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dfoptim Derivative-Free Optimization

Description

Derivative-Free optimization algorithms. These algorithms do not require gradient information.
More importantly, they can be used to solve non-smooth optimization problems. They can also
handle box constraints on parameters.

Details

Package: dfoptim

Type: Package

Version: 2023.1.0

Date: 2023-08-21
License: GPL-2 or greater

Lazyload: yes

Derivative-Free optimization algorithms. These algorithms do not require gradient information.
More importantly, they can be used to solve non-smooth optimization problems. These algorithms
were translated from the Matlab code of Prof. C.T. Kelley, given in his book "Iterative methods for
optimization". However, there are some non-trivial modifications of the algorithm.

Currently, the Nelder-Mead and Hooke-Jeeves algorithms is implemented. In future, more derivative-
free algorithms may be added.

Author(s)

Ravi Varadhan, Johns Hopkins University

URL: http://www.jhsph.edu/agingandhealth/People/Faculty_personal_pages/Varadhan.html
Hans W. Borchers, ABB Corporate Research

Maintainer: Ravi Varadhan <ravi.varadhan @jhu.edu>

References

C.T. Kelley (1999), Iterative Methods for Optimization, STAM.

hjk Hooke-Jeeves derivative-free minimization algorithm

Description

An implementation of the Hooke-Jeeves algorithm for derivative-free optimization. A bounded and
an unbounded version are provided.
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Usage
hjk(par, fn, control = list(), ...)
hjkb(par, fn, lower = -Inf, upper = Inf, control = list(), ...)
Arguments
par Starting vector of parameter values. The initial vector may lie on the boundary.
If lower[il=upper[i] for some i, the i-th component of the solution vector
will simply be kept fixed.
fn Nonlinear objective function that is to be optimized. A scalar function that takes
a real vector as argument and returns a scalar that is the value of the function at
that point.
lower, upper Lower and upper bounds on the parameters. A vector of the same length as the
parameters. If a single value is specified, it is assumed that the same bound
applies to all parameters. The starting parameter values must lie within the
bounds.
control A list of control parameters. See Details for more information.
Additional arguments passed to fn.
Details

Argument control is a list specifing changes to default values of algorithm control parameters.
Note that parameter names may be abbreviated as long as they are unique.

The list items are as follows:
tol Convergence tolerance. Iteration is terminated when the step length of the main loop becomes

smaller than tol. This does not imply that the optimum is found with the same accuracy.
Default is 1.e-06.

maxfeval Maximum number of objective function evaluations allowed. Default is Inf, that is no
restriction at all.

maximize A logical indicating whether the objective function is to be maximized (TRUE) or min-
imized (FALSE). Default is FALSE.

target A real number restricting the absolute function value. The procedure stops if this value is
exceeded. Default is Inf, that is no restriction.

info A logical variable indicating whether the step number, number of function calls, best function
value, and the first component of the solution vector will be printed to the console. Default is
FALSE.

If the minimization process threatens to go into an infinite loop, set either maxfeval or target.

Value

A list with the following components:

par Best estimate of the parameter vector found by the algorithm.

value value of the objective function at termination.



convergence indicates convergence (=0) or not (=1).
feval number of times the objective fn was evaluated.
niter number of iterations in the main loop.

Note

This algorithm is based on the Matlab code of Prof. C. T. Kelley, given in his book “Iterative
methods for optimization". It is implemented here with the permission of Prof. Kelley.

This version does not (yet) implement a cache for storing function values that have already been
computed as searching the cache makes it slower.

Author(s)

Hans W Borchers <hwborchers @ googlemail.com>

References

C.T. Kelley (1999), Iterative Methods for Optimization, STAM.

Quarteroni, Sacco, and Saleri (2007), Numerical Mathematics, Springer.

See Also

optim, nmk

Examples

## Hooke-Jeeves solves high-dim. Rosenbrock function
rosenbrock <- function(x){
n <- length(x)
sum (100x(x[1:(n-1)12 - x[2:n1)*2 + (x[1:(n-1)]1 - 1)*2)
3
par@ <- rep(@, 10)
hjk(par@, rosenbrock)

hjkb(c(@, @, @), rosenbrock, upper = 0.5)
# $par
# [1] 0.50000000 0.25742722 0.06626892

## Hooke-Jeeves does not work well on non-smooth functions
nsf <- function(x) {
f1 <= x[1]*2 + x[2]*2
f2 <- x[1172 + x[2]%2 + 10 * (-4*%x[1] - x[2] + 4)
f3 <= x[1]*2 + x[2]%2 + 10 * (-x[1] - 2*x[2] + 6)
max(f1, f2, f3)
3
par@d <- c(1, 1) # true min 7.2 at (1.2, 2.4)
hjk(par@, nsf) # fmin=8 at xmin=(2,2)
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mads Mesh Adaptive Direct Searches (MADS) algorithm for derivative-free
and black-box optimization
Description

An implementation of the Mesh Adaptive Direct Searches (MADS) algorithm for derivative-free
and black-box optimization. It uses a series of variable size meshes to search the space and to
converge to (local) minima with mathematical proof of convergence. It is usable on unbounded
and bounded unconstrained problems. The objective function can return “NA” if out-of-bound
or violating constraints (strict barrier approach for constraints), or a penalty can be added to the

objective function.

Usage
mads(par, fn, lower=-Inf, upper=Inf, scale=1, control = list(), ...)
Arguments
par A starting vector of parameter values. Must be feasible, i.e. lie strictly between
lower and upper bounds.
fn Noisy, non-differentiable, non-convex, piecewise or nonlinear objective function
that is to be optimized. It takes a real vector as argument and returns a scalar or
“NA” that is the value of the function at that point (see details).
lower Lower bounds on the parameters. A vector of the same length as the parameters.
If a single value is specified, it is assumed that the same lower bound applies to
all parameters. If all lower bounds are -Inf and all upper bounds are Inf, then the
problem is treated as unbounded.
upper Upper bounds on the parameters. A vector of the same length as the parameters.
If a single value is specified, it is assumed that the same upper bound applies to
all parameters. If all lower bounds are -Inf and all upper bounds are Inf, then the
problem is treated as unbounded.
scale Optional scaling, default is 1. A vector of the same length as the parameters.
If a single value is specified, it is assumed that the same scale factor applies to
all parameters. This scale factor can be customized for each parameter allowing
non-proportional moves in the space (normally used for unbounded problems).
control A list of control parameters. See *Details* for more information.
Additional arguments passed to fn
Details

Argument control is a list specifing any changes to default values of algorithm control parameters
for the outer loop. The list items are as follows:

tol Convergence tolerance. Iteration is terminated when the absolute difference in function value
between successive iteration is below tol. Default is 1.e-06.
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maxfeval: Maximum number of objective function evaluations allowed. Default is 10000).

trace A logical variable indicating whether information is printed on the console during execution.
Default is TRUE.

maximize A logical variable indicating whether the objective function should be maximized. De-
fault is FALSE (hence default is minimization).

pollStyle A string variable indicating density of the poll set, or, number of vectors in the positive
basis. Choices are: “lite” (n+1 points) or “full” (2n points). Default is “lite”.

deltalnit A numerical value specifying the initial mesh size, between “tol” and 1 (mesh size is
limited to 1). Default is 0.01.

expand A numerical value >1 specifying the expansion (is success) and contraction (if no success)
factor of the mesh at the end of an iteration. Default is 4.

lineSearch A integer value indicating the maximum of search steps to consider. Line search is
performed at the end of a successful poll set evaluation, along the line going from last to new “best”
solution. Stepsize will be automatically increased according to the Fibonacci series. Default is 20.
Set to -1 to disable the feature.

seed Seed value for the internal pseudo random numbers generator. Default is 1138.

Value

A list with the following components:

par Best estimate of the parameter vector found by the algorithm.

value The value of the objective function at termination.

feval The number of times the objective fn was evaluated.

convergence Final mesh size, should be <tol if successfule convergence. If feval reached
maxfeval, then the algorithm did not converge.

iterlog A dataframe used to log properties of the “best” solution at the end of each
iteration.

Note

This algorithm is based on the Lower Triangular method described in the reference.

Author(s)

Vincent Bechard <vincent.bechard @hec.ca>, HEC Montreal (Montreal University) URL:https://www.linkedin.com/in/vincet

References
C. Audet and J. E. Dennis, Jr. Mesh adaptive direct search algorithms for constrained optimization.
SIAM Journal on Optimization, 17(1): 188-217, 2006.

See Also

optim, hjk, nmk
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Examples

rosbkext <- function(x){

# Extended Rosenbrock function

n <- length(x)

sum (100x(x[1:(n-1)]1*2 - x[2:n1)*2 + (x[1:(n-1)] - 1)*2)
3

np <- 10
p@ <- rnorm(np)
ans1 <- mads(fn=rosbkext, par=p@, lower=-10, upper=10, scale=1, control=list(trace=FALSE))

### A non-smooth problem from Hock & Schittkowski #78
hs78 <- function(x){

f <= rep(NA, 3)

fL1] <= sum(x*2) - 10

f[2] <- x[2]*x[3] - 5xx[4]*x[5]

fL3] <= x[1173 + x[2]*3 + 1

F <- prod(x) + 10*sum(abs(f))

return(F)
3

po <- c¢(-2,1.5,2,-1,-1)
ans2 <- mads(p@, hs78, control=list(trace=FALSE)) #minimum value around -2.81

nmk Nelder-Mead optimziation algorithm for derivative-free optimization

Description

An implementation of the Nelder-Mead algorithm for derivative-free optimization. This allows
bounds to be placed on parameters. Bounds are enforced by means of a parameter transformation.

Usage
nmk (par, fn, control = list(), ...)
nmkb(par, fn, lower=-Inf, upper=Inf, control = list(), ...)
Arguments
par A starting vector of parameter values. Must be feasible, i.e. lie strictly between
lower and upper bounds.
fn Nonlinear objective function that is to be optimized. A scalar function that takes

a real vector as argument and returns a scalar that is the value of the function at
that point (see details).
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lower Lower bounds on the parameters. A vector of the same length as the parameters.
If a single value is specified, it is assumed that the same lower bound applies to
all parameters.

upper Upper bounds on the parameters. A vector of the same length as the parameters.
If a single value is specified, it is assumed that the same upper bound applies to
all parameters.

control A list of control parameters. See *Details* for more information.

Additional arguments passed to fn

Details

Argument control is a list specifing any changes to default values of algorithm control parameters
for the outer loop. Note that the names of these must be specified completely. Partial matching will
not work. The list items are as follows:

tol Convergence tolerance. Iteration is terminated when the absolute difference in function value
between successive iteration is below tol. Default is 1.e-06.

maxfeval: Maximum number of objective function evaluations allowed. Default is min(5000,
max (1500, 20*length(par)"2)).

regsimp A logical variable indicating whether the starting parameter configuration is a regular
simplex. Default is TRUE.

maximize A logical variable indicating whether the objective function should be maximized. De-
fault is FALSE.

restarts.max Maximum number of times the algorithm should be restarted before declaring fail-
ure. Default is 3.

trace A logical variable indicating whether the starting parameter configuration is a regular sim-
plex. Default is FALSE.

Value

A list with the following components:

par Best estimate of the parameter vector found by the algorithm.
value The value of the objective function at termination.
feval The number of times the objective fn was evaluated.
restarts The number of times the algorithm had to be restarted when it stagnated.
convergence An integer code indicating type of convergence. @ indicates successful conver-
gence. Positive integer codes indicate failure to converge.
message Text message indicating the type of convergence or failure.
Note

This algorithm is based on the Matlab code of Prof. C.T. Kelley, given in his book "Iterative methods
for optimization". It is implemented here with the permission of Prof. Kelley and SIAM. However,
there are some non-trivial modifications of the algorithm.
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Author(s)

Ravi Varadhan <rvaradhan @jhmi.edu>, Johns Hopkins University URL:http://www.jhsph.edu/agingandhealth/People/Facult

References

C.T. Kelley (1999), Iterative Methods for Optimization, STAM.

See Also

optim, hjk, mads

Examples

rosbkext <- function(x){
# Extended Rosenbrock function
n <- length(x)
sum (100x(x[1:(n-1)]1*2 - x[2:n])*2 + (x[1:(n=-1)] - 1)*2)
}

np <- 10
set.seed(123)

p@ <- rnorm(np)
xm1 <- nmk(fn=rosbkext, par=p@) # maximum ‘fevals' is not sufficient to find correct minimum
xmlb <- nmkb(fn=rosbkext, par=p@, lower=-2, upper=2)

### A non-smooth problem

hald <- function(x) {

#Hald J & Madsen K (1981), Combined LP and quasi-Newton methods

#for minimax optimization, Mathematical Programming, 20, p.42-62.
i<-1:21

t<- -1+ (i-1)/10

f <= (x[11 + x[2] = t) / (1 + x[3]xt + x[4]*xt*2 + x[5I*t*3) - exp(t)
max (abs(f))

3

pd <- runif(5)
xm2 <- nmk(fn=hald, par=p0)
xm2b <- nmkb(fn=hald, par=p@, lower=c(0,0,0,0,-2), upper=4)

## Another non-smooth functions
nsf <- function(x) {
f1 <= x[1]*2 + x[2]*2
f2 <= x[11*2 + x[2]%2 + 10 * (-4*x[1] - x[2] + 4)
f3 <= x[1]*2 + x[2]%2 + 10 * (-x[1] - 2*x[2] + 6)
max(f1, f2, f3)
}
par@d <- c(1, 1) # true min 7.2 at (1.2, 2.4)
nmk(par@, nsf) # fmin=8 at xmin=(2,2)
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