Package 'disdat'

February 7, 2023

Type Package

Title Data for Comparing Species Distribution Modeling Methods

Version 1.0-1

Date 2023-02-07

Maintainer Roozbeh Valavi <valavi.r@gmail.com>

License GPL (≥ 3)

Encoding UTF-8

LazyLoad yes

Depends R (>= 3.5.0)

Suggests knitr, rmarkdown, terra, sf, tmap, mapview

VignetteBuilder knitr

NeedsCompilation no

Description Easy access to species distribution data for 6 regions in the world, for a total of 226 anonymised species. These data are described and made available by Elith et al (2020) <doi:10.17161/bi.v15i2.13384> to compare species distribution modelling methods.

Author Robert J. Hijmans [aut] (<https://orcid.org/0000-0001-5872-2872>), Roozbeh Valavi [cre, aut], Jane Elith [aut]

Repository CRAN

Date/Publication 2023-02-07 22:22:34 UTC

R topics documented:

disdat-package	2
AWT	4
CAN	5
disCRS	7
disData	7
disMapBook	9
disPredictors	9

NSW																								10
NZ				•	•																			11
SA				•																				13
SWI .				•																				14
																								17

Index

disdat-package	Data for spec	cies distribution	modeling

Description

This package allows for easy use of a collection of datasets that can be used to compare species distribution models. There are data for 6 regions in the world, for a total of 226 anonymised species including birds, vascular plants, reptiles and bats. Each data set has presence-only (and optionally background) training data to build models, and presence/absence data to evaluate models.

The data were compiled and used by a species distribution modeling working group sponsored by the National Center for Ecological Analysis and Synthesis (NCEAS), at UC Santa Barbara, USA. Full details of the dataset are provided in the first publication listed below, from the NCEAS data group.

Details

The data are fully described in the first publication listed below, and also supplied with metadata on Open Science Framework (OSF). On the OSF site, rasters (gridded data) of all environmental data are also available for download.

Author(s)

Package by Robert J. Hijmans, Roozbeh Valavi, and Jane Elith. Data collation and processing by the NCEAS data group (see first reference below, and the manual package for specific datasets).

References

The main reference for the these data is:

 Elith, J., Graham, C.H., Valavi, R., Abegg, M., Bruce, C., Ferrier, S., Ford, A., Guisan, A., Hijmans, R.J., Huettmann, F., Lohmann, L.G., Loiselle, B.A., Moritz, C., Overton, J.McC., Peterson, A.T., Phillips, S., Richardson, K., Williams, S., Wiser, S.K., Wohlgemuth, T. & Zimmermann, N.E., (2020). Presence-only and presence-absence data for comparing species distribution modeling methods. Biodiversity Informatics 15:69-80.

Other papers using these data include:

 Dudík, M. & Phillips, S. J. (2009). Generative and Discriminative Learning with Unknown Labeling Bias. in Advances in Neural Information Processing Systems 21 (eds. Koller, D., Schuurmans, D., Bengio, Y. & Bottou, L.) 401-408. Curran Associates, Inc.

- Dudík, M., Phillips, S. J. & Schapire, R. E. (2006). Correcting sample selection bias in maximum entropy density estimation. in Advances in Neural Information Processing Systems 18 (eds. Weiss, Y., Schölkopf, B. & Platt, J. C.) 323-330 (MIT Press).
- Elith, J. & Leathwick, J. R. (2007). Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Diversity and Distributions 13, 165-175.
- Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.McC., Peterson, A.T., Phillips, S.J., Richardson, K.S., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S., Zimmermann, N.E. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129–151
- Graham, C.H., Elith, J., Hijmans, R.J., Guisan, A., Peterson, A.T., Loiselle, B.A. (2008). The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology 45, 239–247.
- Guisan, A., Graham, C. H., Elith, J., Huettmann, F. & NCEAS Species Distribution Modelling Group (2007). Sensitivity of predictive species distribution models to change in grain size: insights from a multi-models experiment across five continents. Diversity and Distributions 13, 332-340.
- Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S. P., & Peterson, A. T. (2007). What matters for predicting the occurences of trees: techniques, data, or species' characteristics? Ecological Monographs 77, 615-530.
- Hijmans, R. J. (2012). Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93, 679-688.
- Phillips, S. J. & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161-175.
- Phillips, S. J. & Elith, J. (2010). POC-plots: calibrating species distribution models with presence-only data. Ecology 91, 2476-2484.
- Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., Ferrier, S. (2009). Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications 19, 181–197.
- Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. (2017). Opening the black box: an open-source release of Maxent. Ecography 40, 887-893.
- Valavi, R., Elith, J., Lahoz-Monfort, J.J. & Guillera-Arroita, G. (2023). Flexible species distribution modelling methods perform well on spatially separated testing data. Global Ecology and Biogeography, geb.13639.
- Valavi, R., Elith, J., Lahoz-Monfort, J.J. & Guillera-Arroita, G. (2021). Modelling species presence-only data with random forests. Ecography, 44, 1731–1742.
- Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J.J. & Elith, J. (2022). Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecological Monographs, 92(1). 10.1002/ecm.1486
- Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan, A., & NCEAS Species Distribution Modelling Group (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions 14, 763–773.

Description

Species occurrence data for 40 species (20 vascular plants, 20 birds) in the Australian Wet Tropics (AWT) and associated environmental data. Full details of the dataset are provided in the reference below. There are four data sets with training (po and bg) and test (pa, env) data:

po (training data) includes site names, species names, coordinates, occurrence ("1" for all, since all are presence records), group (plant or bird), and site values for 13 environmental variables (below).

bg (training data) has 10000 sites selected at random across the study region. It is structured identically to po, with "0" for occurrence (not implying absence, but denoting a background record in a way suited to most modelling methods) and NA for group.

env (testing data) includes group, site names, coordinates, and site values for 13 environmental variables (below). These are for sites from different surveys for plants (102 sites) and birds (340 sites), and can be returned as separate datasets by disEnv, or in one long format dataset by disData. These data are suited to make predictions to.

pa (testing data) includes group, site names, coordinates, and presence-absence records, one column per species (in the wide format returned by disPa). They can also be returned in long format using disData. The sites are identical to the sites in env. These data are suited to evaluating the predictions made with env.

Raster (gridded) data for all environmental variables are available - see the reference below for details.

The coordinate reference system of the x and y coordinates is UTM, zone 55, spheroid GRS 1980, datum GDA94 (EPSG:28355).

The vignette provided with this package provides an example of how to fit and evaluate a model with these data.

Environmental variables:

Code	Description	Units	Туре
bc01	Annual mean temperature	degrees C	Continuous
bc04	Temperature seasonality	dimensionless	Continuous
bc05	Max. temperature of warmest period	degrees C	Continuous
bc06	Min. temperature of coldest period	degrees C	Continuous
bc12	Annual precipitation	mm	Continuous
bc15	Precipitation seasonality	dimensionless	Continuous
bc17	Precipitation of driest quarter	mm	Continuous
bc20	Annual mean radiation	MJ/m2/day	Continuous
bc31	Moisture index seasonality	dimensionless	Continuous
bc33	Mean moisture index of lowest quarter (MI)	dimensionless	Continuous
slope	Slope	percent	Continuous
topo	Topographic position	0 is a gully and 100 a ridge, 50 mid-slope	Continuous
tri	Terrain ruggedness index	Sum of variation in a 1 km moving window	Continuous

AWT

CAN

Source

Environmental predictors prepared by Karen Richardson, Caroline Bruce and Catherine Graham. Species data supplied by Andrew Ford, Stephen Williams and Karen Richardson.

See the reference below for further details on source, accuracy, cleaning, and particular characteristics of these datasets.

References

Elith, J., Graham, C.H., Valavi, R., Abegg, M., Bruce, C., Ferrier, S., Ford, A., Guisan, A., Hijmans, R.J., Huettmann, F., Lohmann, L.G., Loiselle, B.A., Moritz, C., Overton, J.McC., Peterson, A.T., Phillips, S., Richardson, K., Williams, S., Wiser, S.K., Wohlgemuth, T. & Zimmermann, N.E., (2020). Presence-only and presence-absence data for comparing species distribution modeling methods. Biodiversity Informatics 15:69-80.

Examples

```
awt_po <- disPo("AWT")
awt_bg <- disBg("AWT")
awt_pa_plant <- disPa("AWT", "plant")
awt_env_plant <- disEnv("AWT", "plant")
awt_pa_bird <- disPa("AWT", "bird")
awt_env_bird <- disEnv("AWT", "bird")
# Or all in one list
awt <- disData("AWT")</pre>
```

sapply(awt, head)

disCRS("AWT")

CAN

Canadian bird species distribution data

Description

Species occurrence data for 20 bird species from Ontario, a province in Canada (CAN), and associated environmental data. Full details of the dataset are provided in the reference below. There are four data sets with training (po and bg) and test (pa, env) data:

po (training data) includes site names, species names, coordinates, occurrence ("1" for all, since all are presence records), group (bird), and site values for 11 environmental variables (below).

bg (training data) has 10000 sites selected at random across the study region. It is structured identically to CANtrain_po, with "0" for occurrence (not implying absence, but denoting background in a way suited to most modelling methods) and "NA" for group.

env (testing data) includes group, site names, coordinates, and site values for 11 environmental variables (below), at 14571 sites. This file is suited to making predictions.

pa (testing data) includes group, site names, coordinates, and presence-absence records, one column per species. The sites are identical to the sites in env. This file is suited to evaluating the predictions made to env.

Raster (gridded) data for all environmental variables are available - see the reference below for details.

The reference system of the x and y coordinates is unprojected with Clarke 1866 ellipsoid. Latitude and longitude are in geographical coordinates using unknown datum based upon the Clarke 1866 ellipsoid (EPSG:4008).

The vignette provided with this package provides an example of how to fit and evaluate a model with these data.

Environmental variables:

Code	Description
alt	Digital elevation
asp2	Aspect
ontprec	Annual Precipitation
ontprec4	April precipitation
ontprecsd	Precipitation Seasonality
ontslp	Slope
onttemp	Annual mean temperature
onttempsd	Temperature standard deviation
onttmin4	April minimum temperature
ontveg	Vegetation, from Ontario Land Cover Database (OLC) vegetation map, derived from a mosaic of Landsat images
watdist	Distance from Hudson Bay

Source

Environmental predictors prepared by Falk Huettmann, Jane Elith and Catherine Graham. Species data: PO from the Ontario Nest Records database, Royal Ontario Museum (ROM) and supplied by M. Peck to Falk Huettmann; PA from Breeding Bird Atlas for Ontario, provided by M. Cadman to Falk Huettmann.

See the reference below for further details on source, accuracy, cleaning, and particular characteristics of these datasets.

References

Elith, J., Graham, C.H., Valavi, R., Abegg, M., Bruce, C., Ferrier, S., Ford, A., Guisan, A., Hijmans, R.J., Huettmann, F., Lohmann, L.G., Loiselle, B.A., Moritz, C., Overton, J.McC., Peterson, A.T., Phillips, S., Richardson, K., Williams, S., Wiser, S.K., Wohlgemuth, T. & Zimmermann, N.E., (2020). Presence-only and presence-absence data for comparing species distribution modeling methods. Biodiversity Informatics 15:69-80.

Examples

can_po <- disPo("CAN")
can_bg <- disBg("CAN")</pre>

disCRS

```
can_pa <- disPa("CAN")
can_env <- disEnv("CAN")
# Or all in one list
x <- disData("CAN")
sapply(x, head)</pre>
```

disCRS("CAN")

disCRS

Coordinate reference system

Description

Get the coordinate reference system for the data of a region.

Usage

```
disCRS(region, format="proj4")
```

Arguments

region	character. One of "AWT", "CAN", "NSW", "NZ", "SA", "SWI"
format	character. Either "proj4" or "EPSG"

Value

character vector

Examples

```
disCRS("AWT")
disCRS("NSW")
```

disData

Get disdat datasets

Description

disPo returns the presence-only (po) data for a region

disBg returns the background (bg) data for a region

disPa returns the presence-absence (pa) data for a region and group

disEnv returns the environmental (env) data for sites matching those in the pa data, for a region and group

disData returns a list with all data for a region.

disBorder returns a polygon for one of the regions.

Usage

```
disData(region)
disPo(region)
disBg(region)
disPa(region, group)
disEnv(region, group)
disBorder(region, pkg="sf")
```

Arguments

region	character. One of "AWT", "CAN", "NSW", "NZ", "SA", "SWI"
group	character. If region is "NSW", one of "ba", "db", "nb", "ot", "ou", "rt", "ru", "sr". region is "AWT" "bird", "plant". The other regions each have only one group, so group should not be specified
pkg	character. Either "sf" or "terra" to get polygons as defined by that package

Details

disData returns a list with env, pa, bg and po data in that order. For regions with more than one group, the testing data (env and pa) will come from different surveys, and the model testing should be targeted to the relevant group. The first column of the env and pa data.frames is "group", which can be used to extract the correct data.

Value

data.frame (disPo, disBg, disPa and disEnv) or list with four data.frames (disData)

Examples

```
awt_po <- disPo("AWT")
awt_bg <- disBg("AWT")
awt_pa_plants <- disPa("AWT", "plant")
awt_env_plants <- disEnv("AWT", "plant")
x <- disData("NSW")
names(x)</pre>
```

sapply(x, head)

disMapBook

```
z <- disBorder("NSW")</pre>
```

plot(z)

disMapBook

Generating maps of disdat species

Description

A helper function for automatically generating maps for the species data in PDF format.

Usage

```
disMapBook(region, output_pdf, verbose = TRUE)
```

Arguments

region	A character vector. The name of the region(s) to generate plots.
output_pdf	Output pdf file to be saved.
verbose	Logical. control amount of screen reporting.

See Also

disPo, disPa and disBorder

Examples

disMapBook(c("AWT", "NSW"), "~/Desktop/sp_mapbook.pdf")

disPredictors Predictor variables

Description

Get the names of the predictor variables for a region.

Usage

```
disPredictors(region)
```

Arguments

region

character. One of "AWT", "CAN", "NSW", "NZ", "SA", "SWI"

Value

character vector

Examples

disPredictors("NSW")

NSW

New South Wales species distribution data

Description

Species occurrence data for 54 species from 8 biological groups in New South Wales (NSW, a state in Australia) and associated environmental data. Full details of the dataset are provided in the reference below. There are four data sets with training (po and bg) and test (pa, env) data:

po (training data) includes site names, species names, coordinates, occurrence ("1" for all, since all are presence records), group [ba = bats (7 species); db = diurnal birds (8 species); nb = nocturnal birds (2 species); ot = open-forest trees (8 species); ou = open-forest understorey plants (8 species); rt = rainforest trees (7 species); ru = rainforest understorey plants (6 species); sr = small reptiles (8 species)], and site values for 13 environmental variables (below).

bg (training data) has 10000 sites selected at random across the study region. It is structured identically to po, with "0" for occurrence (not implying absence, but denoting a background record in a way suited to most modelling methods) and NA for group.

env (testing data) includes group, site names, coordinates, and site values for 13 environmental variables (below). These are for sites from different surveys for each biological group (from 570 to 2075 sites per group), and can be returned as separate datasets by disEnv, or in one long format dataset by disData. This set of files is suited to making predictions.

pa (testing data) includes group, site names, coordinates, and presence-absence records, one column per species (in the wide format returned by disPa). They can also be returned in long format using disData. The sites are identical to the sites in env. These data are suited to evaluating the predictions made with env.

Raster (gridded) data for all environmental variables are available - see the reference below for details.

The reference system of the x and y coordinates is unprojected. Latitude and longitude are in geographical coordinates using the WGS84 datum (EPSG:4326).

The vignette provided with this package provides an example of how to fit and evaluate a model with these data.

Environmental variables:

Code Description

cti	"compound topographic index" - a quantification of the position of a site in the local landscape. It is often referred
disturb	disturbance (clearing, logging etc) index.
mi	moisture index. Index of site wetness derived from a water balance algorithm using rainfall, evaporation, radiation
rainann	mean annual rainfall

raindq	mean rainfall of the driest quarter
rugged	ruggedness. Coefficient of variation of grid cells within 1km of cell of interest
soildepth	mean soil depth predicted from a model relating sampled soil depths to climate, geology and topography
soilfert	soil fertility ordinal class, derived from soil maps and modeling of geochemical data
solrad	annual mean solar radiation (terrain adjusted)
tempann	annual mean temperature
tempmin	minimum temperature of the coldest month
topo	topographic position. Mean difference in elevation between grid cell of interest and all cells within 1km radius (-v
vegsys	broad vegetation type

Source

All data were compiled and provided by Simon Ferrier and colleagues.

References

Elith, J., Graham, C.H., Valavi, R., Abegg, M., Bruce, C., Ferrier, S., Ford, A., Guisan, A., Hijmans, R.J., Huettmann, F., Lohmann, L.G., Loiselle, B.A., Moritz, C., Overton, J.McC., Peterson, A.T., Phillips, S., Richardson, K., Williams, S., Wiser, S.K., Wohlgemuth, T. & Zimmermann, N.E., (2020). Presence-only and presence-absence data for comparing species distribution modeling methods. Biodiversity Informatics 15:69-80.

Examples

```
nsw_po <- disPo("NSW")
nsw_bg <- disBg("NSW")</pre>
```

```
nsw_pa_bat <- disPa("NSW", "ba")
nsw_env_bat <- disEnv("NSW", "ba")
nsw_pa_reptile <- disPa("NSW", "sr")
nsw_env_reptile <- disEnv("NSW", "sr")</pre>
```

```
# Or all in one list
nsw <- disData("NSW")
sapply(nsw, head)</pre>
```

disCRS("NSW")

New Zealand species distribution data

Description

NZ

Species occurrence data for 52 vascular plant species - mostly trees and shrubs from indigenous forests - in New Zealand (NZ), and associated environmental data. Full details of the dataset are

provided in the reference below. There are four data sets with training (po and bg) and test (pa, env) data:

po (training data) includes site names, species names, coordinates, occurrence ("1" for all, since all are presence records), group (plant), and site values for 13 environmental variables (below).

bg (training data) has 10000 sites selected at random across the study region. It is structured identically to po, with "0" for occurrence (not implying absence, but denoting a background record in a way suited to most modelling methods) and NA for group.

env (testing data) includes group, site names, coordinates, and site values for 13 environmental variables (below), at 19120 sites. These data are suited to making predictions.

pa (testing data) includes group, site names, coordinates, and presence-absence records, one column per species. The sites are identical to the sites in env. This file is suited to evaluating the predictions made to env.

Raster (gridded) data for all environmental variables are available - see the reference below for details.

The coordinate reference system of the x and y coordinates is New Zealand Map Grid (NZMG), Datum: NZGD49 (New Zealand Geodetic Datum 1949), Ellipsoid: International 1924 (EPSG:27200).

The vignette provided with this package provides an example of how to fit and evaluate a model with these data.

Environmental variables:

Code	Description	Units	Туре
age	3 classes (0 to 2): <2000, 2000-postglacial (app. 30,000), and pre-glacial	number (category)	Categorical
deficit	Mean October vapor pressure deficit at 0900 hours	kPa	Continuous
dem	Elevation	meters	Continuous
hillshade	Hill shading (as surrogate for slope and aspect)	index of brightness	Continuous
mas	Mean annual solar radiation	Mj/m2/day	Continuous
mat	Mean annual temperature	degrees C * 10	Continuous
r2pet	Average monthly ratio of rainfall and potential evapotranspiration (ratio)	none	Continuous
rain	annual precipitation	mm	Continuous
slope	Slope	degrees	Continuous
sseas	Solar radiation seasonality	dimensionless	Continuous
toxicats	Toxic Cations in classes: 0=low, 1=intermediate, 2=high	number (category)	Categorical
tseas	Temperature seasonality	degrees C	Continuous
vpd	Mean October vapor pressure deficit at 9 AM	kPa	Continuous

Source

Environmental predictors provided by Jake Overton. Species data supplied by Jake Overton and Susan Wiser, from Allan Herbarium and National Vegetation Survey databank.

See the reference below for further details on source, accuracy, cleaning, and particular characteristics of these datasets.

References

Elith, J., Graham, C.H., Valavi, R., Abegg, M., Bruce, C., Ferrier, S., Ford, A., Guisan, A., Hijmans, R.J., Huettmann, F., Lohmann, L.G., Loiselle, B.A., Moritz, C., Overton, J.McC., Peterson, A.T., Phillips, S., Richardson, K., Williams, S., Wiser, S.K., Wohlgemuth, T. & Zimmermann, N.E., (2020). Presence-only and presence-absence data for comparing species distribution modeling methods. Biodiversity Informatics 15:69-80.

Examples

```
nz_po <- disPo("NZ")
nz_bg <- disBg("NZ")
nz_pa <- disPa("NZ")
nz_env <- disEnv("NZ")
x <- disData("NZ")
sapply(x, head)
disCRS("NZ")
```

SA

South American plant species distribution data

Description

Species occurrence data for 30 vascular plant species (all from the Bignoniaceae family) from Continental Brazil, Ecuador, Colombia, Bolivia, and Peru, South America (SA), and associated environmental data. Full details of the dataset are provided in the reference below. There are four data sets with training (po and bg) and test (pa, env) data:

po (training data) includes site names, species names, coordinates, occurrence ("1" for all, since all are presence records), group (plant), and site values for 11 environmental variables (below).

bg (training data) has 10000 sites selected at random across the study region. It is structured identically to po, with "0" for occurrence (not implying absence, but denoting background in a way suited to most modelling methods) and NA for group.

env (testing data) includes group, site names, coordinates, and site values for 11 environmental variables (below), at 152 sites. This file is suited to making predictions.

pa (testing data) includes group, site names, coordinates, and presence-absence records, one column per species. The sites are identical to the sites in env. This file is suited to evaluating the predictions made to env.

Raster (gridded) data for all environmental variables are available - see the reference below for details.

The coordinate reference system of the x and y coordinates is longitude, latitude, with the WGS84 datum (EPSG:4326).

The vignette provided with this package provides an example of how to fit and evaluate a model with these data.

Environmental variables (extracted from WorldClim):

SA

SWI

Code	Description	Units	Туре
sabio1	Annual mean temperature	degrees C * 10	Continuous
sabio2	Mean Diurnal Range (Mean of monthly (max temp - min temp))	degrees C * 10	Continuous
sabio4	Temperature Seasonality (standard deviation *100)	dimensionless	Continuous
sabio5	Max Temperature of Warmest Month	degrees C * 10	Continuous
sabio6	Min Temperature of Coldest Month	degrees C * 10	Continuous
sabio7	Temperature Annual Range	degrees C * 10	Continuous
sabio8	Mean Temperature of Wettest Quarter	mm	Continuous
sabio12	Annual Precipitation	mm	Continuous
sabio15	Precipitation Seasonality (Coefficient of Variation)	mm	Continuous
sabio17	Precipitation of Driest Quarter	mm	Continuous
sabio18	Precipitation of Warmest Quarter	mm	Continuous

Source

Environmental data prepared by Bette Loiselle, Lucia Lohmann and Catherine Graham. Species supplied by Bette Loiselle and Lucia Lohmann. PO data from the Missouri Botanical Gardens database and Lucia Lohmann; PA data collected by Al Gentry.

See the reference below for further details on source, accuracy, cleaning, and particular characteristics of these datasets.

References

Elith, J., Graham, C.H., Valavi, R., Abegg, M., Bruce, C., Ferrier, S., Ford, A., Guisan, A., Hijmans, R.J., Huettmann, F., Lohmann, L.G., Loiselle, B.A., Moritz, C., Overton, J.McC., Peterson, A.T., Phillips, S., Richardson, K., Williams, S., Wiser, S.K., Wohlgemuth, T. & Zimmermann, N.E., (2020). Presence-only and presence-absence data for comparing species distribution modeling methods. Biodiversity Informatics 15:69-80.

Examples

```
sa_po <- disPo("SA")
sa_bg <- disBg("SA")
sa_pa <- disPa("SA")
sa_env <- disEnv("SA")
x <- disData("SA")
sapply(x, head)</pre>
```

disCRS("SA")

SWI

14

Description

Species occurrence data for 30 tree species in Switzerland (SWI, a country in Europe) and associated environmental data. Full details of the dataset are provided in the reference below. There are four data sets with training (po and bg) and test (pa, env) data:

po (training data) includes site names, species names, coordinates, occurrence ("1" for all, since all are presence records), group (tree), and site values for 13 environmental variables (below).

bg (training data) has 10000 sites selected at random across the study region. It is structured identically to po, with "0" for occurrence (not implying absence, but denoting background in a way suited to most modelling methods) and NA for group.

env (testing data) includes group, site names, coordinates, and site values for 13 environmental variables (below), at 10103 sites. This file is suited to making predictions.

pa (testing data) includes group, site names, coordinates, and presence-absence records, one column per species. The sites are identical to the sites in env. This file is suited to evaluating the predictions made to env.

Raster (gridded) data for all environmental variables are available - see the reference below for details.

The reference system of the x and y coordinates is Transverse, spheroid Bessel (EPSG:21781) (note all SWI data has a constant shift applied).

The vignette provided with this package provides an example of how to fit and evaluate a model with these data.

Environmental variables:

Code	Description	Units	Туре
bcc	Broadleaved continuous cover (based on Landsat images)	percentage	Continuous
calc	Bedrock is strictly calcareous	1 (yes) or 0 (no)	Categorical
ccc	Coniferous continuous cover (based on Landsat images)	percentage	Continuous
ddeg	Growing degree-days above a threshold of 0 degrees C	degrees C * days	Continuous
nutri	Soil nutrients index between 0-45	D mval/cm2	Continuous
pdsum	Number of days with rainfall higher than 1 mm	ndays	Continuous
precyy	Average yearly precipitation sum	mm	Continuous
sfro	Summer Frost Frequency	days	Continuous
slope	Slope	degrees x 10	Continuous
sradyy	Potential yearly global radiation (daily average)	(kJ/m2)/day	Continuous
swb	Site water balance	mm	Continuous
tavecc	Average temperature of the coldest month	degrees C	Continuous
topo	Topographic position	dimensionless	Continuous

Source

Environmental predictors supplied by Niklaus E. Zimmermann. Species data supplied by Niklaus E. Zimmermann, Thomas Wohlgemuth and Meinrad Abegg.

See the reference below for further details on source, accuracy, cleaning, and particular characteristics of these datasets.

SWI

16

Elith, J., Graham, C.H., Valavi, R., Abegg, M., Bruce, C., Ferrier, S., Ford, A., Guisan, A., Hijmans, R.J., Huettmann, F., Lohmann, L.G., Loiselle, B.A., Moritz, C., Overton, J.McC., Peterson, A.T., Phillips, S., Richardson, K., Williams, S., Wiser, S.K., Wohlgemuth, T. & Zimmermann, N.E., (2020). Presence-only and presence-absence data for comparing species distribution modeling methods. Biodiversity Informatics 15:69-80.

Examples

```
swi_po <- disPo("SWI")
swi_bg <- disBg("SWI")
swi_pa <- disPa("SWI")
swi_env <- disEnv("SWI")
x <- disData("SWI")
sapply(x, head)</pre>
```

disCRS("SWI")

Index

```
* datasets
                                                 NZ, 11
    AWT, 4
                                                 SA, 13
    CAN, 5
                                                 SWI, 14
    NSW, 10
    NZ, 11
    SA, 13
    SWI, 14
* data
    disCRS, 7
    disData,7
    disPredictors, 9
* map
    disMapBook,9
* package
    disdat-package, 2
* spatial
    disCRS, 7
    disdat-package, 2
    disMapBook,9
AWT, 4
CAN, 5
disBg(disData), 7
disBorder, 9
disBorder (disData), 7
disCRS, 7
disdat(disdat-package), 2
disdat-package, 2
disData,7
disEnv (disData), 7
disMapBook, 9
disPa,9
disPa(disData), 7
disPo,9
disPo(disData), 7
disPredictors, 9
NSW, 10
```