Package 'did2s'

April 7, 2023

Title Two-Stage Difference-in-Differences Following Gardner (2021)

Version 1.0.2

Description Estimates Two-way Fixed Effects difference-in-differences/event-study models using the approach proposed by Gard-

ner (2021) <doi:10.48550/arXiv.2207.05943>. To avoid the problems caused by OLS estimation of the Two-way Fixed Effects model, this function first estimates the fixed effects and covariates using untreated observations and then in a second stage, estimates the treatment effects.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Depends R (>= 3.5.0), fixest (>= 0.10.1)

Imports data.table, SparseM, MatrixExtra, Matrix, stats, boot, broom, ggplot2, rlang, did, staggered, didimputation

URL https://kylebutts.github.io/did2s/

Suggests rmarkdown, knitr, haven, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Kyle Butts [aut, cre] (<https://orcid.org/0000-0002-9048-8059>), John Gardner [aut] (<https://orcid.org/0000-0002-4028-6862>), Grant McDermott [ctb] (<https://orcid.org/0000-0001-7883-8573>), Laurent Berge [ctb]

Maintainer Kyle Butts <kyle.butts@colorado.edu>

Repository CRAN

Date/Publication 2023-04-07 15:50:02 UTC

R topics documented:

castle	2
df_het	2
df_hom	3
did2s	4
event_study	8
gen_data	9
	11

Index

castle

Data from Cheng and Hoekstra (2013)

Description

State-wide panel data from 2000-2010 that has information on castle-doctrine, the so-called "stand-your-ground" laws that were implemented by 20 states.

Usage

castle

Format

A data frame with 550 rows and 5 variables:

sid state id, unit of observation

year time in panel data

l_homicide log of the number of homicides per capita

effyear year that castle doctrine is passed

post 0/1 variable for when castle doctrine is active

time_til time relative to castle doctrine being passed into law

df_het

Simulated data with two treatment groups and heterogenous effects

Description

Generated using the following call: did2s::gen_data(panel = c(1990, 2020), g1 = 2000, g2 = 2010, g3 = 0, te1 = 2, te2 = 1, te3 = 0, te_m1 = 0.05, te_m2 = 0.15, te_m3 = 0)

Usage

df_het

df_hom

Format

A data frame with 31000 rows and 15 variables:

unit individual in panel data
year time in panel data
g the year that treatment starts
dep_var outcome variable
treat T/F variable for when treatment is on
rel_year year relative to treatment start. Inf = never treated.
rel_year_binned year relative to treatment start, but <=-6 and >=6 are binned.
unit_fe Unit FE
year_fe Year FE
error Random error component
te Static treatment effect = te
te_dynamic Dynamic treatmet effect = te_m
state State that unit is in
group String name for group

df_hom

Simulated data with two treatment groups and homogenous effects

Description

Generated using the following call: did2s::gen_data(panel = c(1990, 2020), g1 = 2000, g2 = 2010, g3 = 0, te1 = 2, te2 = 2, te3 = 0, te_m1 = 0, te_m2 = 0, te_m3 = 0)

Usage

df_hom

Format

A data frame with 31000 rows and 15 variables:

unit individual in panel data

year time in panel data

g the year that treatment starts

dep_var outcome variable

treat T/F variable for when treatment is on

rel_year year relative to treatment start. Inf = never treated.

rel_year_binned year relative to treatment start, but <=-6 and >=6 are binned.

unit_fe Unit FE
year_fe Year FE
error Random error component
te Static treatment effect = te
te_dynamic Dynamic treatmet effect = te_m
group String name for group
state State that unit is in
weight Weight from runif()

did2s	Calculate	two-stage	difference-in-differences	following	Gardner
	(2021)				

Description

Calculate two-stage difference-in-differences following Gardner (2021)

Usage

```
did2s(
    data,
    yname,
    first_stage,
    second_stage,
    treatment,
    cluster_var,
    weights = NULL,
    bootstrap = FALSE,
    n_bootstraps = 250,
    return_bootstrap = FALSE,
    verbose = TRUE
)
```

Arguments

data	The dataframe containing all the variables
yname	Outcome variable
first_stage	Fixed effects and other covariates you want to residualize with in first stage. Formula following fixest::feols. Fixed effects specified after " ".
second_stage	Second stage, these should be the treatment indicator(s) (e.g. treatment variable or event-study leads/lags). Formula following fixest::feols. Use i() for factor variables, see fixest::i.
treatment	A variable that $= 1$ if treated, $= 0$ otherwise

did2s

cluster_var	What variable to cluster standard errors. This can be IDs or a higher aggregate level (state for example)
weights	Optional. Variable name for regression weights.
bootstrap	Optional. Should standard errors be calculated using bootstrap? Default is FALSE.
n_bootstraps return_bootstra	Optional. How many bootstraps to run. Default is 250.
	Optional. Logical. Will return each bootstrap second-stage estimate to allow for manual use, e.g. percentile standard errors and empirical confidence intervals.
verbose	Optional. Logical. Should information about the two-stage procedure be printed back to the user? Default is TRUE.

Value

fixest object with adjusted standard errors (either by formula or by bootstrap). All the methods from fixest package will work, including fixest::esttable and fixest::coefplot

Examples

Load example dataset which has two treatment groups and homogeneous treatment effects

```
# Load Example Dataset
data("df_hom")
```

Static TWFE:

You can run a static TWFE fixed effect model for a simple treatment indicator

```
static <- did2s(df_hom,</pre>
   yname = "dep_var", treatment = "treat", cluster_var = "state",
   first_stage = ~ 0 | unit + year,
   second_stage = ~ i(treat, ref=FALSE))
#> Running Two-stage Difference-in-Differences
#> - first stage formula `~ 0 | unit + year`
#> - second stage formula `~ i(treat, ref = FALSE)`
#> - The indicator variable that denotes when treatment is on is `treat`
#> - Standard errors will be clustered by `state`
fixest::esttable(static)
#>
                            static
#> Dependent Var.:
                           dep_var
#>
#> treat = TRUE 2.005*** (0.0202)
#> _____
#> S.E. type
                            Custom
#> Observations
                            46,500
#> R2
                            0.47520
#> Adj. R2
                            0.47520
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Event Study:

Or you can use relative-treatment indicators to estimate an event study estimate

```
es <- did2s(df_hom,
    yname = "dep_var", treatment = "treat", cluster_var = "state",
    first_stage = ~ 0 | unit + year,
    second_stage = ~ i(rel_year, ref=c(-1, Inf)))
#> Running Two-stage Difference-in-Differences
#> - first stage formula `~ 0 | unit + year`
#> - second stage formula `~ i(rel_year, ref = c(-1, Inf))`
#> - The indicator variable that denotes when treatment is on is `treat`
#> - Standard errors will be clustered by `state`
fixest::esttable(es)
#>
                                  es
#> Dependent Var.:
                             dep_var
#>
\# rel_year = -20
                     0.0043 (0.0322)
\# rel_year = -19
                     0.0222 (0.0296)
\# rel_year = -18
                   -0.0358 (0.0308)
\# rel_year = -17
                    0.0043 (0.0337)
\# rel_year = -16
                    -0.0186 (0.0353)
\# rel_year = -15
                    -0.0045 (0.0346)
#> rel_year = -14
                    -0.0393 (0.0384)
\# rel_year = -13
                     0.0453 (0.0323)
\# rel_year = -12
                     0.0324 (0.0309)
\# rel_year = -11
                    -0.0245 (0.0349)
\# rel_year = -10
                    -0.0017 (0.0241)
\# rel_year = -9
                     0.0155 (0.0242)
\# rel_year = -8
                    -0.0073 (0.0210)
#> rel_year = -7
                  -0.0513* (0.0202)
#> rel_year = -6
                    0.0269 (0.0237)
\# rel_year = -5
                     0.0136 (0.0237)
\# rel_year = -4
                    0.0381. (0.0223)
\# rel_year = -3
                   -0.0228 (0.0284)
#> rel_year = -2
                    0.0041 (0.0228)
#> rel_year = 0
                   1.971*** (0.0470)
\# rel_year = 1
                   2.050*** (0.0466)
#> rel_year = 2
                   2.033*** (0.0441)
\# rel_year = 3
                   1.966*** (0.0400)
#> rel_year = 4
                  1.965*** (0.0430)
#> rel_year = 5
                  2.030*** (0.0456)
#> rel_year = 6
                   2.040*** (0.0447)
#> rel_year = 7
                   1.995 * * (0.0370)
#> rel_year = 8
                   2.019*** (0.0485)
\# rel_year = 9
                   1.955 * * (0.0468)
#> rel_year = 10
                  1.950*** (0.0455)
#> rel_year = 11
                   2.117*** (0.0664)
#> rel_year = 12
                  2.132*** (0.0741)
```

did2s

```
#> rel_year = 13 2.019*** (0.0640)
#> rel_year = 14 2.013*** (0.0522)
#> rel_year = 15 1.961*** (0.0605)
#> rel_year = 16   1.916*** (0.0584)
#> rel_year = 17   1.938*** (0.0607)
#> rel_year = 18 2.070*** (0.0666)
#> rel_year = 19 2.066*** (0.0609)
#> rel_year = 20 1.964*** (0.0612)
#> _____
#> S.E. type
                             Custom
#> Observations
                             46,500
#> R2
                            0.47577
#> Adj. R2
                            0.47533
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# plot rel_year coefficients and standard errors
fixest::coefplot(es, keep = "rel_year::(.*)")
```

Example from Cheng and Hoekstra (2013):

Here's an example using data from Cheng and Hoekstra (2013)

```
# Castle Data
castle <- haven::read_dta("https://github.com/scunning1975/mixtape/raw/master/castle.dta")</pre>
```

```
did2s(
data = castle,
yname = "l_homicide",
first_stage = ~ 0 | sid + year,
second_stage = ~ i(post, ref=0),
treatment = "post",
cluster_var = "state", weights = "popwt"
)
#> Running Two-stage Difference-in-Differences
#> - first stage formula `~ 0 | sid + year`
#> - second stage formula `~ i(post, ref = 0)`
#> - The indicator variable that denotes when treatment is on is `post`
#> - Standard errors will be clustered by `state`
#> OLS estimation, Dep. Var.: 1_homicide
#> Observations: 550
#> Weights: weights_vector
#> Standard-errors: Custom
#>
           Estimate Std. Error t value Pr(>|t|)
#> post::1 0.075142 0.03538 2.12387 0.034127 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> RMSE: 263.4 Adj. R2: 0.052465
```

event_study

Description

Uses the estimation procedures recommended from Borusyak, Jaravel, Spiess (2021); Callaway and Sant'Anna (2020); Gardner (2021); Roth and Sant'Anna (2021); Sun and Abraham (2020)

Usage

```
event_study(
   data,
   yname,
   idname,
   gname,
   tname,
   xformla = NULL,
   weights = NULL,
   estimator = c("all", "TWFE", "did2s", "did", "impute", "sunab", "staggered")
)
```

plot_event_study(out, separate = TRUE, horizon = NULL)

Arguments

data	The dataframe containing all the variables
yname	Variable name for outcome variable
idname	Variable name for unique unit id
gname	Variable name for unit-specific date of initial treatment (never-treated should be zero or NA)
tname	Variable name for calendar period
xformla	A formula for the covariates to include in the model. It should be of the form \sim X1 + X2. Default is NULL.
weights	Variable name for estimation weights. This is used in estimating $Y(0)$ and also augments treatment effect weights
estimator	Estimator you would like to use. Use "all" to estimate all. Otherwise see table to know advantages and requirements for each of these.
out	Output from event_study()
separate	Logical. Should the estimators be on separate plots? Default is TRUE.
horizon	Numeric. Vector of length 2. First element is min and second element is max of event_time to plot

gen_data

Value

event_study returns a data.frame of point estimates for each estimator
plot_event_study returns a ggplot object that can be fully customized

Examples

```
out = event_study(
   data = did2s::df_het, yname = "dep_var", idname = "unit",
   tname = "year", gname = "g", estimator = "all"
)
plot_event_study(out)
```

gen_data

Generate TWFE data

Description

Generate TWFE data

Usage

```
gen_data(
   g1 = 2000,
   g2 = 2010,
   g3 = 0,
   panel = c(1990, 2020),
   te1 = 2,
   te2 = 2,
   te3 = 2,
   te_m1 = 0,
   te_m2 = 0,
   te_m3 = 0,
   n = 1500
)
```

Arguments

g1	treatment date for group 1. For no treatment, set $g = 0$.
g2	treatment date for group 2. For no treatment, set $g = 0$.
g3	treatment date for group 3. For no treatment, set $g = 0$.
panel	numeric vector of size 2, start and end years for panel
te1	treatment effect for group 1. Will ignore for that group if $g = 0$.
te2	treatment effect for group 1. Will ignore for that group if $g = 0$.

gen_data

te3	treatment effect for group 1. Will ignore for that group if $g = 0$.
te_m1	treatment effect slope per year
te_m2	treatment effect slope per year
te_m3	treatment effect slope per year
n	number of individuals in sample

Value

Dataframe of generated data

Examples

```
# Homogeneous treatment effect
df_hom <- gen_data(panel = c(1990, 2020),
  g1 = 2000, g2 = 2010, g3 = 0,
   te1 = 2, te2 = 2, te3 = 0,
   te_m1 = 0, te_m2 = 0, te_m3 = 0)
# Heterogeneous treatment effect
df_het <- gen_data(panel = c(1990, 2020),
  g1 = 2000, g2 = 2010, g3 = 0,
  te1 = 2, te2 = 1, te3 = 0,
  te_m1 = 0.05, te_m2 = 0.15, te_m3 = 0)
```

Index

* datasets castle, 2 df_het, 2 df_hom, 3 castle, 2 df_het, 2 df_hom, 3 did2s, 4 event_study, 8 event_study(), 8 fixest::coefplot, 5 fixest::esttable, 5 fixest::feols, 4 fixest::i, 4 gen_data, 9

plot_event_study (event_study), 8