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Introduction

Package discfrail (discrete frailty) is an R package that provides a novel, flexible model for
hierarchical time-to-event data in which a clustering structure of groups is suspected. The
random effects that define the group-level frailties follow a nonparametric discrete distribution,
and the baseline hazards are left unspecified, as in the Cox model. The package contains a
function to fit the Cox model with nonparametric discrete frailty term and two functions
for simulating data. Full details of the methods are given in Gasperoni et al. (2018). This

vignette gives a brief overview of the methods, and worked examples of using the functions.

Notation and Model

Consider a random sample with a hierarchical structure, i.e, where each individual subject, or
statistical unit, belongs to one group. Define 77; as the survival time and Cj; as the censoring
time of subject 4, i = 1, ...,n;, in the j-th group, j =1, ..., J. Let X;; = (Xjj1, ..., X;5,) be a
vector of covariates, assumed constant over time, for subject ¢ in group j. Then, we define

Ti; = min(T;

ij> Oz'j); tz‘j its realization and 5ij = l(T;}SCij)‘



Let w be a vector of shared random effects, and w = exp{w}, be the corresponding
vector of shared frailties that represent unexplained relative hazards between the groups.
Conventionally, frailties are assumed to follow a parametric distribution, typically the Gamma.
However in discfrail, the frailties are assumed to have a nonparametric, discrete distribution,
with an unknown number of points in the support. This allows an arbitrarily flexible random
effects distribution, and gives a method for clustering. In particular, we assume that each
group j can belong to one latent population k£, k£ = 1, ..., K, with probability 7. In this case,
wy, ..., wg are the corresponding distinct values for the frailties in each population, where

P{w = wy} = 7.

We introduce also an auxiliary (latent) indicator random variable z;; which is equal to 1 if
the j-th group belongs to the k-th population, so, z;y tid Bern(my). Since each group belongs

to only one population, S, 2 = 1 for each j.

Therefore, in the nonparametric discrete frailty Cox model of discfrail, the hazard for

individual ¢ in group j, conditional on w and on the zj; is:
K -
At X, wi, zjx) = [T Po(®)wr exp(XEB8)] ™ (1)
k=1

where \o(t) represents the baseline hazard, B is the vector of regression coefficients and wy, is
the frailty term shared among groups of the same latent population k. Since the baseline
hazard is unspecified, and the remaining parameters are estimated by maximum partial

likelihood, model (1) is an extension of a proportional hazard Cox model.

The vector z; has a multinomial distribution. Note that there are two levels of grouping.
The first level is known, for example, healthcare providers as groups of patients) and we refer
to these clusters as groups. The second level is the unknown clustering of groups (e.g. groups
of healthcare providers with similar outcomes) that we want to detect, and we refer to these

clusters as latent populations.

We assume that censoring is noninformative, thus that 775 and Cj; are conditionally indepen-

dent, given Xj;, wy and zjp.

An application of this model to a real dataset is shown in Section 5 of Gasperoni et al. (2018).



In this case, the event of interest is the second admission in hospital of patients that suffer

from Heart Failure (patients are grouped in healthcare providers).

Simulation of hierarchical time-to-event data with a latent cluster-
ing structure of groups

Two functions in the discfrail package simulate hierarchical time-to-event data in which

there are clusters of groups with the same frailty.
The input parameters of the simulation algorithm are:

e J: the number of groups;
o N;: the number of individuals in each group (NN, can be a scalar and in this case N;
is assumed to be equal in all groups; N; can be a vector, J x 1, or it can be NULL in

which case the NN, are drawn independently from a Poisson(50) distibution.

Ao(t): the cumulative baseline hazard;

o 7: the K-dimensional probability vector of belonging to a single population;
o w: the K-dimensional frailty vector;

e [: the vector of regression parameters;

* CeNSperc, the proportion of events which are censored.

Several steps are needed for building the dataset. The simulation procedure uses the method
presented by Bender et al. (2005). We use two probability results to obtain Eq.(2): the
inverse probability method and the fact that if a generic random variable V is distributed as

U[0,1] then 1 — V is still a ¢[0, 1].

Uij = 1 — F(tij; Xij, w) = exp{—Ao(T3j)wy exp{ X ;6}} ~ U[0,1] (2)

Then, we are able to compute the survival times with Eq.(3) by inverting Eq.(2).

T - —1< — log(Uy) )
N 0 wkeXp{Xz}ﬁ}

The main difference between equations (2), (3) and the ones showed in Bender et al. (2005)

(3)

is the frailty term, wy.



The covariates are randomly generated from a normal distribution, X;; KN (0,1).

Exploiting equations (2) and (3) we are able to simulate the event times T;;. Then, we
generate the censoring times according to a Normal distribution with standard deviation
equal to one, independently from the T;;. The censoring scheme is reproduced according to

Wan (2017) so that cens,e,. of the simulated times are censored.
Finally, we obtain the status variable as: d;; = 1(T5§ <Cip)-
The package includes two general choices of baseline survival function:

e sim_weibdf, a parametric baseline, specifically a Weibull distribution characterised by

two parameters A and p, with cumulative hazard function Ag(t) = A - ¢°.
+ sim_npdf, a generic baseline, where the user can supply Ay' as an R function of time.

In the first case, equation (3) becomes:

- —log(Us;) )W
& (wk-Aexp{Xfﬁ} W

J

Example: Weibull baseline hazard

In the following example we simulate data with a Weibull baseline.

library( discfrail )

## Loading required package: survival

J <= 100 # total number of groups

N <- 40 # number of units per group

lambda <- 0.5 # Weibull scale parameter

rho <- 1.4 # Weibull shape parameter

beta <- c( 1.6, 0.4 ) # log hazard ratios for covartiates
p <-c(0.7, 0.3) # mizing proportions

w_values <- c( 1.2, 2.1 ) # fratlty values

cens_perc <- 0.1 # percentage of censored events

set.seed(1200)



data_weib <- sim_weibdf( J, N, lambda, rho, beta, p, w_values, cens_perc)

head( data_weib )

##  family time status x.1 X.2 belong
## 1 1 6.3524700 0 -0.848038891 -1.5494394 1.2
## 2 1 0.1524241 1 -0.047688486 1.8599481 1.2
## 3 1 0.7678551 1 -0.005320405 1.4354504 1.2
## 4 1 0.9151902 1 0.354866150 0.6519595 1.2
## 5 1 0.2059090 1 1.333647771 1.3741231 1.2
## 6 1 0.6141216 1 0.805291478 0.4975223 1.2

The simulated data object contains components that include

o family, the group indicator. In this case there are 40 individuals in each simulated

group, and this can be checked here with table(data_weib$family).
» status: the survival status ¢;;. Here we can check the proportion of censored events:

table(data weib$status) / sum(table(data weib$status))

##
## 0 1
## 0.10025 0.89975

e belong: w the frailty values. Here we can check that the proportion of groups belonging

to each latent population agrees with the values we specified for p:

table(data_weib$belong) / sum(table(data_weib$belong))

##
## 1.2 2.1
## 0.7 0.3

We can visualize the simulated group-specific survivor curves by Kaplan-Meier estimation,
as follows. The curves are coloured according to the latent population to which each group

belongs.



fitl <- coxph( Surv( time, status ) ~ family, data_weib, method = 'breslow')
sfitl <- survfit(Surv( time, status ) ~ family, data_weib)

lat_pop = rep( 2, J )

lat_pop[ which( data_weib$belong[ seq( 1, dim(data_weib) [1], N ) ] %inJ

w_values[2]) ] =1

plot( sfitl, col = lat_pop, xlab = 'time', ylab = 'Survival probability',
lwd = 1.5 )

legend( 'topright', paste('Latent population', 1:2), col = 2:1,

1ty = rep(1,2), 1lwd = 1.5, bty = 'n' )
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This illustrates the substantial heterogeneity between groups.



Example: Generic baseline hazard

The following code simulates the same form of data, but this time with a user-specified

inverse cumulative hazard function Ag(¢) supplied as an R function.

J <- 100

N <- 40

Lambda 0 _inv = function( t, c=0.01, d=4.6 ) ( t°( 1/d ) )/c
beta <- 1.6

p <-¢c(0.8, 0.2)

w_values <- ¢( 0.8, 1.6 )

cens_perc <- 0.2

data_np <- sim_npdf( J, N, beta, Lambda_O_inv, p, w_values, cens_perc)

And again, the simulated survivor functions can be visualized as follows:

fitl <- coxph( Surv( time, status ) ~ family, data_np, method = 'breslow')

sfitl <- survfit(Surv( time, status ) ~ family, data_np)

lat_pop = rep( 2, J )

lat_pop[ which( data_np$belong[ seq( 1, dim(data_np) [1], N ) ] %in%

w_values[2]) ] =1

plot( sfitl, col = lat_pop, xlab = 'time', ylab = 'Survival probability',
lwd = 1.5 )

legend( 'bottomleft', paste('Latent population', 1:2), col = 2:1,

1ty = rep(1,2), lwd = 1.5, bty = 'n' )
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Cox model with a nonparametric discrete frailty

The function npdf _cox can be used to fit the Cox model with nonparametric discrete frailty.
This is based on maximum partial likelihood using an EM algorithm — see Section 3 of
Gasperoni et al. (2018). We illustrate the use of this function to fit this model to the dataset

data_weib that was previously simulated.

The first argument specifies the outcome as a Surv object, and any covariates, in the standard
R formula syntax used by coxph in the standard survival package. Another required
argument is groups, which names a variable in the data containing the group membership

indicators.

The number of latent populations can be specified in two alternative ways. If npdf cox is

called with estK=FALSE, then one model is fitted with the number of latent populations fixed



at the number specified by the K argument to npdf_cox.

Alternatively, if npdf_cox is called with estK=TRUE (which is the default choice if estK is
omitted) then multiple models are fitted with the number of latent groups ranging from 1 to

K. This is done in the following example:

test_weib <- npdf_cox( Surv(time, status) ~ x.1 + x.2, groups = family,

data = data_weib, K = 4, eps_conv=10"-4)

Printing the fitted model object shows, firstly, the model comparison statistics for the models
fitted. The estimates from the best-fitting model according to the preferred criterion (specified

in the criterion argument to npdf_cox, by default, this is BIC) are then presented.

test_weib

##

## Call:

## npdf_cox(formula = Surv(time, status) ~ x.1 + x.2, groups = family,
## data = data_weib, K = 4, eps_conv = 107-4)

##

## Model comparison:

## K K_fitted 11ik AIC BIC
## 1 1 1 -28515.39 57036.79 57055.36
## 2 2 2 -28453.33 56916.66 56947 .60
## 3 3 2 -28457.40 56928.80 56972.12
## 4 4 2 -28470.35 56958.69 57014.39

## Optimal K:

## Laird AIC BIC

## 2 2 2

##

## Best model according to BIC:

## Nonparametric discrete frailty Cox model fit with K=2 latent populations

#Hit



## Estimated parameters and standard errors:
#it est selouis seExact
## pl 0.694 0.0498 0.0499
.0498

## p2 0.306 .0499

0 0
## w2/wl 1.816 0.0693 0.0694
## x.1 1.640 0.0271 0.0271
## x.2 0.408 0.0169 0.0169
##
## Log-likelihood: -28453
## AIC: 56917
## BIC: 56948
## Fitted K: 2
#

## To examine other models, look at "models”™ component

According to AIC and BIC, the optimal K is equal to 2, which was the true value used to

generate the data.

The criterion of Laird (1978) works as follows. At the end of the model fitting algorithm, each
group is assigned to a latent population. The number of distinct “fitted” latent populations
for each model is displayed in the K_fitted column of the model comparison table. Then
the best-fitting model according to the Laird (1978) criterion is the maximum K among the
fitted models for which K=K_fitted, that is, for which every latent population has at least

one individual assigned to it. In this example, the optimal K is 4.

The estimates 7 are [0.665,0.335], close to the true values of [0.7,0.3]. The estimated ratio
Wy /Wy = 1.747, again close to the true 1.75 (2.1/1.2). Exact standard errors and standard
errors according to the method of Louis (1982) are also reported. See the Supplementary
Material of Gasperoni et al.(2018) for more information about the computation of standard
errors. Note that if K_fitted is less than K then the standard errors cannot be computed

under these methods.

The function npdf_cox returns a list with the following components, illustrated for this

10



example as follows:

e test_weib$model is a list with one element for each fitted model, in this case 4 elements.
The i*" element of the list contains the estimates with ¢ latent populations. We show

the output related to K = 3.

test_weib$model [[3]]

##

## Nonparametric discrete frailty Cox model fit with K=3 latent populations
##

## Estimated parameters and standard errors:
#it est

## pl 0.00725

## p2 0.68663

## p3 0.30612

## w2/wl 1.06399

## w3/wl 1.93015

## x.1 1.63942

## x.2  0.40845

##

## Log-likelihood: -28457

## AIC: 56929

## BIC: 56972

## Fitted K: 2

o test_weib$comparison is a matrix in which the model comparison information, includ-

ing the log-likelihood, AIC and BIC, is reported for each value of K.

test_weib$comparison

## K K_fitted 11ik AIC BIC
## 11 1 -28515.39 57036.79 57055.36
## 2 2 2 -28453.33 56916.66 56947 .60

11



## 3 3 2 -28457.40 56928.80 56972.12
## 4 4 2 -28470.35 56958.69 57014.39

o test_weib$Kopt reports the optimal K according to Laird, AIC and BIC.
test_weib$Kopt
## Laird AIC BIC
#i# 2 2 2

e test_weib$criterion is the criterion used to choose the optimal K

test_weib$criterion

## [1] "BIC"
e test weib$mf is the model frame, the data frame used to fit the model.

Since the data are simulated, we are also able to check whether the groups are correctly

assigned. We note that only 2 groups are misclassified (42 and 98).

# true distinct fratlty for each group

w <- data_weib$belong[!duplicated(data_weib$family)]
# true latent population for each group
real_lat_pop <- match(w, sort(unique(w)))

table( test_weib$models[[2]]$belonging, real_lat_pop )

#it real_lat_pop

## 1 2
## 1 67 2
## 2 3 28

misc_ind = which( test_weib$models[[2]]$belonging != real_lat_pop )

misc_ind

## [1] 29 41 54 60 61

12



test_weib$models[[2]]$alphal misc_ind, ]

#i# [,1] [,2]
## [1,] 0.73278706 0.2672129
## [2,] 0.09290722 0.9070928
## [3,] 0.04250517 0.9574948
## [4,] 0.78118633 0.2188137
## [5,] 0.16067014 0.8393299

We can investigate the posterior probabilities of being part of a specific latent population (ay,
see Section 3.1 of Gasperoni et al. (2018)). For some groups there is great uncertainty about
the latent population to which they belong (i.e., group 98 is assigned to latent population 1
and 2 with probabilities of 0.66, 0.34 respectively). The following code identifies those groups
that have probabilities between 0.05 and 0.95 of being assigned to latent population one and
two (note that this list includes the two “misclassified” groups highlighted above).

#alpha matriz: alpha_{jk}

#1s the probability that group j <s assigned to latent population k.

#test_weib$models[[2]]$alpha

assign not_surel = which( test_weib$models[[2]]$alphal ,1 ] < 0.95 &
test_weib$models[[2]]$alphal ,1 ] > 0.05 &
test_weib$models[[2]]$alphal ,2 ] < 0.95 &
test_weib$models[[2]]$alphal ,2 1 > 0.05 )

assign not_surel

## [1] 7 10 24 29 41 46 56 60 61 82 95 97 99

We can visualize the fitted survivor curves for each group through the plot method. The
default, shown below, uses Kaplan-Meier estimates. It is also possible to plot Nelson-Aalen
estimates (choosing type = 'na'). These plots automatically colour the group-specific curves
according to the group’s fitted latent population. This demonstrates how the group-specific

frailties are clustered, with the higher-frailty population shown in black.
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plot( test_weib, type = 'km', lwd = 1.5 )
legend( 'topright', paste( 'Latent population', c( 1, 2 ) ), lwd = 1.5,
col = c(2, 1), 1ty = rep( 1, 2 ), bty = 'n' )
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The following plot highlights in green the survival curves for the three groups in the simulated

data that are “misclassified” by the model.

colors_misc = test_weib$models[[2]]$belonging + 1

colors misc[ colors misc == 3 ] =1

colors_misc[ test_weib$models[[2]]$belonging !'= real_lat_pop ] = 3

plot( test_weib, type = 'km', col = colors_misc, lwd = 1.5 )

legend( 'topright', paste( 'Latent population', c( 1, 2 ) ), lwd = 1.5,
col = c(2, 1), 1ty = rep( 1, 2 ), bty = 'n' )
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