## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----include = FALSE---------------------------------------------------------- ggplot2dplyr_available <- requireNamespace("ggplot2", quietly = TRUE) && requireNamespace("dplyr", quietly = TRUE) ## ----------------------------------------------------------------------------- set.seed(1) ## ----------------------------------------------------------------------------- library(disclapmix) data(danes) db <- as.matrix(danes[rep(1:nrow(danes), danes$n), 1:(ncol(danes)-1)]) str(db) ## ----------------------------------------------------------------------------- default_fits <- disclapmix_adaptive(db, label = "PAM", margin = 5L) ## ----------------------------------------------------------------------------- clara_fits <- disclapmix_adaptive(db, label = "CLARA", margin = 5L, init_y_method = "clara") ## ----------------------------------------------------------------------------- # Random observations: my_init_y_generator <- function(k) { # Or cluster::pam(), cluster::clara() or something else db[sample(seq_len(nrow(db)), k, replace = FALSE), , drop = FALSE] } my_init_y_generator(1) my_init_y_generator(2) ## ----------------------------------------------------------------------------- custom_fits <- disclapmix_adaptive(db, label = "Custom", margin = 1L, # Just demonstrating my_init_y_generator() init_y_generator = my_init_y_generator) rm(custom_fits_best) # To avoid using it by accident later ## ----------------------------------------------------------------------------- set.seed(2) # For reproducibility custom_fits_extra <- replicate(5, disclapmix_adaptive(db, label = "Custom", margin = 5L, init_y_generator = my_init_y_generator, # Random starting points may need more iterations glm_control_maxit = 100L) ) str(custom_fits_extra, 2) custom_fits_max_n <- max(sapply(custom_fits_extra, length)) custom_fits_best <- vector("list", custom_fits_max_n) for (i in seq_len(custom_fits_max_n)) { best_fit_i <- NULL for (j in seq_along(custom_fits_extra)) { if (length(custom_fits_extra[[j]]) < i) { next } if (is.null(best_fit_i) || best_fit_i$BIC_marginal > custom_fits_extra[[j]][[i]]$BIC_marginal) { best_fit_i <- custom_fits_extra[[j]][[i]] } } custom_fits_best[[i]] <- best_fit_i } ## ----------------------------------------------------------------------------- fits <- c(default_fits, clara_fits, custom_fits_best) ## ----------------------------------------------------------------------------- d <- data.frame( Label = sapply(fits, function(x) x$label), BIC = sapply(fits, function(x) x$BIC_marginal), Clusters = sapply(fits, function(x) nrow(x$y)) ) ## ----eval = ggplot2dplyr_available, fig.width=8, fig.height=5----------------- library(ggplot2) ggplot(d, aes(Clusters, BIC, color = Label)) + geom_point() + geom_line() + scale_x_continuous(breaks = unique(d$Clusters)) + theme_bw() ## ----eval = ggplot2dplyr_available-------------------------------------------- library(dplyr) d %>% group_by(Label) %>% summarise(best_clusters = Clusters[which.min(BIC)]) ## ----eval = FALSE------------------------------------------------------------- # saveRDS(default_fits, "obj-default_fits.Rdata") # saveRDS(clara_fits, "obj-clara_fits.Rdata") # saveRDS(custom_fits_best, "obj-custom_fits_best.Rdata") ## ----------------------------------------------------------------------------- fits <- disclapmix_adaptive(db, criteria = c("BIC", "AIC", "AICc"), margin = 5L) length(fits) d <- data.frame( BIC = sapply(fits, function(x) x$BIC_marginal), AIC = sapply(fits, function(x) x$AIC_marginal), AICc = sapply(fits, function(x) x$AICc_marginal), Clusters = sapply(fits, function(x) nrow(x$y)) ) best_BIC <- d$Clusters[which.min(d$BIC)] best_AIC <- d$Clusters[which.min(d$AIC)] best_AICc <- d$Clusters[which.min(d$AICc)] ## ----eval = ggplot2dplyr_available, fig.width=8, fig.height=5----------------- library(ggplot2) ggplot(d) + geom_vline(aes(xintercept = best_BIC, color = "BIC"), linetype = "dashed") + geom_vline(aes(xintercept = best_AIC, color = "AIC"), linetype = "dashed") + geom_vline(aes(xintercept = best_AICc, color = "AICc"), linetype = "dashed") + geom_line(aes(Clusters, BIC, color = "BIC")) + geom_line(aes(Clusters, AIC, color = "AIC")) + geom_line(aes(Clusters, AICc, color = "AICc")) + scale_x_continuous(breaks = unique(d$Clusters)) + labs(y = "Information criteria value", color = "Information criteria") + theme_bw()