Package ‘deeptrafo’

December 3, 2024
Title Fitting Deep Conditional Transformation Models
Version 1.0-0

Description Allows for the specification of deep conditional transformation
models (DCTMs) and ordinal neural network transformation models, as
described in Baumann et al (2021) <doi:10.1007/978-3-030-86523-8_1> and
Kook et al (2022) <doi:10.1016/j.patcog.2021.108263>. Extensions such as
autoregressive DCTMs (Ruegamer et al, 2023, <doi:10.1007/s11222-023-10212-8>)
and transformation ensembles (Kook et al, 2022, <doi:10.48550/arXiv.2205.12729>)
are implemented. The software package is described in Kook et al (2024,
<doi:10.18637/jss.v111.i10>).

Depends R (>=4.0.0), tensorflow (>= 2.2.0), keras (>= 2.2.0),
tfprobability (>= 0.15), deepregression (>= 2.2.0)

Suggests testthat, knitr, ordinal, tram, cotram, covr

Imports mit, data.table, variables, stats, purrr, survival, R6,
Formula, reticulate

License GPL-3
Encoding UTF-8
RoxygenNote 7.3.1

URL https://github.com/neural-structured-additive-learning/deeptrafo

BugReports https://github.com/neural-structured-additive-learning/deeptrafo/issues
NeedsCompilation no

Author Lucas Kook [aut, cre],
Philipp Baumann [aut],
David Ruegamer [aut]

Maintainer Lucas Kook <lucasheinrich.kook@gmail.com>
Repository CRAN
Date/Publication 2024-12-03 18:40:02 UTC

https://doi.org/10.1007/978-3-030-86523-8_1
https://doi.org/10.1016/j.patcog.2021.108263
https://doi.org/10.1007/s11222-023-10212-8
https://doi.org/10.48550/arXiv.2205.12729
https://doi.org/10.18637/jss.v111.i10
https://github.com/neural-structured-additive-learning/deeptrafo
https://github.com/neural-structured-additive-learning/deeptrafo/issues

2 atm_init
Contents
AtM_INIE o e e e e e e e e e s 2
BoxCoxNN e 3
coefdeeptrafo L 4
ColrNN . . e 6
cotramNN e e 8
CoxphNN . . . e e e 9
detm . .. e e 11
deeptrafo e e 12
ensemble.deeptrafo L. 15
from_preds_to_trafo 16
hl_init e e 16
LehmanNN o e e e 17
LmNN . . e e 18
nll .o e 20
OMITAIN &+ v v v v v e 20
plot.deeptrafo L 22
PolrNN . . e e 23
SurvregNN . L o 24
trafoensemble L L L L e e e 26
trafo_control e 27
weighted_logLik 28
Index 30
atm_init Initializes the Processed Additive Predictor for ATMs
Description
Initializes the Processed Additive Predictor for ATMs
Usage
atm_init(atmnr, hinr)
Arguments
atmnr, hinr positions of the atm and h1 formula
Value

returns a subnetwork_init function with pre-defined arguments

BoxCoxNN

BoxCoxNN

BoxCox-type neural network transformation models

Description

BoxCox-type neural network transformation models

Usage

BoxCoxNN(
formula,
data,

response_type = get_response_type(datal[all.vars(formula)[1]1]1),

order = get_order(response_type, datal[[all.vars(formula)[1]11),
addconst_interaction = 0,

latent_distr = "normal”,

monitor_metrics = NULL,

trafo_options = trafo_control(order_bsp = order, response_type = response_type),

Arguments

formula

data

response_type

order

Formula specifying the response, interaction, shift terms as response | interacting
~ shifting. auto-regressive transformation models (ATMs).

Named list or data.frame which may contain both structured and unstruc-
tured data.

Character; type of response. One of "continuous”, "survival”, "count”,
or "ordered”. If not supplied manually it is determined by the first entry in
data[[response]].

Integer; order of the response basis. Default 10 for Bernstein basis or number of
levels minus one for ordinal responses.

addconst_interaction

latent_distr

monitor_metrics

Positive constant; a constant added to the additive predictor of the interaction
term. If NULL, terms are left unchanged. If O and predictors have negative val-
ues in their design matrix, the minimum value of all predictors is added to en-
sure positivity. If > 0, the minimum value plus the addconst_interaction is
added to each predictor in the interaction term. This ensures a monotone non-
decreasing transformation function in the response when using (tensor product)
spline bases in the interacting term.

A tfd_distribution or character; the base distribution for transformation mod-
els. If character, can be "normal”, "logistic”, "gumbel” or "gompertz".

See deepregression

4 coef.deeptrafo

trafo_options Options for transformation models such as the basis function used, see trafo_control
for more details.

Additional arguments passed to deepregression

Value

See return statement of deeptrafo

Examples

if (.Platform$0S.type != "windows” &&
reticulate::py_available() &&
reticulate: :py_module_available("tensorflow”) &&
reticulate: :py_module_available("keras") &&
reticulate: :py_module_available("tensorflow_probability”)) {
df <- data.frame(y = rnorm(50), x = rnorm(50))
m <- BoxCoxNN(y ~ x, data = df)
coef (m)

coef.deeptrafo S3 methods for deep conditional transformation models

Description

S3 methods for deep conditional transformation models

Usage

S3 method for class 'deeptrafo'

coef(
object,
which_param = c("shifting”, "interacting”, "autoregressive"),
type = NULL,

)

S3 method for class 'deeptrafo'
predict(
object,
newdata = NULL,
type = c("trafo”, "pdf", "cdf"”, "interaction”, "shift", "terms"),
batch_size = NULL,
K = 100,
g = NULL,
pred_grid = FALSE,

coef.deeptrafo

)

S3 method for class 'deeptrafo'

fitted(
object,

newdata = NULL,
batch_size = NULL,

convert_fun =

as.matrix,

call_create_lags = TRUE,

)

S3 method for class 'deeptrafo'

loglLik(
object,

newdata = NULL,

convert_fun =

)

function(x, ...) -sum(x, ...),

S3 method for class 'deeptrafo'
residuals(object, newdata = NULL, return_gradients = FALSE, ...)

S3 method for class 'deeptrafo'

simulate(object

, nsim = 1, seed = NULL, newdata = NULL, ...)

S3 method for class 'deeptrafo'
print(x, print_model = FALSE, print_coefs = TRUE, with_baseline = FALSE, ...)

S3 method for class 'deeptrafo'

summary (object,

Arguments

object

which_param

type

newdata
batch_size
K

)

Object of class "deeptrafo”.

Character; either "shifting”, "interacting”, or "autoregressive” (only
for autoregressive transformation models).

Either NULL (all types of coefficients are returned), "linear" for linear coeffi-
cients or "smooth" for coefficients of; Note that type is currently not used for
"interacting”.

Further arguments supplied to print.deeptrafo
Named list or data. frame; optional new data.
Integer; optional, useful if data is too large.

Integer; grid length for the response to evaluate predictions at, if newdata does
not contain the response.

Numeric or factor; user-supplied grid of response values to evaluate the predic-
tions. Defaults to NULL. If overwritten, K is ignored.

6 CoIrNN

pred_grid Logical; set TRUE, if user provides a predefined grid for an atp/atm model
through newdata which holds two attributes. The first attribute, rname, should
hold the column name (string) of the response variable while the second at-
tribute, y, should hold the grid name.
convert_fun Function; applied to the log-likelihood values of all observations.
call_create_lags
Logical; lags may already be computed by a different method (e.g. plot)
return_gradients
Return individual gradients instead of the summed gradients; the residuals are
0.5 * rowSums(gradients)

nsim Integer; number of simulations; defaults to 1.
seed Seed for generating samples; defaults to NULL.
X Object of class "deeptrafo”.

print_model Logical; print keras model.

print_coefs Logical; print coefficients.

with_baseline Logical; print baseline coefs.

Details
If no new data is supplied, predictions are computed on the training data (i.e. in-sample). If new
data is supplied without a response, predictions are evaluated on a grid of length K.

Value

Returns vector or matrix of predictions, depending on the supplied type.

Returns matrix of fitted values.

ColrNN Deep continuous outcome logistic regression

Description

Deep continuous outcome logistic regression

Usage

ColrNN(
formula,
data,
response_type = get_response_type(datal[all.vars(formula)[1]1]1),
order = get_order(response_type, datal[[all.vars(formula)[1]11),
addconst_interaction = 0,
latent_distr = "logistic”,
monitor_metrics = NULL,
trafo_options = trafo_control(order_bsp = order, response_type = response_type),

CoIrNN 7

Arguments
formula Formula specifying the response, interaction, shift terms as response | interacting
~ shifting. auto-regressive transformation models (ATMs).
data Named list or data.frame which may contain both structured and unstruc-

tured data.

response_type Character; type of response. One of "continuous”, "survival”, "count”,
or "ordered”. If not supplied manually it is determined by the first entry in
data[[response]].

order Integer; order of the response basis. Default 10 for Bernstein basis or number of
levels minus one for ordinal responses.

addconst_interaction

Positive constant; a constant added to the additive predictor of the interaction
term. If NULL, terms are left unchanged. If O and predictors have negative val-
ues in their design matrix, the minimum value of all predictors is added to en-
sure positivity. If > 0, the minimum value plus the addconst_interaction is
added to each predictor in the interaction term. This ensures a monotone non-
decreasing transformation function in the response when using (tensor product)
spline bases in the interacting term.

latent_distr A tfd_distribution or character; the base distribution for transformation mod-

n on

els. If character, can be "normal”, "logistic”, "gumbel” or "gompertz".

monitor_metrics
See deepregression

trafo_options Options for transformation models such as the basis function used, see trafo_control
for more details.

Additional arguments passed to deepregression

Value

See return statement of deeptrafo

Examples

if (.Platform$0S.type != "windows" &&
reticulate::py_available() &&
reticulate: :py_module_available("tensorflow”) &&
reticulate::py_module_available("keras"”) &&
reticulate: :py_module_available("tensorflow_probability”)) {
df <- data.frame(y = rnorm(50), x = rnorm(50))
m <- ColrNN(y ~ x, data = df)
coef(m)

8 cotramNN

cotramNN Deep distribution-free count regression

Description

Deep distribution-free count regression

Usage

cotramNN(
formula,
data,
response_type = get_response_type(datal[all.vars(formula)[111]),
order = get_order(response_type, datal[[all.vars(formula)[1]11),
addconst_interaction = 0,
latent_distr = "logistic”,
monitor_metrics = NULL,

)
Arguments
formula Formula specifying the response, interaction, shift terms as response | interacting
~ shifting. auto-regressive transformation models (ATMs).
data Named list or data.frame which may contain both structured and unstruc-

tured data.

response_type Character; type of response. One of "continuous”, "survival”, "count”,
or "ordered”. If not supplied manually it is determined by the first entry in
datal[[response]].

order Integer; order of the response basis. Default 10 for Bernstein basis or number of
levels minus one for ordinal responses.

addconst_interaction
Positive constant; a constant added to the additive predictor of the interaction
term. If NULL, terms are left unchanged. If O and predictors have negative val-
ues in their design matrix, the minimum value of all predictors is added to en-
sure positivity. If > 0, the minimum value plus the addconst_interaction is
added to each predictor in the interaction term. This ensures a monotone non-
decreasing transformation function in the response when using (tensor product)
spline bases in the interacting term.

latent_distr A tfd_distribution or character; the base distribution for transformation mod-
els. If character, can be "normal”, "logistic”, "gumbel” or "gompertz".

monitor_metrics
See deepregression

Additional arguments passed to deepregression

CoxphNN

Value

See return statement of deeptrafo

Examples

if (.Platform$0S.type != "windows”" &&

reticulate::py_available() &&

reticulate: :py_module_available("tensorflow”) &&

reticulate: :py_module_available("keras”") &&

reticulate: :py_module_available("tensorflow_probability”)) {

set.seed(1)

df <- data.frame(y = as.integer(abs(1 + rnorm(50, sd = 10))), x = rnorm(50))
m <- cotramNN(y ~ @ + x, data = df, order = 6)

optimizer <- optimizer_adam(learning_rate = 0.1, decay = 4e-4)

m <- cotramNN(y ~ @ + x, data = df, optimizer = optimizer, order = 6)

library(cotram)

fit(m, epochs = 800L, validation_split = @)

loglik(mm <- cotram(y ~ x, data = df, method = "logit")); loglLik(m)

coef(mm, with_baseline = TRUE); unlist(c(coef(m, which = "interacting"),
coef(m, which = "shifting")))

CoxphNN Cox proportional hazards type neural network transformation models

Description

Cox proportional hazards type neural network transformation models

Usage

CoxphNN(

formula,

data,

response_type = get_response_type(datal[all.vars(formula)[1]1]),

order = get_order(response_type, datal[[all.vars(formula)[1]11),
addconst_interaction = 0,

latent_distr = "gompertz”,

monitor_metrics = NULL,

trafo_options = trafo_control(order_bsp = order, response_type = response_type),

10 CoxphNN

Arguments
formula Formula specifying the response, interaction, shift terms as response | interacting
~ shifting. auto-regressive transformation models (ATMs).
data Named list or data.frame which may contain both structured and unstruc-

tured data.

response_type Character; type of response. One of "continuous”, "survival”, "count”,
or "ordered”. If not supplied manually it is determined by the first entry in
data[[response]].

order Integer; order of the response basis. Default 10 for Bernstein basis or number of
levels minus one for ordinal responses.

addconst_interaction

Positive constant; a constant added to the additive predictor of the interaction
term. If NULL, terms are left unchanged. If O and predictors have negative val-
ues in their design matrix, the minimum value of all predictors is added to en-
sure positivity. If > 0, the minimum value plus the addconst_interaction is
added to each predictor in the interaction term. This ensures a monotone non-
decreasing transformation function in the response when using (tensor product)
spline bases in the interacting term.

latent_distr A tfd_distribution or character; the base distribution for transformation mod-

n on

els. If character, can be "normal”, "logistic”, "gumbel” or "gompertz".

monitor_metrics
See deepregression

trafo_options Options for transformation models such as the basis function used, see trafo_control
for more details.

Additional arguments passed to deepregression

Value

See return statement of deeptrafo

Examples

if (.Platform$0S.type != "windows" &&
reticulate::py_available() &&
reticulate: :py_module_available("tensorflow”) &&
reticulate::py_module_available("keras"”) &&
reticulate: :py_module_available("tensorflow_probability”)) {
df <- data.frame(y = rnorm(50), x = rnorm(50))
m <- CoxphNN(y ~ x, data = df)
coef(m)

dctm 11
dctm Deep conditional transformation models with alternative formula in-
terface
Description

Deep conditional transformation models with alternative formula interface

Usage

dctm(
response,

intercept = NULL,

shift = NULL,
shared = NULL
data,

response_type

’

= get_response_type(data[[all.vars(response)[1]1]1]),

order = get_order(response_type, data[[all.vars(response)[1]11]),
addconst_interaction = 0,

latent_distr = "logistic”,

monitor_metrics = NULL,

trafo_options = trafo_control(order_bsp = order, response_type = response_type),

Arguments

response

intercept

shift

shared

data

response_type

order

Formula for the response; e.g. ~y

Formula for the intercept function; e.g., ~ x, for which interacting bases with the
response will be set up

Formula for the shift part of the model; e.g., ~ s(x)

Formula for sharing weights between predictors in the intercept and shift part of
the model

Named list or data.frame which may contain both structured and unstruc-
tured data.

Character; type of response. One of "continuous”, "survival”, "count”,
or "ordered”. If not supplied manually it is determined by the first entry in
datal[[response]].

Integer; order of the response basis. Default 10 for Bernstein basis or number of
levels minus one for ordinal responses.

addconst_interaction

Positive constant; a constant added to the additive predictor of the interaction
term. If NULL, terms are left unchanged. If O and predictors have negative val-
ues in their design matrix, the minimum value of all predictors is added to en-
sure positivity. If > 0, the minimum value plus the addconst_interaction is

12 deeptrafo

added to each predictor in the interaction term. This ensures a monotone non-
decreasing transformation function in the response when using (tensor product)
spline bases in the interacting term.

latent_distr A tfd_distribution or character; the base distribution for transformation mod-
els. If character, can be "normal”, "logistic”, "gumbel” or "gompertz".
monitor_metrics
See deepregression

trafo_options Options for transformation models such as the basis function used, see trafo_control
for more details.

Additional arguments passed to deepregression

Value

See return statement of deeptrafo

Examples

if (.Platform$0S.type != "windows” &&
reticulate::py_available() &&
reticulate::py_module_available("tensorflow”) &&
reticulate::py_module_available("keras”) &&
reticulate: :py_module_available("tensorflow_probability”)) {
df <- data.frame(y = rnorm(50), x = rnorm(50))

m <- dctm(response = ~ y, shift = ~ @ + x, data = df)
coef(m)
3
deeptrafo Deep Conditional Transformation Models
Description

Deep Conditional Transformation Models

Usage

deeptrafo(
formula,
data,
response_type = get_response_type(datal[[all.vars(fml)[111]),
order = get_order(response_type, datal[all.vars(fml)[1]11),
addconst_interaction = 0,
latent_distr = "logistic”,
loss = "nll",
loss_args = NULL,
monitor_metrics = NULL,

deeptrafo 13

trafo_options = trafo_control(order_bsp = order, response_type = response_type),
return_data = FALSE,

engine = "tf",
)
Arguments
formula Formula specifying the response, interaction, shift terms as response | interacting
~ shifting. auto-regressive transformation models (ATMs).
data Named list or data.frame which may contain both structured and unstruc-

tured data.

response_type Character; type of response. One of "continuous”, "survival”, "count”,
or "ordered”. If not supplied manually it is determined by the first entry in
datal[[response]].

order Integer; order of the response basis. Default 10 for Bernstein basis or number of
levels minus one for ordinal responses.

addconst_interaction
Positive constant; a constant added to the additive predictor of the interaction
term. If NULL, terms are left unchanged. If O and predictors have negative val-
ues in their design matrix, the minimum value of all predictors is added to en-
sure positivity. If > 0, the minimum value plus the addconst_interaction is
added to each predictor in the interaction term. This ensures a monotone non-
decreasing transformation function in the response when using (tensor product)
spline bases in the interacting term.

latent_distr A tfd_distribution or character; the base distribution for transformation mod-

n on

els. If character, can be "normal”, "logistic”, "gumbel” or "gompertz".

loss Character; specifies the loss function used. The default is "n11", an internal
function which takes latent_distr as an argument and returns a function with
arguments y_true and y_pred to be given to the underlying ’keras’ model. Cus-
tom loss functions can be supplied with the same structure, either as a character
or function.

loss_args Further additional arguments to loss.

monitor_metrics
See deepregression

trafo_options Options for transformation models such as the basis function used, see trafo_control
for more details.

return_data Include full data in the returned object. Defaults to FALSE. Set to TRUE if inteded
to use simulate afterwards.

engine Ignored; for compatibility with package deepregression.
Additional arguments passed to deepregression

Details

deeptrafo is the main function for setting up neural network transformation models and is called
by all aliases for the more special cases (see e.g. ColrNN). The naming convention of the aliases
follow the "tram’ package (see e.g. Colr) and add the suffix "NN" to the function name.

14 deeptrafo

Value

An object of class c("deeptrafo”, "deepregression”)

References

Kook, L., Baumann, P. E, Diirr, O., Sick, B., & Riigamer, D. (2024). Estimating conditional
distributions with neural networks using R package deeptrafo. Journal of Statistical Software.
doi:10.18637/jss.v111.i10.

Examples

if (.Platform$0S.type != "windows" &&
reticulate: :py_available() &&
reticulate: :py_module_available("tensorflow”) &&
reticulate::py_module_available("keras"”) &&
reticulate: :py_module_available("tensorflow_probability”)) {
data("wine", package = "ordinal")
wine$z <- rnorm(nrow(wine))
wine$x <- rnorm(nrow(wine))

nn <- \(x) x |>
layer_dense(input_shape = 1L, units = 2L, activation = "relu”) |>
layer_dense(1L)

fml <- rating ~ @ + temp + contact + s(z, df = 3) + nn(x)

m <- deeptrafo(fml, wine,

latent_distr = "logistic”, monitor_metric = NULL,
return_data = TRUE, list_of_deep_models = list(nn = nn)
)
print(m)

m %>% fit(epochs = 10, batch_size = nrow(wine))

coef(m, which_param = "interacting"”)
coef(m, which_param = "shifting")
fitted(m)

predict(m, type = "pdf")

predict(m, type = "pdf", newdata = wine[, -21)
loglLik(m)

logLik(m, newdata = wine[1:10,])

plot(m)

mcv <- cv(m, cv_folds = 3)

ens <- ensemble(m, n_ensemble = 3)

coef(ens)

https://doi.org/10.18637/jss.v111.i10

ensemble.deeptrafo

15

ensemble.deeptrafo

Deep ensembling for neural network transformation models

Description

Deep ensembling for neural network transformation models

Usage

S3 method for class 'deeptrafo'
ensemble(

X,
n_ensemble
reinitialize
mylapply = la
verbose = FAL
patience = 20
plot = TRUE,
print_members
stop_if_nan
save_weights
callbacks =1
save_fun = NU
seed = seq_le

Arguments

X

n_

ensemble

reinitialize

mylapply
verbose

patience

plot

print_members

stop_if_nan

save_weights
callbacks

save_fun

seed

5,
= TRUE,
pply,
SE,

’

TRUE,
TRUE,
TRUE,
ist(),
LL,
n(n_ensemble),

Object of class "deeptrafo”.
Numeric; number of ensemble members to fit.

Logical; if TRUE (default), model weights are initialized randomly prior to fitting
each member. Fixed weights are not affected.

Function; lapply function to be used; defaults to lapply

Logical; whether to print training in each fold.

Integer; number of patience for early stopping.

Logical; whether to plot the resulting losses in each fold.

Logical; print results for each member.

Logical; whether to stop ensembling if NaN values occur

Logical; whether to save the ensemble weights.

List; callbacks used for fitting.

Function; function to be applied to each member to be stored in the final result.
Numeric vector of length n_ensemble; seeds for model initialization.

Further arguments passed to object$fit_fun.

16 hl_init

Value

Ensemble of "deeptrafo” models with list of training histories and fitted weights included in
ensemble_results. For details see the return statment in ensemble.

from_preds_to_trafo Define Predictor of Transformation Model

Description

Define Predictor of Transformation Model

Usage

from_preds_to_trafo(
atm_toplayer = function(x) layer_dense(x, units = 1L, name = "atm_toplayer"),
const_ia = NULL,

Arguments

atm_toplayer Function to be applied on top of the transformed lags.
const_ia See addconst_interaction in deeptrafo or deepregression.

For compatibility with *deepregression’

Details

Not intended to be used directly by the end user.

Value

A function of list_pred_param returning a list of output tensors that is passed to model_fun of
deepregression

h1_init Initializes the Processed Additive Predictor for TM'’s Interaction

Description

Initializes the Processed Additive Predictor for TM’s Interaction

Usage

h1_init(yterms, hlpred, add_const_positiv = @)

LehmanNN

Arguments

yterms

h1pred

17

Terms for the response

Interacting predictor

add_const_positiv

Value

Shift basis for the predictors to be strictly positive

returns a subnetwork_init function with pre-defined arguments

LehmanNN

Lehmann-type neural network transformation models

Description

Lehmann-type neural network transformation models

Usage

LehmanNN(
formula,
data,

response_type

= get_response_type(datal[all.vars(formula)[111]),

order = get_order(response_type, data[[all.vars(formula)[11]11),
addconst_interaction = 0,

latent_distr = "gumbel”,

monitor_metrics = NULL,

trafo_options = trafo_control(order_bsp = order, response_type = response_type),

Arguments

formula

data

response_type

order

Formula specifying the response, interaction, shift terms as response | interacting
~ shifting. auto-regressive transformation models (ATMs).

Named list or data.frame which may contain both structured and unstruc-
tured data.

Character; type of response. One of "continuous”, "survival”, "count”,
or "ordered”. If not supplied manually it is determined by the first entry in
datal[[response]].

Integer; order of the response basis. Default 10 for Bernstein basis or number of
levels minus one for ordinal responses.

18 LmNN

addconst_interaction
Positive constant; a constant added to the additive predictor of the interaction
term. If NULL, terms are left unchanged. If O and predictors have negative val-
ues in their design matrix, the minimum value of all predictors is added to en-
sure positivity. If > 0, the minimum value plus the addconst_interaction is
added to each predictor in the interaction term. This ensures a monotone non-
decreasing transformation function in the response when using (tensor product)
spline bases in the interacting term.

latent_distr A tfd_distribution or character; the base distribution for transformation mod-

els. If character, can be "normal”, "logistic”, "gumbel” or "gompertz".
monitor_metrics

See deepregression

trafo_options Options for transformation models such as the basis function used, see trafo_control
for more details.

Additional arguments passed to deepregression

Value

See return statement of deeptrafo

Examples

if (.Platform$0S.type != "windows" &&
reticulate::py_available() &&
reticulate: :py_module_available("tensorflow”) &&
reticulate::py_module_available("keras”) &&
reticulate: :py_module_available("tensorflow_probability”)) {
df <- data.frame(y = rnorm(50), x = rnorm(50))
m <- LehmanNN(y ~ @ + x, data = df)
coef(m)

LmNN Deep normal linear regression

Description

Deep normal linear regression

Usage

LmNN(
formula,
data,
response_type = get_response_type(datal[all.vars(formula)[111]),
order = get_order(response_type, data[[all.vars(formula)[1]]]),

LmNN 19

addconst_interaction = 0,

latent_distr = "normal”,

monitor_metrics = NULL,

trafo_options = trafo_control(order_bsp = 1L, response_type = response_type,
y_basis_fun = eval_lin, y_basis_fun_lower = .empty_fun(eval_lin), y_basis_fun_prime =

eval_lin_prime, basis = "shiftscale"),
)
Arguments
formula Formula specifying the response, interaction, shift terms as response | interacting
~ shifting. auto-regressive transformation models (ATMs).
data Named list or data.frame which may contain both structured and unstruc-

tured data.

response_type Character; type of response. One of "continuous”, "survival”, "count”,
or "ordered”. If not supplied manually it is determined by the first entry in
datal[[response]].

order Integer; order of the response basis. Default 10 for Bernstein basis or number of
levels minus one for ordinal responses.

addconst_interaction
Positive constant; a constant added to the additive predictor of the interaction
term. If NULL, terms are left unchanged. If O and predictors have negative val-
ues in their design matrix, the minimum value of all predictors is added to en-
sure positivity. If > 0, the minimum value plus the addconst_interaction is
added to each predictor in the interaction term. This ensures a monotone non-
decreasing transformation function in the response when using (tensor product)
spline bases in the interacting term.

latent_distr A tfd_distribution or character; the base distribution for transformation mod-
els. If character, can be "normal”, "logistic”, "gumbel” or "gompertz"”.

monitor_metrics
See deepregression

trafo_options Options for transformation models such as the basis function used, see trafo_control
for more details.

Additional arguments passed to deepregression

Value

See return statement of deeptrafo

Examples

if (.Platform$0S.type != "windows" &&
reticulate::py_available() &&
reticulate: :py_module_available("tensorflow”) &&
reticulate: :py_module_available("keras") &&
reticulate: :py_module_available("tensorflow_probability”)) {

20 ontram

set.seed(1)
df <- data.frame(y = 10 + rnorm(50), x = rnorm(50))
m <- LmNN(y ~ @ + x, data = df)

optimizer <- optimizer_adam(learning_rate = 0.01, decay = 4e-4)

m <- LmNN(y ~ @ + x, data = df, optimizer = optimizer)

library(tram)

fit(m, epochs = 900L, validation_split = @)

loglik(mm <- Lm(y ~ x, data = df)); logLik(m)

coef(mm, with_baseline = TRUE); unlist(c(coef(m, which = "interacting"),
coef(m, which = "shifting”)))

nll Generic negative log-likelihood for transformation models

Description

Generic negative log-likelihood for transformation models

Usage

nll(latent_distr)

Arguments

latent_distr Target distribution, character or tfd_distribution. If character, can be either

"non

"logistic", "normal", "gumbel", "gompertz".

Value

A function for computing the negative log-likelihood of a neural network transformation model
with generic response.

ontram Ordinal neural network transformation models

Description

Ordinal neural network transformation models

ontram 21

Usage

ontram(
response,
intercept = NULL,
shift = NULL,
shared = NULL,
data,
response_type = "ordered”,
order = get_order(response_type, datal[[all.vars(response)[111]),
addconst_interaction = 0,
latent_distr = "logistic”,
monitor_metrics = NULL,
trafo_options = trafo_control(order_bsp = order, response_type = response_type),

)
Arguments

response Formula for the response; e.g., ~ y

intercept Formula for the intercept function; e.g., ~ x, for which interacting bases with the
response will be set up

shift Formula for the shift part of the model; e.g., ~ s(x)

shared Formula for sharing weights between predictors in the intercept and shift part of
the model

data Named list or data.frame which may contain both structured and unstruc-
tured data.

response_type Character; type of response. One of "continuous”, "survival”, "count”,
or "ordered”. If not supplied manually it is determined by the first entry in
data[[response]].

order Integer; order of the response basis. Default 10 for Bernstein basis or number of
levels minus one for ordinal responses.

addconst_interaction
Positive constant; a constant added to the additive predictor of the interaction
term. If NULL, terms are left unchanged. If O and predictors have negative val-
ues in their design matrix, the minimum value of all predictors is added to en-
sure positivity. If > 0, the minimum value plus the addconst_interaction is
added to each predictor in the interaction term. This ensures a monotone non-
decreasing transformation function in the response when using (tensor product)
spline bases in the interacting term.

latent_distr A tfd_distribution or character; the base distribution for transformation mod-

els. If character, can be "normal”, "logistic”, "gumbel” or "gompertz".
monitor_metrics

See deepregression
trafo_options Options for transformation models such as the basis function used, see trafo_control

for more details.

Additional arguments passed to deepregression

22 plot.deeptrafo

Value

See return statement of deeptrafo

References

Kook, L. & Herzog, L., Hothorn, T., Diirr, O., & Sick, B. (2022). Deep and interpretable regression
models for ordinal outcomes. Pattern Recognition, 122, 108263. DOI 10.1016/j.patcog.2021.108263

Examples

if (.Platform$0S.type != "windows" &&
reticulate::py_available() &&
reticulate: :py_module_available("tensorflow”) &&
reticulate::py_module_available("keras"”) &&
reticulate: :py_module_available("tensorflow_probability”)) {
df <- data.frame(y = ordered(sample.int(6, 50, TRUE)), x = rnorm(50))

m <- ontram(response = ~ y, shift = ~ x, data = df)
coef(m)
3
plot.deeptrafo Plot method for deep conditional transformation models
Description

Plot method for deep conditional transformation models

Usage
S3 method for class 'deeptrafo'’
plot(
X’
which = NULL,

type = c("smooth”, "trafo”, "pdf"”, "cdf"),
newdata = NULL,

which_param = c("shifting”, "interacting"”),
only_data = FALSE,

K = 40,

g = NULL,

PolrNN

Arguments
X
which

type
newdata

which_param

23

Object of class "deeptrafo”.
Which effect to plot, default selects all smooth effects in the shift term.
Character; One of "smooth", "trafo", "pdf", or "cdf".

Optional new data (1ist or data.frame) to evaluate predictions at. If the re-
sponse is missing, plots are generated on a grid of length K

Character; either "interacting” or "shifting".

only_data Logical, if TRUE, only the data for plotting is returned.

K Integer; If type == "smooth"” the length of an equidistant grid at which a two-
dimensional function is evaluated for plotting. Otherwise, length of the grid to
evaluate predictions at, see newdata.

q Vector of response values to compute predictions at, see newdata
Further arguments, passed to fit, plot or predict function

PolrNN Deep (proportional odds) logistic regression
Description

Deep (proportional odds) logistic regression

Usage

PolrNN(
formula,
data,

response_type

= get_response_type(datal[[all.vars(formula)[1]1]1]),

order = get_order(response_type, datal[[all.vars(formula)[1]1]1),
addconst_interaction = 0,

latent_distr = "logistic”,

monitor_metrics = NULL,

trafo_options = trafo_control(order_bsp = order, response_type = response_type),

Arguments

formula

data

response_type

Formula specifying the response, interaction, shift terms as response | interacting
~ shifting. auto-regressive transformation models (ATMs).

Named list or data.frame which may contain both structured and unstruc-
tured data.

Character; type of response. One of "continuous”, "survival”, "count”,
or "ordered”. If not supplied manually it is determined by the first entry in
datal[response]].

24 SurvregNN

order Integer; order of the response basis. Default 10 for Bernstein basis or number of
levels minus one for ordinal responses.

addconst_interaction

Positive constant; a constant added to the additive predictor of the interaction
term. If NULL, terms are left unchanged. If O and predictors have negative val-
ues in their design matrix, the minimum value of all predictors is added to en-
sure positivity. If > 0, the minimum value plus the addconst_interaction is
added to each predictor in the interaction term. This ensures a monotone non-
decreasing transformation function in the response when using (tensor product)
spline bases in the interacting term.

latent_distr A tfd_distribution or character; the base distribution for transformation mod-

n on

els. If character, can be "normal”, "logistic”, "gumbel” or "gompertz".

monitor_metrics
See deepregression

trafo_options Options for transformation models such as the basis function used, see trafo_control
for more details.

Additional arguments passed to deepregression

Value

See return statement of deeptrafo

Examples

if (.Platform$0S.type != "windows" &&
reticulate::py_available() &&
reticulate: :py_module_available("tensorflow”) &&
reticulate: :py_module_available("keras") &&
reticulate: :py_module_available("tensorflow_probability”)) {
df <- data.frame(y = ordered(sample.int(5, 50, replace = TRUE)),
x = rnorm(50))
m <- PolrNN(y ~ x, data = df)
coef(m)

SurvregNN Deep parametric survival regression

Description

Deep parametric survival regression

SurvregNN 25

Usage

SurvregNN(
formula,
data,
response_type = get_response_type(datal[all.vars(formula)[111]),
order = get_order(response_type, datal[[all.vars(formula)[1]1]1),
addconst_interaction = 0,
latent_distr = "gompertz”,
monitor_metrics = NULL,
trafo_options = NULL,

)
Arguments
formula Formula specifying the response, interaction, shift terms as response | interacting
~ shifting. auto-regressive transformation models (ATMs).
data Named list or data.frame which may contain both structured and unstruc-

tured data.

response_type Character; type of response. One of "continuous”, "survival”, "count”,
or "ordered”. If not supplied manually it is determined by the first entry in
datal[response]].

order Integer; order of the response basis. Default 10 for Bernstein basis or number of
levels minus one for ordinal responses.

addconst_interaction

Positive constant; a constant added to the additive predictor of the interaction
term. If NULL, terms are left unchanged. If O and predictors have negative val-
ues in their design matrix, the minimum value of all predictors is added to en-
sure positivity. If > 0, the minimum value plus the addconst_interaction is
added to each predictor in the interaction term. This ensures a monotone non-
decreasing transformation function in the response when using (tensor product)
spline bases in the interacting term.

latent_distr A tfd_distribution or character; the base distribution for transformation mod-

non

els. If character, can be "normal”, "logistic”, "gumbel” or "gompertz".

monitor_metrics
See deepregression

trafo_options Options for transformation models such as the basis function used, see trafo_control
for more details.

Additional arguments passed to deepregression

Value

See return statement of deeptrafo

26 trafoensemble
Examples
if (.Platform$0S.type != "windows” &&
reticulate::py_available() &&
reticulate::py_module_available("tensorflow”) &&
reticulate::py_module_available("keras”) &&
reticulate: :py_module_available("tensorflow_probability”)) {
set.seed(1)
df <- data.frame(y = abs(1 + rnorm(50)), x = rnorm(50))
m <- SurvregNN(y ~ @ + x, data = df)
optimizer <- optimizer_adam(learning_rate = .01, decay = 4e-4)
m <- SurvregNN(y ~ @ + x, data = df, optimizer = optimizer)
library(tram)
fit(m, epochs = 500L, validation_split = @)
logLik(mm <- Survreg(y ~ x, data = df, dist = "loglogistic"”)); logLik(m)
coef(mm, with_baseline = TRUE); unlist(c(coef(m, which = "interacting"),
coef(m, which = "shifting")))
trafoensemble Transformation ensembles
Description
Transformation ensembles
Usage
trafoensemble(
formula,
data,

n_ensemble = 5,

verbose = FALSE,

print_members = TRUE,
stop_if_nan = TRUE,
save_weights = TRUE,

callbacks = 1list(),

save_fun = NULL,

seed = seq_len(n_ensemble),
tf_seeds = seq_len(n_ensemble),

trafo_control

Arguments

formula

data

n_ensemble
verbose
print_members
stop_if_nan
save_weights
callbacks
save_fun

seed

tf_seeds

Value

27

Formula specifying the response, interaction, shift terms as response | interacting
~ shifting. auto-regressive transformation models (ATMs).

Named list or data.frame which may contain both structured and unstruc-
tured data.

Numeric; number of ensemble members to fit.

Logical; whether to print training in each fold.

Logical; print results for each member.

Logical; whether to stop ensembling if NaN values occur

Logical; whether to save the ensemble weights.

List; callbacks used for fitting.

Function; function to be applied to each member to be stored in the final result.

Numeric vector of length n_ensemble; seeds for model re-initialization. Chang-
ing these seeds does not change the parameters of the interacting predictor
coef(obj, which_param="interacting"), change tf_seeds to adapt those
coefficients.

Numeric vector of length n_ensemble; explicit seed for changing the parameters
of the interacting predictor. Distinct from seed which is used for weight re-
initialization of the rest of the model (i.e., the shifting predictor and potential
neural network components in the interacting component).

Further arguments passed to deeptrafo and fit.

Ensemble of "deeptrafo” models with list of training histories and fitted weights included in
ensemble_results. For details see the return statment in ensemble.

trafo_control

Options for transformation models

Description

Options for transformation models

Usage

trafo_control(

order_bsp = 10L,

support = function(y) range(y),
y_basis_fun = NULL,
y_basis_fun_lower = NULL,
y_basis_fun_prime = NULL,
penalize_bsp = 0,

28

weighted_logLik

order_bsp_penalty = 2,
tf_bsps = FALSE,

response_type = c("continuous”, "ordered”, "survival”, "count”),
atm_toplayer = function(x) {
layer_dense(x, units = 1L, name = "atm_toplayer"”,
use_bias = FALSE)
b
basis = c("bernstein”, "ordered”, "shiftscale")
)
Arguments
order_bsp The order of Bernstein polynomials in case y_basis_fun is a Bernstein polyno-
mial defined by eval_bsp or (one less than) the number of classes of an ordinal
outcome.
support A function returning a vector with two elements, namely the support for the

y_basis_fun

basis of y.

Function; basis function for Y

y_basis_fun_lower

Function; basis function for lower bound of interval censored response

y_basis_fun_prime

penalize_bsp

Function; basis function derivative

Scalar value > 0; controls amount of penalization of Bernstein polynomials.

order_bsp_penalty

tf_bsps

response_type
atm_toplayer

basis

Value

Integer; order of Bernstein polynomial penalty. O results in a penalty based on
integrated squared second order derivatives, values >= 1 in difference penalties.

Logical; whether to use a TensorFlow implementation of the Bernstein polyno-
mial functions.

Character; type of response can be continuous, ordered, survival, or count.
Function; a function specifying the layer on top of ATM lags.

Character or function; implemented options are "bernstein” (a Bernstein poly-
nomial basis), "ordered” (for ordinal responses), or "shiftscale” for (log-)
linear bases

Returns a named 1list with all options, basis functions, support, and penalties.

weighted_loglLik

Tune and evaluate weighted transformation ensembles

Description

Tune and evaluate weighted transformation ensembles

weighted_logLik

Usage

29

weighted_loglLik(

object,
weights
newdata

NULL,
NULL,

convert_fun = function(x, ...) mean(x, ...),
batch_size = NULL,

Arguments

object
weights

newdata
convert_fu

batch_size

Value

n

Object of class "dtEnsemble”

Numeric; weight-vector of length n_ensemble, if NULL the weights are tuned on
newdata

List or data.frame; new data to evaluate or tune the weights on
Function; applied to the log-likelihood values of all observations.
Integer; optional, useful if data is too large.

Further arguments supplied to print.deeptrafo

Returns list of ensemble members, average, and ensemble log-likelihood converted by convert_fun

Index

atm_init, 2 SurvreghN, 24
BoxCoxNN, 3 trafo_control, 4,7, 10, 12, 13,18, 19, 21,
24, 25,27

coef.deeptrafo, 4 trafoensemble, 26
Colr, I3
ColrNN, 6, 13 weighted_loglLik, 28
cotramNN, 8
CoxphNN, 9
dctm, 11
deepregression, 3,7, 8, 10, 12, 13, 16, 18,

19,21, 24, 25
deeptrafo, 4, 7,9, 10, 12,12, 16, 18, 19, 22,

24, 25

ensemble, 16, 27
ensemble.deeptrafo, 15

fitted.deeptrafo (coef.deeptrafo), 4
from_preds_to_trafo, 16

h1_init, 16

LehmanNN, 17
LmNN, 18
loglik.deeptrafo (coef.deeptrafo), 4

nll, 20
ontram, 20

plot.deeptrafo, 22

PolrNN, 23

predict.deeptrafo (coef.deeptrafo), 4
print.deeptrafo (coef.deeptrafo), 4

residuals.deeptrafo (coef.deeptrafo), 4

simulate, /3
simulate.deeptrafo (coef.deeptrafo), 4
summary.deeptrafo (coef.deeptrafo), 4

30

	atm_init
	BoxCoxNN
	coef.deeptrafo
	ColrNN
	cotramNN
	CoxphNN
	dctm
	deeptrafo
	ensemble.deeptrafo
	from_preds_to_trafo
	h1_init
	LehmanNN
	LmNN
	nll
	ontram
	plot.deeptrafo
	PolrNN
	SurvregNN
	trafoensemble
	trafo_control
	weighted_logLik
	Index

