7:4, each=7)])

> colnames(Qdrug) <- paste("lag", 0:27, sep="")

> Qdrug[1:3,1:14]

lag0 lag1 lag2 lag3 lag4 lag5 lag6 lag7 lag8 lag9 lag10 lag11 lag12 lag13

1 37 37 37 37 37 37 37 40 40 40 40 40 40 40

2 0 0 0 0 0 0 0 55 55 55 55 55 55 55

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The exposure histories for lag 0�13 are reported above for the �rst three subject. The �rst seven lags
(0�6) correspond to exposures during the last week, while lags 7�13 correspond to the third week, and
so on.

In a second example, I reconstruct the matrix of exposure histories for the data frame nested using the
exposure pro�les stored in 5-year intervals. These data are expanded to a matrix of exposure histories
over lag 3�40, with lag unit equal to a year. However, in this case the computation is more complex,
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as each subject is sampled at a di�erent age. Speci�cally, the exposure history is computed backward
along the exposure pro�le starting from the age of the subject. This step requires some additional
computation and data manipulation. The function exphist(), which derives an exposure history at
a given time of an exposure pro�le, may be of help:

> Qnest <- t(apply(nested, 1, function(sub) exphist(rep(c(0,0,0,sub[5:14]),

each=5), sub["age"], lag=c(3,40))))

> colnames(Qnest) <- paste("lag", 3:40, sep="")

> Qnest[1:3,1:11]

lag3 lag4 lag5 lag6 lag7 lag8 lag9 lag10 lag11 lag12 lag13

1 0 0 0 0 0 0 0 0 0 0 0

2 0 10 10 10 10 10 16 16 16 16 16

3 0 0 0 0 0 23 23 23 23 23 44

The exposure histories for lag 3�13 are reported above for the �rst three subject. The �rst subject,
sampled at the age of 81, is assumed to experience the exposure at lag 0 between 80 and 81, the
exposure at lag 1 between 79 and 80, and so on. As his/her last exposure is at age 65, the exposure
history up to lag 13 is set to 0. The second subject, sampled at the age of 69, has the exposure history
set to 0 for lag 3, corresponding to the exposure event at 66, and then to 10 for lags 4�8 and 16 for
lags 9�13, corresponding to exposure experienced at age periods 60�64 and 55�59, respectively. These
exposure histories are consistent with the exposure pro�les and age shown in Section 2.

An example of computation of the matrix of exposure histories for time-to-event analysis using cohort
data is illustrated in the code provided as supplementary material in Gasparrini [2014]. In that case,
multiple exposure histories are computed for each subject at the times he/she contributed to di�erent
risk sets, using the same exposure pro�le.

In general, the computation of this matrix depends on study design, information on exposure, lag
unit and desired level of approximation. This prevents the de�nition of functions in the dlnm package
applicable for this purpose. Nonetheless this issue represents the only additional computational step for
using the extended DLNM methodology beyond time series analysis. As shown in the next sections, the
use of the functions and interpretation of the results are mostly identical to the standard applications
in time series data illustrated in the vignette dlnmTS.

4 Applications beyond time series

4.1 A simple DLM

In this �rst example, I analyse the temporal dependency between the daily doses of a drug and
an unspeci�ed health outcome, applying the functions in the dlnm package to the data set drug.
Speci�c information on the use of the functions is provided in the related help pages and the vignette
dlnmOverview.

The �rst step is the de�nition of a cross-basis function and the derivation of a cross-basis matrix. This
is obtained through the function crossbasis():

> cbdrug <- crossbasis(Qdrug, lag=27, argvar=list("lin"),

arglag=list(fun="ns",knots=c(9,18)))

The results is stored in the object cbdrug, namely a matrix of transformed variables with special
attributes. The �rst unnamed argument x, di�erently from the original applications in time series
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described in the vignette dlnmTS, is the matrix of exposure histories. However, the rest of the
syntax is identical. The argument lag speci�es the lag period, with minimum lag placed by default
at 0. The lag period must be consistent with the dimension (i.e. number of columns) of the matrix
Qdrug. The arguments argvar and arglag de�ne the exposure-response and lag-response functions,
respectively, chosen here as a simple linear function and a natural cubic spline with knots at lag 9 and
18. An intercept is included by default in the lag-response function if not otherwise stated. Given the
linearity assumption, this can be technically de�ned as a DLM. See ?crossbasis for a complete list
of options and additional details.

A summary of the transformation can be obtained by the method function summary() for objects of
class "crossbasis" :

> summary(cbdrug)

CROSSBASIS FUNCTIONS

observations: 200

range: 0 to 100

lag period: 0 27

total df: 4

BASIS FOR VAR:

fun: lin

intercept: FALSE

BASIS FOR LAG:

fun: ns

knots: 9 18

intercept: TRUE

Boundary.knots: 0 27

The matrix cbdrug can be included in the formula of a regression model, in this case a simple linear
model assuming a Gaussian distribution, controlling for the e�ect of sex. This simpli�ed approach does
not consider any inter-subject variability, which is beyond the scope of this illustrative example. The
estimated exposure-lag-response association can be interpreted by predicting speci�c e�ect summaries
through the function crosspred():

> mdrug <- lm(out~cbdrug+sex, drug)

> pdrug <- crosspred(cbdrug, mdrug, at=0:20*5)

The function crosspred() accepts the cross-basis matrix and the related model object as the �rst two
arguments. The argument at, if provided as a numeric vector, determines the predictor levels at which
predictions should be computed. The reference value, not directly de�ned here, is set by default to 0
for the function lin(). The e�ect summaries are saved in the object pdrug of class "crosspred" , from
which can be extracted:

> with(pdrug,cbind(allfit,alllow,allhigh)["50",])

allfit alllow allhigh

30.29584 20.12871 40.46298

The code above extracts the estimate for the overall cumulative e�ects associated with an exposure to
50, interpreted using two perspectives: either as the overall increase in the outcome after a constant
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Figure 1
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exposure to 50 sustained throughout the lag period of 28 days (backward perspective), or as the sum of
the contributions of an exposure to 50 in the next 28 days (forward perspective). The 95% con�dence
intervals are also included, with the con�dence level that can be changed with the argument ci.level
in crosspred(). Alternatively, speci�c combinations of exposure levels and lag values can be extracted
from di�erent e�ect summaries with pre�x mat- stored in pdrug:

> pdrug$matfit["20","lag3"]

[1] 1.118139

This is interpreted as the increase in the outcome associated with an intake of a dose level of 20 three
days earlier. See ?crosspred for a full list of the predicted e�ect summaries. Alternatively, the plot()
methods for objects of class "crosspred" can be used to generate graphs:

> plot(pdrug, zlab="Effect", xlab="Dose", ylab="Lag (days)")

> plot(pdrug, var=60, ylab="Effect at dose 60", xlab="Lag (days)", ylim=c(-1,5))

> plot(pdrug, lag=10, ylab="Effect at lag 10", xlab="Dose", ylim=c(-1,5))

The �rst line of code produces the graph in Figure 1a, namely the bi-dimensional exposure-lag-response
association estimated by the regression model, showing how the e�ect varies across the range of dose
and lag values. This type of graph is obtained by leaving the argument ptype unselected, thus choosing
the default value "3d". The graphs suggests that the e�ect of a dose of the drug is pronounced in the
�rst days after the intake and then tends to disappear after 15-20 days.

The second and third lines of code produce the graphs in Figures 1b�1c, respectively, showing the
lag-response curve speci�c to exposure 60 and the exposure-response curve speci�c to lag 10. The
shape of these curves depends on the speci�c choices for the basis functions selected for producing the
cross-basis cbdrug. In particular, the lag-response curve in Figure 1b indicates an exponential decay in
the e�ects. This type of graphs represents slices cut in the 3-D surface of Figure 1a, with the argument
ptype set by default to "slices" if one of the argument var or lag is speci�ed. Additional argument
such as xlab and ylim are internally passed to plot.default to control the graphical parameters.
See ?plot.default and ?par for a complete list, and generally ?plot.crosspred for using plotting
functions.
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4.2 A more complex DLNM

In a second example, I assess how protracted exposures to an occupational agent a�ect the risk of
occurrence of cancer, using the data set nested. The steps of the analysis are the same illustrated in
Section 4.1.

An initial assumption is that the exposures sustained in the last three years, corresponding to lag 0�2,
are not a�ecting the risk of occurrence of cancer. Consistently with this assumption, the matrix of
exposure history Qnest has been derived for lag period 3�40. The cross-basis matrix can therefore be
created by:

> cbnest <- crossbasis(Qnest, lag=c(3,40), argvar=list("bs",degree=2,df=3),

arglag=list(fun="ns",knots=c(10,30),intercept=F))

The chosen basis functions are a quadratic spline for the dimensions of predictor and a natural cubic
spline for lags. In the former, only the number of degrees of freedom are chosen, and the single knot is
placed by default at the median. Note that in the spline for the lag-response the intercept is excluded,
so the function is forced to predict a null e�ect at the beginning of the lag period, consistently with
the assumption above. The command summary(cbnest) can show additional details.

The cross-basis objects can be included again in the formula of a regression model. Compatibly with
the nested case-control design, a conditional logistic regression is performed through the function
clogit() included in the package survival, which needs to be loaded into the session. E�ect summaries
are then predicted. The code is:

> library(survival)

> mnest <- clogit(case~cbnest+strata(riskset), nested)

> pnest <- crosspred(cbnest, mnest, cen=0, at=0:20*5)

Note how in this case the centering value must be selected directly through the argument cen, as
no straightforward reference exist for non-linear functions such as bs(). Similarly to the previous
example, estimates of the e�ect summaries can be extracted from the object pnest, although this time
using the objects with pre�x allRR- and matRR- which store the exponentiated predictions in the scale
of OR (see ?crosspred). The same types of graphs displayed in Figure 1 are obtained by:

> plot(pnest, zlab="OR", xlab="Exposure", ylab="Lag (years)")

> plot(pnest, var=50, ylab="OR for exposure 50", xlab="Lag (years)", xlim=c(0,40))

> plot(pnest, lag=5, ylab="OR at lag 5", xlab="Exposure", ylim=c(0.95,1.15))

The 3-D graph in Figure 2a is again interpreted as the bi-dimensional exposure-lag-response association
between the occupational exposure and the risk of cancer. Note how the lag period is expressed in
years in this example. The graph suggests an initial increase in risk, measured as odds ratio (OR),
followed by a decrease.

The slice graphs in Figures 2b�2c provide additional details. Speci�cally, the estimated lag-response
curve in Figure 2b displays a peak in risk 10 to 15 years after the exposure, with the risk then returning
to the baseline level 30 years after the exposure, although the con�dence intervals are quite wide. The
exposure-response curve in Figure 2c suggests an attenuation of the e�ect at higher exposures, although
again the con�dence intervals do not rule out a linear association.
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Figure 2
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5 Extended prediction summaries

The usual e�ect summaries obtained by crosspred() are computed over a grid of exposure and lag
values, speci�ed directly or through default selection. In particular, a vector of exposure values is
usually passed through the argument at, while the lag period is selected through lag. The function
then computes overall cumulative summaries, stored in vectors with pre�x all-, and speci�c summaries
associated to combinations of exposure and lag values, stored in matrices with pre�x mat-. The former
refer either to e�ects associated to a constant exposure throughout the lag period backward in time,
or to the total e�ect contribution of an exposure event within the lag period forward in time. The
latter can be used to display exposure-response and lag-response curves.

However, in the extended setting described in this vignette it is useful to de�ne alternative and comple-
mentary e�ect summaries. In particular, it may be of interest to predict what is the overall cumulative
e�ect associated to a speci�c exposure history, possibly characterized by time-varying exposures. These
new e�ect summaries can be easily computed using the function exphist() used in Section 3, which
produces a matrix of exposure histories given an exposure pro�le. This matrix can be directly passed
as the argument at of crosspred(), rather than a vector of exposure values.

As an example, we can use the nested case-control analysis in Section 4.2 for computing the overall
cumulative OR for an hypothetical subject exposed to exposure 10 for �ve years, then unexposed for
�ve more years, then exposed to 13 for ten years. From this exposure pro�le, we can compute the
exposure history at the end of the exposure period, looking backward in time. Speci�cally:

> expnested <- rep(c(10,0,13), c(5,5,10))

> hist <- exphist(expnested, time=length(expnested), lag=c(3,40))

> hist

lag3 lag4 lag5 lag6 lag7 lag8 lag9 lag10 lag11 lag12 lag13 lag14 lag15 lag16

20 13 13 13 13 13 13 13 0 0 0 0 0 10 10

lag17 lag18 lag19 lag20 lag21 lag22 lag23 lag24 lag25 lag26 lag27 lag28

20 10 10 10 0 0 0 0 0 0 0 0 0

lag29 lag30 lag31 lag32 lag33 lag34 lag35 lag36 lag37 lag38 lag39 lag40

20 0 0 0 0 0 0 0 0 0 0 0 0

The function exphist() produces the exposure history at time 20 over lag 3�40. The speci�c time

8



is set through the argument time and in this case corresponds to the end of the exposure period in
expnested. The last 21 exposures to 0 are included to complete the exposure history up to 40 years.
Now we can predict the overall cumulative e�ect by using hist as the argument at of crosspred().
Note that the lag period must be consistent with that used in estimation. This is the code:

> pnesthist <- crosspred(cbnest, mnest, cen=0, at=hist)

> with(pnesthist, c(allRRfit,allRRlow,allRRhigh))

20 20 20

3.503928 1.240109 9.900351

The estimated OR is 3.5 (95%CI: 1.2�9.9) compared to a subject with no exposure throughout the
whole lag period.

The same approach can be used to obtain dynamic predictions along time for a speci�c exposure pro�le.
The idea behind this more complex e�ect summary is that the risk can be predicted dynamically in
time given time-varying exposure histories, based on an assumed exposure-lag-response association.
In practice, for each given time, moving forward, the exposure history changes as speci�c exposure
events refer to di�erent lag periods.

As an example, I show how the dynamic predicted e�ect following a speci�c drug prescription can be
estimated using the analysis of the trial data illustrated in Section 4.1. Let's assume that a patient is
treated with a dose 10 for two weeks, then he/she increases to 50 for one week, then stops for 1 week
and starts again with a dose 20 for two weeks. First, I create the daily exposure pro�le:

> expdrug <- rep(c(10,50,0,20),c(2,1,1,2)*7)

The function exphist() can now be used sequentially along the exposure pro�le to create the matrix
of exposure histories for all the time points:

> dynhist <- exphist(expdrug, lag=27)

The argument time of exphist() by default takes the values of all the time points of expdrug, creating
the matrix of exposure histories for all of them. This matrix can now be used in crosspred() to obtain
the dynamic predictions:

> pdyndrug <- crosspred(cbdrug, mdrug, at=dynhist)

The object can now be used to plot the dynamic prediction:

> plot(pdyndrug,"overall", ylab="Effect", xlab="Time (days)", ylim=c(-10,27),

xlim=c(1,50), yaxt="n")

> axis(2, at=-1:5*5)

> par(new=TRUE)

> plot(expdrug, type="h", xlim=c(1,50), ylim=c(0,300), axes=F, ann=F)

> axis(4, at=0:6*10, cex.axis=0.8)

> mtext("Dose", 4, line=-1.5, at=30, cex=0.8)

The unnamed argument ptype in plot() is set to "overall", thus plotting this extended version
of overall cumulative association in Figure 3. This graph displays the variation from the baseline
outcome associated with the drug prescription pro�le detailed above, represented as histogram-like
vertical lines. As expected, the e�ect changes dynamically in time, depending on the doses but with a
delay determined by the lag structure.
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Figure 3
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6 Applying user-de�ned functions

Since version 2.0.0 of the dlnm package, important changes have also been implemented in the use
of the main functions. In particular, the functions onebasis(), called independently or internally
through crossbasis() for applying transformations, now simply acts as a wrapper to other functions
(see onebasis). The new functions strata(), poly(), thr() and integer() in the dlnm package (see
the related help pages), together with the functions ns() and bs() in the splines package, o�er all the
previous options of basis transformation.

However, this �exible approach o�ers the possibility of using di�erent functions available in other R

packages, or functions directly de�ned by the user. The called function must have x as its �rst argu-
ment, and it must return a vector or matrix of transformed variables with attributes storing the argu-
ments which exactly de�ne the transformation. This information will be used later by crosspred() to
produce the predictions. Also, the function must be de�ned as a closure containing formal arguments,
meaning that primitive functions such as exp(), sin() or log() cannot be used directly (see the
example below).

As a �rst example of applying user-de�ned functions within the DLNM framework, we can revise the
previous analysis illustrated in Section 4.2. Figure 2c suggested a possible attenuation of the e�ect at
high exposures. This fact and the skewness of the exposure distribution can be addressed through a
logarithmic transformation. As shown in Gasparrini [2014], this is equivalent to apply a logarithm as
exposure-response function in the cross-basis transformation. First, let's de�ne a new log function:

> mylog <- function(x) log(x+1)

This step is required as log() is a primitive function and cannot be used directly. The original exposure
is summed to 1 to prevent problems with 0 values in the logarithm. The new function mylog() can
now be used directly in crossbasis() in place of bs() to model the exposure-response curve:

> cbnest2 <- crossbasis(Qnest, lag=c(3,40), argvar=list("mylog"),

arglag=list(fun="ns",knots=c(10,30),intercept=F))

> summary(cbnest2)

CROSSBASIS FUNCTIONS
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observations: 600

range: 0 to 1064

lag period: 3 40

total df: 3

BASIS FOR VAR:

fun: mylog

BASIS FOR LAG:

fun: ns

knots: 10 30

intercept: FALSE

Boundary.knots: 3 40

Note how the total df of the cross-basis are now 3, if compared to the 9 in the original transformation,
as the exposure-response is modelled with only 1 df. The rest of the code is almost identical, just
substituting the newly created objects:

> mnest2 <- clogit(case~cbnest2+strata(riskset), nested)

> pnest2 <- crosspred(cbnest2, mnest2, cen=0, at=0:20*5)

> plot(pnest2, zlab="OR", xlab="Exposure", ylab="Lag (years)")

> plot(pnest2, var=50, ylab="OR for exposure 50", xlab="Lag (years)", xlim=c(0,40))

> lines(pnest, var=50, lty=2)

> plot(pnest2, lag=5, ylab="OR at lag 5", xlab="Exposure", ylim=c(0.95,1.15))

> lines(pnest, lag=5, lty=2)

Figure 4
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The results presented in Figure 4 can be compared with those originally displayed in Figure 2 of
Section 4.2. The method function lines() are used to add the original curves to the new plots. The
comparison also indicates how the assumption of a logarithmic shape produces a substantial increase
in precision.

Another example of application of user-de�ned functions is provided by extending the analysis illus-
trated in Section 4.1. The inspection of Figure 1b suggested that the lag-response curve follows an
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exponential decay trajectory. It may be reasonable to apply a function modelling this shape instead
than a natural cubic spline. This decay function can be de�ned as:

> fdecay <- function(x,scale=5) {

basis <- exp(-x/scale)

attributes(basis)$scale <- scale

return(basis)

}

The argument scale, with default value 5, is used to control the degree of decay. Note how this must
be included as an attribute of the vector returned by the new function fdecay(). Again, we can use
this new function to obtain the alternative cross-basis transformation:

> cbdrug2 <- crossbasis(Qdrug, lag=27, argvar=list("lin"),

arglag=list(fun="fdecay",scale=6))

> summary(cbdrug2)

CROSSBASIS FUNCTIONS

observations: 200

range: 0 to 100

lag period: 0 27

total df: 1

BASIS FOR VAR:

fun: lin

intercept: FALSE

BASIS FOR LAG:

fun: fdecay

scale: 6

Again, the computational step used in Section 4.1 can be repeated to perform the modi�ed analysis:

> mdrug2 <- lm(out~cbdrug2+sex, drug)

> pdrug2 <- crosspred(cbdrug2, mdrug2, at=0:20*5)

> plot(pdrug2, zlab="Effect", xlab="Dose", ylab="Lag (days)")

> plot(pdrug2, var=60, ylab="Effect at dose 60", xlab="Lag (days)", ylim=c(-1,5))

> lines(pdrug, var=60, lty=2)

> plot(pdrug2, lag=10, ylab="Effect at lag 10", xlab="Dose", ylim=c(-1,5))

> lines(pdrug, lag=10, lty=2)

The results are reported in Figure 5. The comparison with results in Figure 1 of Section 4.1, included
again as dashed lines, shows a dramatic increase in precision, as a strict structure is assumed for the
exposure-lag-response surface, which is entirely estimated with only 1 df. Note how the argument
scale is selected a priori to 6 and not estimated here, as the function fdecay() is non-linear for this
parameter. However, the DLNM framework can also be used with non-linear regression functions such
as nls() for estimating the scale parameter. More generally, a critical discussion and some guidance
on inference and model selection in the DLNM framework are o�ered in Gasparrini [2014].
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Figure 5
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7 A general tool for regression analysis

The functions in the package dlnm can also be used as a general tool for regression analysis. In partic-
ular, the facilities for prediction and graphical representation, developed for assessing bi-dimensional
exposure-lag-response associations, can be more generally applied for unlagged exposure-response re-
lationships.

Standard method for estimating these uni-dimensional associations include the use of regression splines
in unpenalized models, such as generalized linear models (GLMs) and Cox proportional hazard models,
or penalized splines in generalized additive models (GAMs). The user can extract predictions in
the usual way using the function crosspred(), which can be applied with unpenalized models in
conjunction with the function onebasis(), or directly with regression outputs of penalized models
�tted using the function gam() in the mgcv package.

In order to illustrate these options, I replicate examples illustrated in the help pages of the functions
ns() in the package splines and gam() in the package mgcv().

The �rst example deomonstrates the use of regression splines with the regression function lm() to assess
the relationship between average height (in inches) and weight (in pounds) in a sample of American
women aged 30�39. The code is reported in the Examples section of the help page of ns() (see
help(ns)). The same transformation can be obtained by applying the wrapper function onebasis():

> library(splines)

> oneheight <- onebasis(women$height, "ns", df=5)

> mwomen <- lm(weight ~ oneheight, data=women)

The use of onebasis() allows the use of other functions in dlnm for obtaining predictions and plots,
using a simple code:

> pwomen <- crosspred(oneheight, mwomen, cen=65, at=58:72)

> with(pwomen, cbind(allfit, alllow, allhigh)["70",])

allfit alllow allhigh

18.92287 18.46545 19.38030
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> plot(pwomen, ci="l", ylab="Weight (lb) difference", xlab="Height (in)", col=4)

The function crosspred() can be applied as usual, just including the object of class "onebasis" as
its �rst argument. The results are reported using a height of 65 inches as references. The estimated
association, with con�dence intervals, can be retrieved simply by accessing the all- components. Note
that, as no lagged e�ect is allowed, these are identical to the mat- components, which are however
reported as 1-column matrices. The association can be plotted in the usual way with the method
function plot(), with the graph shown in Figure 6a. Note how it is not important to select the type
of the plot with the argument ptype, as only uni-dimensional graphs can be created.

Figure 6
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The second example illustrates the application of functions in the package dlnm to facilitate the analysis
of smooth associations using penalized splines. The (slightly modi�ed) original code, reported in the
Examples section of the help page of gam() (see help(gam)), is:

> library(mgcv)

> dat <- gamSim(1,n=200,dist="poisson",scale=.1)

Gu & Wahba 4 term additive model

> b2 <- gam(y ~ s(x0,bs="cr") + s(x1,bs="cr") + s(x2,bs="cr") + s(x3,bs="cr"),

family=poisson, data=dat, method="REML")

> plot(b2, select=3)

The code performs a GAM estimating smoothed relationships in simulated data with several variables
using penalized cubic regression splines through the function s(), and generates the graph for the
variable x2, displayed in Figure 6b. Predictions and plots can also be obtained using dlnm functions,
with:

> pgam <- crosspred("x2", b2, cen=0, at=0:100/100)

> with(pgam, cbind(allRRfit, allRRlow, allRRhigh)["0.7",])

allRRfit allRRlow allRRhigh

1.3405415 0.8309798 2.1625694
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> plot(pgam, ylim=c(0,3), ylab="RR", xlab="x2", col=2)

As shown above, the crosspred() function also works directly with associations de�ned through the
function s() within gam(), simply including the character string with the name of the variable as its
�rst argument. This usage is similar to the more complex cross-basis parameterization obtained using
the related smooth cb smooth constructor (see the vignette dlnmPenalized). This step simpli�es
the computations of estimated assocations, together with measures of uncertainty. In addition, it is
possible to plot the smoothed relationship in the response scale or relative risk (RR), and using a
reference value that makes easier to interpret the association, as shown in Figure 6c.
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