
Package ‘dfdr’
February 23, 2023

Type Package

Title Automatic Differentiation of Simple Functions

Version 0.2.0

Description Implementation of automatically computing derivatives
of functions (see Mailund Thomas (2017) <doi:10.1007/978-1-4842-2881-
4>). Moreover, calculating gradients, Hessian and Jacobian matrices is possible.

License GPL-3

Encoding UTF-8

Imports methods, purrr, rlang, R6, pryr

Suggests tinytest

NeedsCompilation no

Author Thomas Mailund [aut],
Konrad Krämer [aut, cre]

Maintainer Konrad Krämer <konrad_kraemer@yahoo.de>

Repository CRAN

Date/Publication 2023-02-23 10:30:02 UTC

R topics documented:

d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
fcts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
fcts_add_fct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
jacobian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
simplify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Index 9

1

https://doi.org/10.1007/978-1-4842-2881-4
https://doi.org/10.1007/978-1-4842-2881-4


2 d

d Differentiate a function for a single variable.

Description

Differentiate a function for a single variable.

Usage

d(f, x, derivs = NULL)

Arguments

f The function to differentiate.

x The variable that f should be differentiated with respect to.

derivs An S4 class of type fcts that defines additional derivatives. See fcts for details.

Details

The following functions are already supported:
sin, sinh, asin, cos, cosh, acos, tan, tanh, atan, exp, log, sqrt, c, vector, numeric, rep and matrix.
Notably, for the functions: c, vector, numeric, rep and matrix the function is ignored during differ-
entiation.

Value

For example function f and symbol x:
df/dx

Examples

library(dfdr)
d(sin, x)

f <- function(x) -sin(x)
d(f, x)

# Initialize list
lst <- dfdr::fcts()
# The function which should be added
f <- function(x) x^2
# The dervative function of f
f_deriv <- function(x) 2*x
# add new entry to list
lst <- fcts_add_fct(lst, f, f_deriv)
g <- function(z) f(z)
d(g, z, lst)



fcts 3

fcts S4 class fcts

Description

A S4 class containing additional functions which can be used for calculating derivatives with d().
To create a class the function fcts() should be used.
Adding functions is only possible via the function add_fct.

Details

The following functions are already supported:
sin, sinh, asin, cos, cosh, acos, tan, tanh, atan, exp, log, sqrt, c, vector, numeric, rep and matrix.
Notably, for the functions: c, vector, numeric, rep and matrix the function is ignored during differ-
entiation.

Slots

funs A list containing the specified functions. This slot should not be accessed and is used only
internally.

See Also

d()

Examples

library(dfdr)
# Initialize list
lst <- dfdr::fcts()

# The function which should be added
f <- function(x) x^2
# The dervative function of f
f_deriv <- function(x) 2*x

# add new entry to list
lst <- fcts_add_fct(lst, f, f_deriv)

g <- function(z) f(z)
df <- d(g, z, lst)
df



4 fcts_add_fct

fcts_add_fct appending a S4 class of type fcts

Description

A function which appends a S4 class of type fcts with a new function-derivative pair.

Usage

fcts_add_fct(lst, f, f_deriv, keep = FALSE)

Arguments

lst is the S4 class of type fcts. Newly created by fcts()

f is the function which should be differentiated. The argument has to be of type
function.

f_deriv is a function defining the derivative of f. The argument has to be of type function.

keep is a logical value. If set to TRUE the function f is ignored of d(). The default
value is FALSE.

Details

The following functions are already supported:
sin, sinh, asin, cos, cosh, acos, tan, tanh, atan, exp, log, sqrt, c, vector, numeric, rep and matrix.
Notably, for the functions: c, vector, numeric, rep and matrix the function is ignored during differ-
entiation.

Value

a S4 class of type fcts extended by the new function-derivative pair.

Note

The body of f and f_deriv have to be defined without curly brackets.

Examples

library(dfdr)
# Initialize list
lst <- dfdr::fcts()

# The function which should be added
f <- function(x) x^2
# The dervative function of f
f_deriv <- function(x) 2*x

# add new entry to list
lst <- fcts_add_fct(lst, f, f_deriv)



gradient 5

g <- function(z) f(z)
df <- d(g, z, lst)
df

gradient Compute the gradient-function of a function.

Description

Creates a function that computes the derivative of a function with respect to each parameter and
return a vector of these.

Usage

gradient(f, use_names, ...)

Arguments

f A function

use_names Should the gradient add variable names to the output of the function?

... The variable names for which gradients should be calculated

Value

A function that computes the gradient of f at any point.

Examples

f <- function(x, y) x^2 + y^2
df <- gradient(f, FALSE, x, y)
df(1, 1)

hessian Compute the Hessian-function of a function.

Description

Creates a function that computes the second-order derivatives of a function with respect to each pair
of parameters and return a vector of these.

Usage

hessian(f, use_names = FALSE, ...)



6 jacobian

Arguments

f A function

use_names Should the gradient add variable names to the output of the function?

... The variable names for which gradients should be calculated

Value

A function that computes the gradient of f at any point.

Examples

f <- function(x, y) x**2 + y**2
h <- hessian(f, FALSE, x, y)
h(0, 0)

jacobian jacobian function

Description

Creates a function that computes the jacobi-matrix of a function for one specific variable. Here-
inafter the variable is called y. The derivative is calculated with respect to one of the arguments
of the function. Subsequently, the variable is called x. The returned function can be called at any
possible point of x.

Usage

jacobian(f, y, x, derivs = NULL, num_functions = NULL)

Arguments

f A function

y The variables to compute the derivatives of (the dependent variable). For exam-
ple: df/dx

x The variables to which respect the variables are calcualted (the independent vari-
able). For example: df/dx

derivs optional input defining own functions which should be used. See d() for details.

num_functions optional input defining number of functions otherwise a squared matrix form is
assumed.



jacobian 7

Details

The function jacobian is intended for using it for functions accepting vectors (in case of x) and
returns a vector (for y).
Mentionable, only integers are allowed for indexing the vectors. Moreover, only one element at the
time can be changed. For instance, y[1] is permitted. In contrast, y[1.5] or y[variable] will throw
an error.
As usually it is possible to define new variables. If x and/or y are found at the right side of the
assignment operator the variable is replaced in all following lines. See the example below:

# Old code
a <- x[1]
b <- 3
y[1] <- a*b
# New code
b <- 3
y[1] <- a*3

Furthermore, it is possible to use if, else if, else blocks within the function. However, the dependent
variable have to be located at the left side of the assignment operator. This restriction is necessary
as variables found in previous lines are replaced in the following lines.
# allowed code
f <- function(x, t) {

y <- numeric(2)
y[1] <- 2*x[1]^3
if(t < 3) {

y[2] <- x[2]^2
} else {

y[2] <- x[2]^4
}
return(y)

}
# not allowed code
f <- function(x, t) {

y <- numeric(2)
y[1] <- 2*x[1]^3
a <- 0
if(t < 3) {

a <- x[2]^2
} else {

a <- x[2]^4
}
y[2] <- a
return(y)

}

Value

A function that computes the jacobi-matrix of f. Notably, it expects the dame arguments as the input
function f.



8 simplify

Examples

f <- function(x) {
y <- numeric(2)
y[1] <- x[1]^2 + sin(4)
y[2] <- x[2]*7
return(y)

}
jac <- dfdr::jacobian(f, y, x)
jac(c(1, 2))

simplify Simplify an expression by computing the values for constant expres-
sions

Description

Simplify an expression by computing the values for constant expressions

Usage

simplify(expr)

Arguments

expr An expression

Value

a simplified expression

Examples

ex <- quote(a*0 + b^2 + 0)
simplify(ex)



Index

d, 2, 3, 4, 6

fcts, 2, 3, 4
fcts_add_fct, 4

gradient, 5

hessian, 5

jacobian, 6

simplify, 8

9


	d
	fcts
	fcts_add_fct
	gradient
	hessian
	jacobian
	simplify
	Index

