
Package ‘dbd’
October 13, 2022

Version 0.0-22

Date 2021-08-19

Title Discretised Beta Distribution

Author Rolf Turner <r.turner@auckland.ac.nz>

Maintainer Rolf Turner <r.turner@auckland.ac.nz>

Description Tools for working with a new versatile
discrete distribution, the db (``discretised Beta'')
distribution. This package provides density (probability),
distribution, inverse distribution (quantile) and random
data generation functions for the db family. It provides
functions to effect conveniently maximum likelihood
estimation of parameters, and a variety of useful plotting
functions. It provides goodness of fit tests and functions
to calculate the Fisher information, different estimates of
the hessian of the log likelihood and Monte Carlo estimation
of the covariance matrix of the maximum likelihood parameter
estimates. In addition it provides analogous tools for
working with the beta-binomial distribution which has been
proposed as a competitor to the db distribution.

Depends R (>= 3.2.2)

Suggests hmm.discnp, MASS, rmutil, spcadjust

LazyData true

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2021-08-19 13:40:05 UTC

R topics documented:
aHess . 2
db . 3
eow . 5

1

2 aHess

exactMeDb . 6
expValBb . 8
expValDb . 10
finfo . 11
gof . 13
hrsRcePred . 16
llPlot . 17
logLik . 20
makeBbdpars . 21
makeDbdpars . 22
mcCovMat . 23
mleBb . 25
mleDb . 27
ndata . 29
nHess . 30
plot.mleBb . 31
plot.mleDb . 33
plotBb . 35
plotDb . 36
simulate . 38
varBb . 39
varDb . 40
vcov.mleBb . 42
vcov.mleDb . 43
visRecog . 44

Index 46

aHess Analytic hessian.

Description

Compute the hessian of the negative log likelihood of a db or beta binomial distribution from an
analytic expression for this quantity.

Usage

aHess(object,x)

Arguments

object An object of class "mleDb" or "mleBb" as returned by the function mleDb() or
the function mleBb().

x A numeric vector of observations appropriate for the model that was fitted to
produce object. Needed only if object is of class "mleBb"; the hessian for the
db distribution depends only upon the parameters and not upon the data.

db 3

Details

This function is essentially the same as the finfo() functions and differs from it only in that it is
designed to act up "mleDb" or "mleBb" objects, from which (estimates of) the relevant parameters
are extracted.

Value

A two-by-two positive definite (with any luck!) numeric matrix. Its inverse is an estimate of the
covariance matrix of the parameter estimates.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

nHess() finfo() mleDb()

Examples

X <- hmm.discnp::SydColDisc
X$y <- as.numeric(X$y)
X <- split(X,f=with(X,interaction(locn,depth)))
x <- X[[19]]$y
fit <- mleDb(x, ntop=5)
H <- aHess(fit)
print(solve(H)) # Equal to ...
print(vcov(fit))
X <- hrsRcePred
top1e <- X[X$sbjType=="Expert","top1"]
fit <- mleBb(top1e,size=10)
H <- aHess(fit,x=top1e)
print(solve(H)) # Equal to ...
print(vcov(fit))

db The db (“discretised Beta”) distribution.

Description

Density, distribution function, quantile function and random generation for the db distribution with
parameters alpha, beta and ntop.

Usage

ddb(x, alpha, beta, ntop, zeta=FALSE, log=FALSE)
pdb(x, alpha, beta, ntop, zeta=FALSE)
qdb(p, alpha, beta, ntop, zeta=FALSE)
rdb(n, alpha, beta, ntop, zeta=FALSE)

4 db

Arguments

x Numeric vector of values at which the “density” (probability mass function)
ddb() and the cumulative distribution function pdb() are evaluated. Normally
these would be integer values between nbot and ntop, but they need not be.
Note that nbot is 0 if zeta is TRUE, and is 1 if zeta is FALSE. A result of 0
is returned by ddb() for values of x that do not satisfy the foregoing criterion.
A warning is issued by ddb() if any of the values in x are non-integer. See
section Note for a little more information. Missing values (NA) are allowed; the
corresponding results are NA.

alpha Positive scalar. The first “shape” parameter of the db distribution.

beta Positive scalar. The second “shape” parameter of the db distribution.

ntop Integer scalar, strictly greater than 1. The maximum possible value of the db
distribution.

zeta Logical scalar. Should zero origin indexing be used? I.e. should the range of val-
ues of the distribution be taken to be {0,1,2,...,ntop} rather than {1,2,...,ntop}?
Setting zeta=TRUE may be useful for example when the values of the distribu-
tion are to be interpreted as counts.

log Logical scalar. Should logs of the probabilities calculated by ddb() be returned,
rather than the actual probabilities?

p Vector of probablilities (i.e. values between 0 and 1). The corresponding quan-
tiles of the db distribution are calculated by qdb(). Missing values (NA) are
allowed.

n Integer scalar. An independent sample of size n from the db distribution is gen-
erated by rdb().

Details

In the predecessor of this package (hse versions 0.1-15 and earlier), the probability function of the
distribution was calculated as dbeta(x/(ntop+1),alpha,beta)/ sum(dbeta((nbot:ntop)/(ntop+k),alpha,beta))
where nbot and k were set to 1 if zeta was FALSE, and nbot was set to 0 and k to 2 if zeta was
TRUE.

However the probability function is calculated in a more “direct” manner, using an exponential
family representation of this function. The Beta distribution is no longer called upon (although it
still of course conceptually underlies the distribution).

The function ddb() is a probability mass function for an ad hoc finite discrete distribution of ordered
values, with a “reasonably flexible” shape.

The pth quantile of a random variable X is defined to be the infimum over the range of X of those
values of x such that F (x) ≥ p where F (x) is the cumulative distribution function for X . Note
that if we did not impose the “over the range of X” restriction, then the 0th quantile of e.g. an
exponential distribution would be −∞ (since F (x) ≥ 0 for all x) whereas we actually want this
quantile to be 0.

Consequently qdb(p,alpha,beta,ntop) is equal to the least value of i such that pdb(i,alpha,beta,ntop)
≥ p. The set of values of i to be considered is {1,2,...,ntop} if zeta is FALSE and is {0,1,2,...,ntop}
if zeta is TRUE.

eow 5

Value

• For ddb() and pdb() vectors of probabilities.

• For qdb() a vector of quantiles.

• For rdb() a vector of length n, of integers between nbot and ntop, independently sampled
from the db distribution, where nbot is 1 if zeta is FALSE and is 0 if zeta is TRUE.

Note

In the predecessor of this package (hse, versions 0.1-14 and earlier) the density/probability function
threw an error if any values of argument i were not in the set of integers nbot:ntop. In accordance
with a suggestion from Duncan Murdoch this behaviour was changed so that the density/probability
function returns 0 for such values. It also issues a warning if any of the values are non-integer. The
criterion used for “non-integer” is that abs(i-round(i)) > sqrt(.Machine$double.eps). The
new behaviour is analogous to that of other probability functions used in R, dbinom() in particular.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

meDb() mleDb()

Examples

parz <- list(c(0.5,0.5),c(5,1),c(1,3),c(2,2),c(2,5))
for(i in 1:5) {

p1 <- ddb(1:15,parz[[i]][1],parz[[i]][2],15)
names(p1) <- 1:15
eckslab <- paste0("alpha=",parz[[i]][1]," beta=",parz[[i]][2])
barplot(p1,xlab=eckslab,main="db probabilities",

space=1.5,col="black")
abline(h=0)
if(i < 5) readline("Go? ")

}
x <- c(-1.5,-1,-0.5,0,0.5,1,1.5)
ddb(x,2.5,1,5,TRUE) # Produces 0 for all but the 4th and 6th

entries of x, and issues a warning.

eow Set or query the value of the "maxitErrorOrWarn" option.

Description

Chooses (set.eow()) or queries (get.eow()), the reaction to maxit being exceeded in mleDb()
or mleBb(). The possible reactions are to throw an error or to issue a warning. The choice is
effected by calling set.eow() which sets the value of options()[["maxitErrorOrWarning"]].
The current choice is revealed by get.eow(). This choice is set equal to "error" at startup.

6 exactMeDb

Usage

set.eow(eow = c("error", "warn"))
get.eow()

Arguments

eow Character string that specifies the reaction to maxit being exceeded in mleDb()
or mleBb(). May be abbreviated.

Value

No value is returned by set.eow(). the value of "maxitErrorOrWarn" in options(). The function
get.eow() returns the current value of options[["maxitErrorOrWarn"]].

Note

It seems unlikely that you would want to change the option from the value that is set at startup. This
function is provided “just in case”.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

mleDb() mleBb() options()

Examples

get.eow() # Is "error" at startup.
set.eow("w") # Changes the option from "error" to "warning".
set.eow("e") # Changes it back again.

exactMeDb Exact moment estimates for the db distribution.

Description

Attempts to calculate “exact” moment estimates of the parameters of a db distribution. This is done
by minimising the sum of squared differences between the sample mean and variance (xbar and
s2) and the theoretical mean and variance. Calls upon optim() with the "BFGS" method.

Usage

exactMeDb(x, ntop, zeta=FALSE, par0 = NULL, maxit = 1000)

exactMeDb 7

Arguments

x A random sample from the db distribution whose parameters are being esti-
mated. Missing values are allowed.

ntop The ntop parameter of the db distribution whose parameters are being estimated.
I.e. it is the maximum possible value of the distribution, whose values are inte-
gers between 1 and ntop, or between 0 and ntop if zeta (see below) is TRUE.

zeta See ddb().

par0 Optional starting values for the iterative estimation procedure. A vector with
entries alpha and beta. Ideally this vector should be named; if not it is assumed
that the entries are in the order alpha, beta. If not supplied starting values are
calculated using the undocumented function meDb().

maxit Integer scalar. The maximum number of iterations to be undertaken by optim().
What happens if this number is exceeded depends on the value of options()[["maxitErrorOrWarning"]].
This may be "error" (in which case an error is thrown if maxit is exceeded)
or "warning" (in which case a warning is issued). The values is set equal to
"error" at startup. It may be switched, from on possibility to the other, by
means of the function set.eow().

Details

This function is really an “intellectual curiosity”. The results produced may be compared with
those produced via maximum likelihood (using mleDb()) which in theory should be “better”. Since
numerical optimisation has to be applied to calculate the “exact” moment estimates, there is no real
saving in terms of computation cost.

Value

An object of class "exactMeDb". Such an object consists of a named vector with entries "alpha"
and "beta", which are the “exact” moment estimates of the corresponding parameters. It has a
number of attributes:

• "ntop" The value of the ntop argument.

• "zeta" The value of the zeta argument.

• "minSqDiff" The (minimised) value of the sum of the squared differences between the sam-
ple mean and variance (xbar and s2) and the theoretical mean and variance. Ideally this
minimised value should be zero.

• ndata The number of non-missing values in the data set for which the likelihood was max-
imised, i.e. sum(!is.na(x)).

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

ddb meDb() mleDb() expValDb() varDb() optim()

8 expValBb

Examples

set.seed(42)
x <- rdb(500,3,5,2)
eMom <- exactMeDb(x,ntop=2,zeta=FALSE)
eMle <- mleDb(x,ntop=2)

Get much better results using true parameter values
as starting values; pity we can't do this in real life!
eMom <- exactMeDb(x,ntop=2,zeta=FALSE,par0=c(alpha=3,beta=5))
eMle <- mleDb(x,2,par0=c(alpha=3,beta=5))

Larger ntop value
x <- rdb(500,3,5,20)
eMom <- exactMeDb(x,ntop=20,zeta=FALSE)
eMle <- mleDb(x,ntop=20)

Binomial, n = 10, p = 0.3.
set.seed(42)
x <- rbinom(1000,10,0.3)
eMom <- exactMeDb(x,ntop=10,zeta=TRUE)
eMle <- mleDb(x,ntop=10,zeta=TRUE)
p1 <- dbinom(0:10,10,0.3)
p2 <- dbinom(0:10,10,mean(x)/10)
p3 <- table(factor(x,levels=0:10))/1000
p4 <- ddb(0:10,alpha=eMom["alpha"],beta=eMom["beta"],ntop=10,zeta=TRUE)
plot(eMle,obsd=x,legPos=NULL,ylim=c(0,max(p1,p2,p3,p4)))
lines(0.2+(0:10),p1,col="orange",type="h",ylim=c(0,max(p1,p2)))
lines(0.3+(0:10),p2,col="green",type="h")
legend("topright",lty=1,col=c("red","blue","orange","green","black"),

legend=c("dbMle","observed","true binomial","fitted binomial","dbMom"),bty="n")

expValBb Expected value of a beta binomial distribution.

Description

Calculate the expected value (theoretical mean) of a random variable having a beta binomial distri-
bution.

Usage

expValBb(mo,...)
S3 method for class 'mleBb'
expValBb(mo,...)
Default S3 method:
expValBb(mo, size, ...)

expValBb 9

Arguments

mo For the "mleBb" method this argument is an object of class "mleBb" as returned
by mleBb(). For the default method it is a numeric scalar, between 0 and 1,
playing the role of m (which may be interpreted as the “success” probability.
(See the help for dbetabinom().)

size Integer scalar specifying the upper limit of the “support” of the beta binomial
distribution under consideration. The support is the set of integers {0, 1, ...,
size}. (See the help for dbetabinom().)

... Not used.

Details

For the "mleBb" method, the single argument should really be called (something like) “object”
and for the default method the first argument should be called m. However the argument lists must
satisfy the restrictions that “A method must have all the arguments of the generic, including . . . if
the generic does.” and “A method must have arguments in exactly the same order as the generic.”

For the "mleBb" method, the values of m and size are extracted from the attributes of mo.

The expected value of a beta binomial distribution is trivial to calculate “by hand”. These functions
are provided for convenience and to preserve parallelism with the db distribution.

Value

Numeric scalar equal to the expected value of a beta binomial distributed random variable with the
given parameters.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

expValDb() varDb() varBb()

Examples

expValBb(0.3,15)
X <- hmm.discnp::Downloads
fit <- mleBb(X,size=15)
expValBb(fit)

10 expValDb

expValDb Expected value of a db distribution.

Description

Calculate the expected value (theoretical mean) of a random variable having a db distribution.

Usage

expValDb(ao,...)
S3 method for class 'mleDb'
expValDb(ao,...)
Default S3 method:
expValDb(ao, beta, ntop, zeta=FALSE,...)

Arguments

ao For the "mleDb" method this argument is an object of class "mleDb" as returned
by mleDb(). For the default method it is a numeric scalar playing the role of
alpha (see ddb()).

beta See ddb().

ntop See ddb().

zeta See ddb().

... Not used.

Details

For the "mleDb" method, the single argument should really be called (something like) “object” and
for the default method the first argument should be called alpha. However the argument lists must
satisfy the restrictions that “A method must have all the arguments of the generic, including . . . if
the generic does.” and “A method must have arguments in exactly the same order as the generic.”

For the "mleDb" method, the values of alpha, beta, ntop and zeta (passed to ddb()) are extracted
from the attributes of ao.

The expected value of a db distribution is theoretically intractable but is readily calculable numeri-
cally as ∑

x× Pr(X = x)

.

Value

Numeric scalar equal to the expected value of a db distributed random variable with the given
parameters.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

finfo 11

See Also

ddb() varDb()

Examples

expValDb(3,4,15)
X <- hmm.discnp::Downloads
fit <- mleDb(X,ntop=15,zeta=TRUE)
expValDb(fit)

finfo Fisher information.

Description

Compute the Fisher information for a db distribution or a beta binomial distribution given the pa-
rameters of that distribution. In the case of the db distribution a specified number of observations
must be supplied. In the case of the beta binomial distribution the actual observations must be sup-
plied. The inverse of the Fisher information is an estimate of the covariance matrix of the parameter
estimates.

Usage

finfo(distr=c("db","betabinom"),alpha, beta, ntop, ndata,
zeta = FALSE, x, m, s, size)

Arguments

distr Text string specifying which distribution to consisder. May be abbreviated (e.g.
to "d" or "b").

alpha See ddb(). Ignored if distr is "betabinom".
beta See ddb(). Ignored if distr is "betabinom".
ntop See ddb(). Ignored if distr is "betabinom".
ndata The number of observations for which the Fisher information is being deter-

mined. Ignored if distr is "betabinom"; must be supplied if distr is "db".
zeta See ddb(). Ignored if distr is "betabinom".
x A numeric vector of observations appropriate for the model under consideration.

Ignored if distr is "db"; the Fisher information for the db distribution depends
only upon the parameters and not upon the data. Must be supplied if distr is
"betabinom".

m A numeric scalar, between 0 and 1, which may be interpreted as the “success”
probability. (See the help for dbetabinom().) Ignored if distr is "db".

s Numeric scalar, greater than 0. The overdispersion parameter of the distribution.
(See the help for dbetabinom().) Ignored if distr is "db".

size Integer scalar specifying the upper limit of the “support” of the betabinom dis-
tribution under consideration. The support is the set of integers {0, 1, ...,
size}. (See the help for dbetabinom().) Ignored if distr is "db".

12 finfo

Details

This function differs from aHess() in that its arguments are prescribed “individually” rather than
being extracted from an "mleDb" or "mleBb" object. This allows finfo() to be applied to “true”
parameters (where these are known) rather than estimated ones.

Note that if distr is "db", the number of observations must be supplied explicitly, whereas for
aHess() this number is extracted from the object argument. If distr is "betabinom" then a
vector of actual observations must be supplied.

If distr is "db" then finfo() in effect calculates the expected information, since the information
matrix does not depend on the parameters. This is not the case if distr is "betabinom". If the
parameters supplied are the maximum likelihood estimates based on the supplied vector of obser-
vations x, then the value returned by finfoBb() is the observed Fisher information.

Value

A two-by-two positive definite (with any luck!) numeric matrix. Its inverse is an estimate of the
covariance matrix of the parameter estimates.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

link{aHess}() link{nHess}() link{mleDb}() link{mleBb}()

Examples

print(finfo(alpha=0.6,beta=0.3,ntop=5,ndat=54))
X <- hmm.discnp::SydColDisc
X$y <- as.numeric(X$y)
X <- split(X,f=with(X,interaction(locn,depth)))
x <- X[[19]]$y
fit <- mleDb(x, ntop=5)
alpha <- fit["alpha"]
beta <- fit["beta"]
ntop <- attr(fit,"ntop")
zeta <- attr(fit,"zeta")
ndat <- ndata(fit)
print(finfo(alpha=alpha,beta=beta,ntop=ntop,ndat=ntop,zeta=zeta))
print(aHess(fit)) # Same
X <- hrsRcePred
top1e <- X[X$sbjType=="Expert","top1"]
fit <- mleBb(top1e,size=10)
print(finfo(distr="b",x=top1e,m=fit["m"],s=fit["s"],

size=10)) # Observed Fisher info.
print(aHess(fit,x=top1e)) # Same

gof 13

gof Goodness of fit test for db and beta binomial distributions.

Description

Either a chi-squared or a Monte Carlo test of goodness of fit of a db distribution.

Usage

gof(object, obsd, ...)
S3 method for class 'mleDb'
gof(object,obsd,...,test=TRUE,MC=FALSE,seed=NULL,

nsim=99,maxit=1000,verb=FALSE)
S3 method for class 'mleBb'
gof(object,obsd,...,test=TRUE,MC=FALSE,seed=NULL,

nsim=99,maxit=1000,verb=FALSE)

Arguments

object An object of class "mleDb" or "mleBb" as returned by the function mleDb() or
by mleBb().

obsd The data to which object was fitted.

... Not used.

test Logical scalar. Should a hypothesis test be carried out? If test is FALSE then
only the test statistic is returned. This argument is present so as to facilitate the
calculations used in effecting a Monte Carlo test, by allowing gof() to recur-
sively call itself.

MC Logical scalar. Should a Monte Carlo test be used rather than a chi squared test?

seed Integer scalar. The seed for the random number generator used when MC is TRUE.
If not supplied, seed is created by sampling one integer from 1:1e5. This argu-
ment is ignored if MC is FALSE.

nsim The number of simulated replicates on which the Monte Carlo test is to be based.
Ignored if MC is FALSE.

maxit Integer scalar. The maximum number of iterations to be undertaken by optim()
when fitting models to the simulated data. Ignored if MC is FALSE.

verb Logical scalar. Should rudimentary “progress reports” be issued during the
course of the simulations invoked by the Monte Carlo test procedure? Ignored
if MC is FALSE.

Details

The function gof() is a generic function with two methods, gof.mleDb() and gof.mleBb().

The test statistic is calculated as ∑
((O − E)2/E)

14 gof

whereO means “observed” and E means “expected”. If the mean of E is less than 5 or if any of the
entries of E is less than 1, then the chi squared test is invalid and a warning to this effect is issued.
In this case the expected values are returned as an attribute of the value returned by gof(). The
foregoing applies of course only if a chi squared test (as opposed to a Monte Carlo test) is being
used.

The degrees of freedom for the chi squared test are length(E) - 3. The value 3 is equal to 2 (for
the number of parameters estimated) plus 1 (for the costraint that the probabilities of the values sum
to 1).

If it were actually true that, under the null hypothesis, the observed test statistic and those calculated
from simulated data are exchangeable, the Monte Carlo test would be exact. However the real
data are distributed as f(x, θ) whereas the simulated data are distributed as f(x, θ̂) where θ̂ is the
estimate of θ based on the observed data. Consequently the observed test statistic and simulated
test statistics are “not quite” exchangeable. Nevertheless it appears that in practice the Monte Carlo
test is very close to being exact.

The meaning of “exact” here is that if the null hypothesis is true then, over the set of instances of
collecting the data and simulating the required replicates, the p-value is uniformly distributed on
the set {1/N, 2/N, . . . , (N − 1)/N, 1} where N is equal to nsim.

Value

A list with components

stat The test statistic.

pval The p-value of the test.

degFree The degrees of freedom of the chi squared test.

The last component is present only if a chi squared test (rather than a Monte Carlo test) is used.

If a chi squared test is used and turns out to be invalid, then the returned value has an attribute
"expVals", consisting of the (problematic) expected values.

If a Monte Carlo test is used the returned value has an attribute "seed" which is equal to the seed
argument or to the random value selected to replace it if the seed argument was not supplied.

Notes

The Monte Carlo p-value is calculated as (m+1)/(nsim+1) where m is the number of simulated
statistics which greater than or equal to the observed statistic (computed from the “real” data.

The smallest that the Monte Carlo p-value can be is 1/(nsim + 1), e.g. 0.01 when nsim is 99. For
“finer distinctions” you must use larger values of nsim, such as 999 or 9999.

The p-value is random; if you repeat the test (with the same data) you may well get a different p-
value. Resist the temptation to repeat the test until you get a p-value that you like!!! This invalidates
your inference!

Remark on the Examples

In the Examples, db and beta binomial distributions are fitted to the Parsonnet scores from the
cardiacsurgery data set which comes from the spcadjust package. It is not completely clear
what the value of ntop (db distribution) or size (beta binomial distribution) should be. The data are

gof 15

not actually counts, and in particular they are not counts of successes out of a given number (“size”)
of trials. In the event I chose to use the value 71, the maximium value of the Parsonnet scores, for
the value of both ntop and size. This was the value chosen for use as size by Wittenberg (2021)
when he fitted a beta binomial distribution to these data.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

References

Philipp Wittenberg (2021). Modeling the patient mix for risk-adjusted CUSUM charts. To appear
in Statistical Methods in Medical Research.

Axel Gandy and Jan Terje Kvaloy (2013). Guaranteed conditional performance of control charts via
bootstrap methods. Scandinavian Journal of Statistics 40, pp. 647–668. (Reference for spcadjust
package.)

See Also

mleDb()

Examples

X <- hmm.discnp::Downloads
f <- mleDb(X,15,TRUE)
tst1 <- gof(f,X) # Gives warning that the chi squared test is invalid.
tst2 <- gof(f,X,MC=TRUE,seed=42)
The p-value is 0.03 so we reject the adequacy of the fit at the 0.05
significance level. Note that the p-value that we get, when the
random number generator seed is set equal to 42, is very similar in
value to the p-value (0.0347) from the "invalid" chi squared test.
#
Not run: # Takes too long.
if(requireNamespace("spcadjust")) {

data("cardiacsurgery", package = "spcadjust")
xxx <- cardiacsurgery$Parsonnet
fit1 <- mleDb(xxx,ntop=71,zeta=TRUE)
g1 <- gof(fit1,obsd=xxx,MC=TRUE,verb=TRUE,seed=42)
fit2 <- mleBb(xxx,size=71)
g2 <- gof(fit2,obsd=xxx,MC=TRUE,verb=TRUE,seed=17)

}

End(Not run)

16 hrsRcePred

hrsRcePred Horse race prediction data.

Description

Counts of correct predictions of the outcomes of 10 harness races made by “experts” and “non-
experts”.

Usage

hrsRcePred

Format

A data frame with 30 observations on the following 4 variables.

sbjType A character vector with entries "NonXpert" and "Expert", which classifies the “subjects”
(the people making the predictions of the race outcomes).

subject An integer vector indexing the subjects. (Not of any real consequence.)

top1 An integer vector giving the counts of correct predictions of the winners of 10 harness races.

top3 An integer vector giving the counts of correct predictions of the top three horses (“win/place/show”
in 10 harness races.

Details

In Ceci and Liker (1986) it is stated that subjects were classified as “experts” and “nonexperts”
based on their ability to predict post-time odds on the basis of factual information about horses.

It appears that the counts in top1 and top3 pertain to the same 10 races, but this is not completely
clear.

Source

These data are taken from the paper cited in the first of the two given in the References below. They
were provided by a generous email correspondent who prefers to remain anonymous.

References

Ceci, S. J. and Liker, J. K. (1986). A day at the races: A study of IQ, expertise, and cognitive
complexity. Journal of Experimental Psychology, General 115, pp. 255 – 266.

Ceci, S. J. and Liker, J. K. (1988). Stalking the IQ-expertise relation: When the critics go fishing.
Journal of Experimental Psychology, General 117, pp. 96 – 100.

llPlot 17

Examples

X <- hrsRcePred
top1e <- X[X$sbjType=="Expert","top1"]
top1n <- X[X$sbjType=="NonXpert","top1"]
top3e <- X[X$sbjType=="Expert","top3"]
top3n <- X[X$sbjType=="NonXpert","top3"]
dbfit1e <- mleDb(top1e,ntop=10,zeta=TRUE)
dbfit1n <- mleDb(top1n,ntop=10,zeta=TRUE)
dbfit3e <- mleDb(top3e,ntop=10,zeta=TRUE)
dbfit3n <- mleDb(top3n,ntop=10,zeta=TRUE)

Set seeds to get repeatable Monte Carlo p-values.
Not run: # Takes too long.

print(gof(dbfit1e,obsd=top1e,MC=TRUE,maxit=5000,verb=TRUE,seed=49)$pval) # 0.02
print(gof(dbfit1n,obsd=top1n,MC=TRUE,verb=TRUE,seed=128)$pval) # 0.79
print(gof(dbfit3e,obsd=top3e,MC=TRUE,verb=TRUE,seed=303)$pval) # 0.35
print(gof(dbfit3n,obsd=top3n,MC=TRUE,maxit=3000,verb=TRUE,seed=24)$pval) # 0.40

End(Not run)
bbfit1e <- mleBb(top1e,size=10)
bbfit1n <- mleBb(top1n,size=10)
bbfit3e <- mleBb(top3e,size=10)
bbfit3n <- mleBb(top3n,size=10)

Set seeds to get repeatable Monte Carlo p-values.
Not run: # Takes too long.

print(gof(bbfit1e,obsd=top1e,MC=TRUE,verb=TRUE,seed=792)$pval) # 0.11
print(gof(bbfit1n,obsd=top1n,MC=TRUE,verb=TRUE,seed=48)$pval) # 0.64
print(gof(bbfit3e,obsd=top3e,MC=TRUE,verb=TRUE,seed=969)$pval) # 0.62
print(gof(bbfit3n,obsd=top3n,MC=TRUE,verb=TRUE,seed=834)$pval) # 0.75

End(Not run)
Reality check: goodness of fit tests for the fit of just plain *binomial*
distributions to these data sets yielded Monte Carlo p-values equal to
0.22, 0.17, 0.32 and 0.73 respectively. I.e. binomial fits appear to
work just fine!

llPlot Plot the log likelihood surface for the data.

Description

Plot, as a perspective plot or a contour plot, the log likelihood surface for the data set from which
parameters are being estimated.

Usage

llPlot(x, distr=c("db","betabinom"),ntop, zeta, size, alim = NULL, blim = NULL,
ngrid = c(100, 100), plotType = c("persp", "contour", "none"),
theta = -30, phi = 40, ...)

18 llPlot

Arguments

x A vector of numeric data purportedly arising from a db or beta binomial distri-
bution.

distr Character string specifying which of the two relevant distributions (db, or beta
binomial) is to be considered.

ntop See mleDb() and ddb(). Ignored if distr is "betabinom".

zeta See mleDb() and ddb(). Ignored if distr is "betabinom".

size Integer scalar specifying the upper limit of the “support” of the beta binomial
distribution under consideration. The support is the set of integers {0, 1, ...,
size}. (The values of x may sometimes be considered to be the number of
“successes” in size trials. The size argument is ignored if distr is "db".

alim Numeric vector of length 2; the range of alpha values over which the surface is
to be plotted. Defaults to c(0,10) if distr is "db" and to c(0,1) if distr is
"betabinom".

blim Numeric vector of length 2; the range of beta values over which the surface is
to be plotted. Defaults to c(0,10) if distr is "db" and to c(0,100) if distr is
"betabinom".

ngrid The dimensions of the grid of paramter values at which the log likelihood is to
be evaluated in order to plot the surface. Note that ngrid may be supplied as an
integer scalar, in which case it is replicated to a vector of length 2.

plotType Character string specifying the nature of the plot to be produced. If it is "none"
then no plot is produced. The value returned may be plotted at a later occasion.

theta An argument to be passed to persp(). Ignored unless plotType is "persp".

phi An argument to be passed to persp(). Ignored unless plotType is "persp".

... Other arguments that may be passed to persp() or to contour()

Details

This function could conceivably be useful in diagnosing problems with parameter estimation should
these arise.

Value

A list with entries

x The vector of values of the first parameter (alpha for distr="db", m for distr="betabinom")
over which the surface is to be plotted. There are ngrid[1] such values, ranging
from alim[1] to alim[2].

y The vector of values of the second parameter (beta for distr="db", s for
distr="betabinom") over which the surface is to be plotted. There are ngrid[2]
such values, ranging from blim[1] to blim[2].

z An ngrid[1] x ngrid[2] numeric matrix, specifying the surface. the value of
z[i,j] is ll(x[i],y[j]) where ll() is the log likelihood function.

llPlot 19

dxy A data frame with columns named "alpha" and "beta" for distr="db" or "m"
and "s" for distr="betabinom", and ngrid[1]*ngrid[2] rows. It is formed
by applying expand.grid() to the x and y entries of this list.

fxy A numeric vector of length ngrid[1]*ngrid[2]. Its ith value is the log likeli-
hood evaluated at the ith row of dxy. Its entries are the same as the entries of
z.

There is obviously considerable redundancy in the returned value.

The names x and y that are used for the first two entries of this list conform to the names of the
arguments of persp() and contour.

If plotType is "persp" or "contour" the value is returned invisibly.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

link{mleDb}() link{mleBb}() link{persp}() link{contour}()

Examples

X <- hmm.discnp::SydColDisc
X$y <- as.numeric(X$y)
X <- split(X,f=with(X,interaction(locn,depth)))
x <- X[[19]]$y
srf <- llPlot(x,ntop=5,zeta=FALSE,alim=c(0.5,0.7),blim=c(0.2,0.4),plotType="c")
Not run:
if(require(rgl)) {

with(srf,plot3d(ab$alpha,ab$beta,fab)
Allows dynamic rotation of the surface.
}

End(Not run)
Negative (!) parameters for the db distribution.
set.seed(42)
xs <- rdb(100,-1,-1,5)
fit <- mleDb(xs,5)
llPlot(xs,ntop=5,zeta=FALSE,alim=c(-4,2),blim=c(-4,2),plotType="c",

main="log likelihood contours")
points(fit[1],fit[2],pch=20,col="red")
points(-1,-1,pch=20,col="blue")
legend("topright",pch=20,col=c("red","blue"),

legend=c("estimate","true value"),bty="n")

20 logLik

logLik Retrieve the (maximised) log likelihood from an "mleDb" or an
"mleBb" object.

Description

Extract the log likelihood attribute an object of class "mleDb" or "mleBb". I.e. obtain the maximum
log likelihood in respect of the estimation of the parameters of a db or beta-binomial distribution.

Usage

S3 method for class 'mleDb'
logLik(object, ...)

S3 method for class 'mleBb'
logLik(object, ...)

Arguments

object An object of class "mleDb" as returned by mleDb() or of class "mleBb" as re-
turned by mleBb().

... Not used.

Value

An object of class "logLik", which consists of a numeric scalar equal to the maximum log like-
lihood for the parameters of a db or beta-binomial distribution. It has an attribute "df" equal to
2.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

mleDb() mleBb()

Examples

X <- hmm.discnp::SydColDisc
X$y <- as.numeric(X$y)
X <- split(X,f=with(X,interaction(locn,depth)))
fitz <- lapply(X,function(x){mleDb(x$y,ntop=5)})
sapply(fitz,logLik)
X <- hrsRcePred
top1e <- X[X$sbjType=="Expert","top1"]
fit <- mleBb(top1e,10)
logLik(fit)

makeBbdpars 21

makeBbdpars Create an object of class "Bbdpars".

Description

Create an object of class "Bbdpars" which may be used as an argument of the simulate() function.

Usage

makeBbdpars(m, s, size, ndata)

Arguments

m Numeric scalar between 0 and 1. May be interpreted as a “success probability”.

s Numeric scalar, greater than 0. The overdispersion parameter of the beta bino-
mial distribution. Note that if overdispersion is defined to equal the ratio of the
variance of the data to the corresponding “binomial variance” (i.e. the actual
variance over m*(1-m)*size) the overdispersion tends to 0 as s tends to infinity
and to size as s tends to 0.

size Integer scalar specifying the upper limit of the “support” of the beta binomial
distribution under consideration. The support is the set of integers {0, 1, ...,
size}.

ndata Integer vector specifying the lengths of the data sets to be simulated. If it is of
length less than the nsim argument of simulate() (e.g. if it is a scalar) then it is
“recycled” to provide a vector of length nsim. If is longer than nsim, then only
the first nsim entries are used and the others are ignored. If the argument ndata
of the simulate() function is supplied then the ndata component specified here
is ignored by simulate().

Value

An object of class "Bbdpars" which is a list with components m, s, size and ndata. The entries of
this list are simply the corresponding function arguments.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

simulate.Bbdpars()

22 makeDbdpars

Examples

obj1 <- makeBbdpars(m=0.35,s=0.3,size=20,ndata=500)
obj2 <- makeBbdpars(m=0.85,s=1.7,size=20,ndata=30*(1:10))
Not run:

sdat1 <- simulate(obj1,nsim=100)
sdat2 <- simulate(obj2,nsim=100)

End(Not run)
sdat3 <- simulate(obj2,nsim=10)
Not run:

sdat4 <- simulate(obj2,nsim=100,ndata=100*(2:6)) # The ndata component of
obj2 is ignored.

End(Not run)

makeDbdpars Create an object of class "Dbdpars".

Description

Create an object of class "Dbdpars" which may be used as an argument of the simulate() function.

Usage

makeDbdpars(alpha, beta, ntop, zeta, ndata)

Arguments

alpha The first “shape” parameter of the db distribution.

beta The second “shape” parameter of the db distribution.

ntop Integer scalar, strictly greater than 1. The maximum possible value of the db
distribution.

zeta Logical scalar. Should zero origin indexing be used? I.e. should the range of val-
ues of the distribution be taken to be {0,1,2,...,ntop} rather than {1,2,...,ntop}?
Setting zeta=TRUE may be appropriate for example when the values of the dis-
tribution are to be interpreted as counts.

ndata Integer vector specifying the lengths of the data sets to be simulated. If it is of
length less than the nsim argument of simulate() (e.g. if it is a scalar) then it is
“recycled” to provide a vector of length nsim. If is longer than nsim, then only
the first nsim entries are used and the others are ignored. If the argument ndata
of the simulate() function is supplied then the ndata component specified here
is ignored by simulate().

Value

An object of class "Dbdpars" which is a list with components alpha, beta, ntop, zeta and ndata.
The entries of this list are simply the corresponding function arguments.

mcCovMat 23

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

simulate.Dbdpars()

Examples

obj1 <- makeDbdpars(alpha=2,beta=3,ntop=20,zeta=TRUE,ndata=500)
obj2 <- makeDbdpars(alpha=0.2,beta=0.25,ntop=20,zeta=FALSE,ndata=30*(1:10))
sdat1 <- simulate(obj1,nsim=100)
sdat2 <- simulate(obj2,nsim=100)
sdat3 <- simulate(obj2,nsim=10)
sdat4 <- simulate(obj2,nsim=100,ndata=100*(2:6)) # The ndata component of

obj2 is ignored.

mcCovMat Monte Carlo estimation of a covariance matrix.

Description

Calculate an estimate of the covariance matrix for the parameter estimates of a db or beta binomial
distribution via simulation.

Usage

mcCovMat(object, nsim = 100, seed=NULL, maxit=1000)
S3 method for class 'mleDb'
mcCovMat(object, nsim = 100, seed=NULL, maxit=1000)
S3 method for class 'mleBb'
mcCovMat(object, nsim = 100, seed=NULL, maxit=1000)
S3 method for class 'Dbdpars'
mcCovMat(object, nsim = 100, seed=NULL, maxit=1000)
S3 method for class 'Bbdpars'
mcCovMat(object, nsim = 100, seed=NULL, maxit=1000)
Default S3 method:
mcCovMat(object, nsim = 100, seed=NULL, maxit=1000)

Arguments

object An object of class either "mleDb", "mleBb", Dbdpars or Bbdpars. In the first
two cases such an object would be returned by the function mleDb() or by
mleBb(). In the second two cases such an object would be returned by the
function makeDbdpars() or by makeBbdpars().

nsim Integer scalar. The number of simulations to be used to produce the Monte Carlo
estimate of the covariance matrix.

24 mcCovMat

seed Integer scalar. The seed for the random number generator. If not specified it is
randomly sampled from the sequence 1:1e5.

maxit Integer scalar. The maximum number of iterations to be undertaken by optim()
when fitting models to the simulated data.

Details

The procedure is to simulate nsim data sets, all of the same size. This will be the size of the data set
to which object was fitted), in the case of the "mleDb" and "mleBb" methods, and will be the value
of the ndata argument supplied to the “make” function in the case of the "Dbdpars" and "Bbdpars"
methods. The simulations are from models determined by the parameter value contained in object.

From each such simulated data, parameter estimates are obtained. The covariance matrix of these
latter parameter estimates (adjusted for the fact that the true parameters are known in a simulation)
is taken to be the required covariance matrix estimated.

The default method simply throws an error.

Value

A two-by-two positive definite (with any luck!) numeric matrix. It is an estimate of the covariance
matrix of the parameter estimates.

It has an attribute "seed" which is the seed that was used for the random number generator. This is
either the value of the argument seed or (if this argument was left NULL) the value that was randomly
sampled from 1:1e5.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

link{aHess}() link{nHess}() link{vcov.mleDb}() link{vcov.mleBb}()

Examples

X <- hmm.discnp::SydColDisc
X$y <- as.numeric(X$y)
X <- split(X,f=with(X,interaction(locn,depth)))
x <- X[[19]]$y
fit <- mleDb(x, ntop=5)
set.seed(42)
CM.m <- mcCovMat(fit,nsim=500) # Lots of simulations!
CM.a <- vcov(fit)
CM.n <- solve(nHess(fit,x))
cat("Monte Carlo:\n\n")
print(CM.m)
cat("Analytic:\n\n")
print(CM.a)
cat("Numeric:\n\n")
print(CM.n)
X <- hrsRcePred

mleBb 25

top1e <- X[X$sbjType=="Expert","top1"]
fit <- mleBb(top1e,size=10)
CM.m <- mcCovMat(fit,nsim=500) # Lots of simulations!
CM.a <- vcov(fit)
CM.n <- solve(nHess(fit,top1e))
cat("Monte Carlo:\n\n")
print(CM.m)
cat("Analytic:\n\n")
print(CM.a)
cat("Numeric:\n\n")
print(CM.n)

mleBb Maximum likelihood estimation of the parameters of a beta binomial
distribution.

Description

Calculates maximum likelihood estimates of the m and s parameters of a beta binomial distribution.
Calls upon optim() with the "L-BFGS-B" method.

Usage

mleBb(x, size, par0, maxit=1000, covmat=TRUE, useGinv=FALSE)

Arguments

x Integer vector of counts to which a beta binomial distribution is to be fitted.
Missing values are allowed. (These are discarded before the data are analysed.)

size Integer scalar specifying the upper limit of the “support” of the beta binomial
distribution under consideration. The support is the set of integers {0, 1, ...,
size}. (The values of x may sometimes be considered to be the number of
“successes” in size trials.

par0 Optional starting values for the iterative estimation procedure. A vector with
entries m and s. Ideally this vector should be named; if not it is assumed that the
entries are in the order m, s. If not supplied starting values are calculated using
meBb().

maxit Integer scalar. The maximum number of iterations to be undertaken by optim().
What happens if this number is exceeded depends on the value of options()[["maxitErrorOrWarning"]].
This may be "error" (in which case an error is thrown if maxit is exceeded)
or "warning" (in which case a warning is issued). The values is set equal to
"error" at startup. It may be switched, from on possibility to the other, by
means of the function set.eow().

covmat Logical scalar. Should the covariance matrix of the parameter estimates be cal-
culated? In simulation studies, in which the covariance matrix is not of interest,
calculations might be speeded up a bit by setting covmat=FALSE.

26 mleBb

useGinv Logical scalar. Should the ginv() (generalised inverse) function from the MASS
package be used to calculate a surrogate covariance matrix if the hessian is nu-
merically singular? This is probably not advisable; the possibility of using the
generalised inverse is provided for the sake of completeness. Caveat utilitor.
This argument is ignored if covmat is FALSE.

Details

This function is provided so as to give a convenient means of comparing the fit of a beta binomial
distribution with that of the discretised Beta (db) distribution which is the focus of this package.

Value

An object of class "mleBb" which is a vector of length two. Its first entry m is the estimate of the
(so-called) success probability m; its second entry s is the estimate of the overdispersion parameter
s. It has a number of attributes:

• "size" The value of the size argument.

• "log.like" The (maximised) value of the log likelihood of the data.

• "covMat" An estimate of the (2 × 2) covariance matrix of the parameter estimates. This is
formed as the inverse of the hessian (of the negative log likelihood) calculated by aHess().

• ndata The number of non-missing values in the data set for which the likelihood was max-
imised, i.e. sum(!is.na(x)).

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

References

Bruce Swihart and Jim Lindsey (2020). rmutil: Utilities for Nonlinear Regression and Repeated
Measurements Models. R package version 1.1.4. https://CRAN.R-project.org/package=rmutil

Wikipedia, https://en.wikipedia.org/wiki/Beta-binomial_distribution

See Also

mleDb() optim() aHess() vcov.mleBb() hrsRcePred visRecog

Examples

if(require(hmm.discnp)) {
X <- hmm.discnp::Downloads
f <- mleBb(X,15)

}
set.seed(42)
X <- c(rbinom(20,10,0.3),rbinom(20,10,0.7))
f <- mleBb(X,10)
g <- mleDb(X,10,TRUE)
print(attr(f,"log.like"))
print(attr(g,"log.like")) # Not much difference.

https://en.wikipedia.org/wiki/Beta-binomial_distribution

mleDb 27

dbfit5 <- with(visRecog,mleDb(tot5,20,TRUE))
print(vcov(dbfit5))
See the help for data sets "hrsRcePred" and "visRecog" for
other examples.

mleDb Maximum likelihood estimates of db parameters.

Description

Calculates maximum likelihood estimates of the alpha and beta parameters of a db distribution.
Calls upon optim() with the "BFGS" method.

Usage

mleDb(x, ntop, zeta=FALSE, par0=NULL, UB=10, maxit=1000,
covmat=TRUE, useGinv=FALSE)

Arguments

x A random sample from the db distribution whose parameters are being esti-
mated. Missing values are allowed.

ntop The ntop parameter of the db distribution whose parameters are being estimated.
I.e. it is the maximum possible value of the distribution, whose values are inte-
gers between 1 and ntop, or between 0 and ntop if zeta (see below) is TRUE.

zeta See ddb().
par0 Optional starting values for the iterative estimation procedure. A vector with

entries alpha and beta. Ideally this vector should be named; if not it is assumed
that the entries are in the order alpha, beta. If not supplied starting values are
calculated using meDb().

UB Positive numeric scalar, providing an upper bound on the starting values used
by mleDb(). It appears that if these starting values are too large (it is not clear
how large) then optim() will throw an error. This bound is ignored if par0 is
supplied.

maxit Integer scalar. The maximum number of iterations to be undertaken by optim().
What happens if this number is exceeded depends on the value of options()[["maxitErrorOrWarning"]].
This may be "error" (in which case an error is thrown if maxit is exceeded)
or "warning" (in which case a warning is issued). The values is set equal to
"error" at startup. It may be switched, from on possibility to the other, by
means of the function set.eow().

covmat Logical scalar. Should the covariance matrix of the parameter estimates be cal-
culated? In simulation studies, in which the covariance matrix is not of interest,
calculations might be speeded up a bit by setting covmat=FALSE.

useGinv Logical scalar. Should the ginv() (generalised inverse) function from the MASS
package be used to calculate a surrogate covariance matrix if the hessian is nu-
merically singular? This is probably not advisable; the possibility of using the
generalised inverse is provided for the sake of completeness. Caveat utilitor.
This argument is ignored if covmat is FALSE.

28 mleDb

Details

The ntop and zeta parameters must be supplied; they are not formally estimated (although the
choice of ntop may be influenced by the data — see below). The parameter zeta has a default
value, FALSE.

If the generating mechanism from which the observed data x arose has a (known) theoretical least
upper bound, then ntop should probably be set equal to this upper bound. If the data are theoreti-
cally unbounded, then ntop should probably be set equal to 1 + max(x). In this case Pr(X = ntop)
should probably be interpreted as Pr(X ≥ ntop). Otherwise ntop should should probably be set
equal to max(x). The choice depends on circumstances and is up to the user.

Missing values are removed from x before it is passed to optim(). (Note that ddb() doesn’t mind
missing values but returns missing values when evaluated at them. This in turn produces a missing
value for the log likelihood.)

In previous versions of this package (0.1-17 and earlier) optim() was called with method "L-BFGS-B".
The change was made possible by the fact that, with the new “direct” version of ddb(), it is no
longer necessary to bound the parameters away from (above) zero.

Value

An object of class "mleDb". Such an object consists of a named vector with entries "alpha" and
"beta", which are the estimates of the corresponding parameters. It has a number of attributes:

• "ntop" The value of the ntop argument.

• "zeta" The value of the zeta argument.

• "log.like" The (maximised) value of the log likelihood of the data.

• "covMat" An estimate of the (2 × 2) covariance matrix of the parameter estimates. This is
formed as the inverse of the hessian (of the negative log likelihood) calculated by aHess().

• ndata The number of non-missing values in the data set for which the likelihood was max-
imised, i.e. sum(!is.na(x)).

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

ddb meDb() optim() aHess() vcov.mleDb()

Examples

set.seed(42)
x <- rdb(500,3,5,2)
ests <- mleDb(x,2) # Bad! Mind you, 2 is a "bad" value for ntop!

Hessian is singular; covMat is NA.
Get much better results using true parameter values
as starting values; pity we can't do this in real life!
ests <- mleDb(x,2,par0=c(alpha=3,beta=5))
x <- rdb(500,3,5,20)
ests <- mleDb(x,20) # Pretty good.

ndata 29

print(vcov(ests))

Binomial, n = 10, p = 0.3.
set.seed(42)
x <- rbinom(1000,10,0.3)
fit <- mleDb(x,10,zeta=TRUE)
print(vcov(fit))
p1 <- dbinom(0:10,10,0.3)
p2 <- dbinom(0:10,10,mean(x)/10)
p3 <- table(factor(x,levels=0:10))/1000
plot(fit,obsd=x,legPos=NULL,ylim=c(0,max(p1,p2,p3,

ddb(0:10,fit[1],fit[2],10,zeta=TRUE))))
lines(0.2+(0:10),p1,col="orange",type="h",ylim=c(0,max(p1,p2)))
lines(0.3+(0:10),p2,col="green",type="h")
legend("topright",lty=1,col=c("red","blue","orange","green"),

legend=c("db","observed","true binomial","fitted binomial"),bty="n")
print(attr(fit,"log.like")) # -1778.36
print(sum(dbinom(x,10,mean(x)/10,log=TRUE))) # -1777.36
Slightly better fit with only one estimated parameter,
but then binomial is the true distribution, so you'd
kind of expect a better fit.
print(sum(dbinom(x,10,0.3,log=TRUE))) # -1778.37

Poisson mean = 5
set.seed(42)
x <- rpois(1000,5)
fit <- mleDb(x,14,zeta=TRUE) # max(x) = 13, take ntop = 1+13
print(vcov(fit))
p1 <- c(dpois(0:13,5),1-ppois(13,5))
lhat <- mean(x)
p2 <- c(dpois(0:13,lhat),1-ppois(13,lhat))
plot(fit,obsd=x,legPos=NULL,ylim=c(0,max(p1,p2,p3,

ddb(0:14,fit[1],fit[2],14,zeta=TRUE))))
lines(0.2+0:14,p1,col="orange",type="h")
lines(0.3+(0:14),p2,col="green",type="h")
legend("topright",lty=1,col=c("red","blue","orange","green"),

legend=c("db","observed","true Poisson","fitted Poisson"),bty="n")
print(attr(fit,"log.like")) # -2198.594
print(sum(dpois(x,lhat,log=TRUE))) # -2197.345
Slightly better fit with only one estimated parameter,
but then Poisson is the true distribution, so you'd
kind of expect a better fit.
print(sum(dpois(x,5,log=TRUE))) # -2198.089

ndata Retrieve the "ndata" attribute of an "mleDb" object.

Description

Retrieve the number of (non-missing) values in the data set to which an "mleDb" object was fitted.

30 nHess

Usage

ndata(object)

Arguments

object An object of class "mleDb" as returned by mleDb().

Value

Integer scalar equal to the number of (non-missing) values in the data set to which object was
fitted.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

mleDb()

Examples

X <- hmm.discnp::SydColDisc
X$y <- as.numeric(X$y)
X <- split(X,f=with(X,interaction(locn,depth)))
fitz <- lapply(X,function(x){mleDb(x$y,ntop=5)})
sapply(fitz,ndata)

nHess Numerical hessian calculation.

Description

Calculate an approximation to the hessian of the negative log likelihood of a db or beta binomial
distribution via a numerical (finite differencing based) procedure as effected by optimHess().

Usage

nHess(object, x, silent=TRUE)

Arguments

object An object of class "mleDb" or "mleBb" as returned by the function mleDb() or
mleBb().

x Numeric vector of non-negative integer data, presumably the data set on the
basis of which object was calculated. Ignored if object is of class "mleDb".

silent Logical scalar. If the call to optimHess() throws an error, should the error
message be suppressed? (A possibly less informative warning will be issued in
any case.)

plot.mleBb 31

Details

It is up to the user to make sure that (when object is of class "mleBb") object and x are “mutually
compatible”, i.e. are appropriately paired up.

Note that this function calculates the hessian of the negative log likelihood of the distribution in
question, as minimised by optim(). Hence its inverse is an estimate of the covariance matrix of the
parameter estimates. (Do not take the negative of this hessian before inverting it to get the desired
covariance matrix!)

This function is mainly present to investigate possible differences between the numerical approxi-
mation to the hessian, which is what optim() uses in its maximisation procedure, and the analytic
form of the hessian.

Value

A two-by-two positive definite (with any luck!) numeric matrix. Its inverse is an estimate of the
covariance matrix of the parameter estimates.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

aHess() mleDb() mleBb() optim() optimHess()

Examples

X <- hmm.discnp::SydColDisc
X$y <- as.numeric(X$y)
X <- split(X,f=with(X,interaction(locn,depth)))
x <- X[[19]]$y
fit <- mleDb(x, ntop=5)
H <- nHess(fit,x)
print(solve(H)) # Compare with ...
print(vcov(fit))

plot.mleBb Plot a maxium likelihood fit to data from a beta binomial distribution.

Description

Creates a plot of type "h" of the probabilities of each possible x value of a beta binomial distribution
where the probabilities are calculated on the basis of parameters estimated by the function mleBb().
If obsd is supplied it also superimposes/juxtaposes vertical lines representing the observed propor-
tions.

32 plot.mleBb

Usage

S3 method for class 'mleBb'
plot(x, ..., plot = TRUE, col.fit = "red", col.obsd = "blue",

tikx = NULL, xlim=NULL, ylim=NULL, xlab = NULL,
ylab = NULL, obsd = NULL, incr = NULL,
main = "", legPos = "topright")

Arguments

x An object of class "mleBb" as returned by the function mleBb()

... Not used.

plot Logical scalar; should a plot be produced (or should the function simply return
a data frame consisting of the relevant values)?

col.fit The colour for the (vertical) lines corresponding to the “fitted” probabilities, i.e.
the probabilities calculated from the fitted parameters.

col.obsd The colour for the (vertical) lines corresponding to the “observed” probabilities
(proportions), i.e. the probabilities calculated by tabulating the data (from which
the parameters were estimated. Ignored if obsd is not supplied.

tikx (Optional) vector of locations of the tick marks on the x-axis.

xlim A numeric vector of length 2 specifying the limits of the x-axis. Defaults to
c(0,size) Note that \ codesize is extracted from argument x.

ylim A numeric vector of length 2 specifying the limits of the y-axis. There is a
“sensible” default.

xlab A label for the x-axis; defaults to x.

ylab A label for the y-axis; defaults to probability.

obsd The data set from which the parameters were estimated, i.e. from which x was
obtained. (Optional.)

incr Numeric scalar; defaults to 0.1 if size (extracted from x) is less than 20 and
to 0.5 otherwise. This number should be non-zero and less than 1 in absolute
value. (One would usually want it to be positive, but it could conceiveably be
set to a small negative value.) It gives the value of the “increment” or “shift”
that separates the vertical lines representing the fitted probabilities and those
representing the observed proportions (calculated from obsd). Ignored if obsd
is not supplied.

main A main title for the plot; defaults to the empty string.

legPos A list with components x and y, or a text string, specifying the placement of
the legend. See legend() for details. A legend is plotted only if obsd is spec-
ified, whence legPos is otherwise ignored. The plotting of a legend may be
suppressed (even when obsd is supplied) by setting legPos=NULL.

Value

A data frame with numeric columns x, p and possibly po. The x column consists of the integers
from 0 to size. The p column consists of the appropriate probabilities of the x values, calculated

plot.mleDb 33

by dbetabinom() from the rmutil package. The po column is present only if obsd is supplied
and consists of the observed proportions. The value is returned invisibly. A plot is produced as a
side-effect if plot is TRUE.

Note

This function calls plotBb() to do the heavy lifting.

Warning

It is up to the user to make sure that the obsd argument, if specified, is indeed the data set from
which the object x was calculated.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

mleBb() plotBb()

Examples

if(require(hmm.discnp)) {
xxx <- hmm.discnp::Downloads
fit <- mleBb(xxx,size=14)
plot(fit)
plot(fit,obsd=xxx)
plot(fit,obsd=xxx,legPos=list(x=3,y=0.25))
plot(fit,obsd=xxx,legPos=NULL) # No legend is plotted.

}
set.seed(42)
yyy <- rbinom(300,10,0.7)
fit <- mleBb(yyy,size=10)
plot(fit,obsd=yyy,legPos="topleft")

plot.mleDb Plot a maxium likelihood fit to data from a db distribution.

Description

Creates a plot of type "h" of the probabilities of each possible x value of a db distribution where the
probabilities are calculated on the basis of parameters estimated by the function mleDb(). If obsd
is supplied it also superimposes/juxtaposes vertical lines representing the observed proportions.

Usage

S3 method for class 'mleDb'
plot(x, ..., plot = TRUE, col.fit = "red", col.obsd = "blue",

tikx=NULL, xlim=NULL, ylim=NULL, xlab = NULL, ylab = NULL,
obsd = NULL, incr = NULL, main = "", legPos = "topright")

34 plot.mleDb

Arguments

x An object of class "mleDb" as returned by the function mleDb()

... Not used.

plot Logical scalar; should a plot be produced (or should the function simply return
a data frame consisting of the relevant values)?

col.fit The colour for the (vertical) lines corresponding to the “fitted” probabilities, i.e.
the probabilities calculated from the fitted parameters.

col.obsd The colour for the (vertical) lines corresponding to the “observed” probabilities
(proportions), i.e. the probabilities calculated by tabulating the data (from which
the parameters were estimated. Ignored if obsd is not supplied.

tikx (Optional) vector of locations of the tick marks on the x-axis.

xlim A numeric vector of length 2 specifying the limits of the x-axis. Defaults to
c(nbot,ntop) where nbot is 0 if x[["zeta"]] is TRUE (i.e. zero origin index-
ing is uses) and is 1 otherwise. Note that ntop and zeta are extracted from
argument x.

ylim A numeric vector of length 2 specifying the limits of the y-axis. There is a
“sensible” default.

xlab A label for the x-axis; defaults to x.

ylab A label for the y-axis; defaults to probability.

obsd The data set from which the parameters were estimated, i.e. from which x was
obtained. (Optional.)

incr Numeric scalar; defaults to 0.1 if ntop (extracted from x) is less than 20 and
to 0.5 otherwise. This number should be non-zero and less than 1 in absolute
value. (One would usually want it to be positive, but it could conceiveably be
set to a small negative value.) It gives the value of the “increment” or “shift”
that separates the vertical lines representing the fitted probabilities and those
representing the observed proportions (calculated from obsd). Ignored if obsd
is not supplied.

main A main title for the plot; defaults to the empty string.

legPos A list with components x and y, or a text string, specifying the placement of
the legend. See legend() for details. A legend is plotted only if obsd is spec-
ified, whence legPos is otherwise ignored. The plotting of a legend may be
suppressed (even when obsd is supplied) by setting legPos=NULL.

Value

A data frame with numeric columns x, p and possibly po. The x column consists of the integers
from 0 to ntop or from 1 to ntop depending on whether zeta is TRUE. The p column consists of
the appropriate probabilities of the x values, calculated by link{ddb}(). The po column is present
only if obsd is supplied and consists of the observed proportions. The value is returned invisibly. A
plot is produced as a side-effect if plot is TRUE.

Note

This function calls plotDb() to do the heavy lifting.

plotBb 35

Warning

It is up to the user to make sure that the obsd argument, if specified, is indeed the data set from
which the object x was calculated.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

mleDb() plotDb() ddb()

Examples

if(require(hmm.discnp)) {
xxx <- hmm.discnp::Downloads
fit <- mleDb(xxx,ntop=14,z=TRUE)
plot(fit)
plot(fit,obsd=xxx)
plot(fit,obsd=xxx,legPos=list(x=3,y=0.25))
plot(fit,obsd=xxx,legPos=NULL) # No legend is plotted.

}
set.seed(42)
yyy <- rbinom(300,10,0.7)
fit <- mleDb(yyy,ntop=10,z=TRUE)
plot(fit,obsd=yyy,legPos="topleft")

plotBb Plot a beta binomial distribution.

Description

Plots the probabilities of a specified beta binomial distributon.

Usage

plotBb(m, s, size, ..., plot = TRUE, tikx = NULL, xlim = NULL,
ylim = NULL, xlab = NULL, ylab = NULL, main = "")

Arguments

m Numeric scalar between 0 and 1. May be interpreted as the “success probabil-
ity”.

s Numeric scalar, greater than 0. The overdispersion parameter of the distribution.

size Integer scalar specifying the upper limit of the “support” of the beta binomial
distribution under consideration. The support is the set of integers {0, 1, ...,
size}.

36 plotDb

... Extra arguments that are passed to the plot() function.

plot Logical scalar; should a plot be produced (or should the function simply return
a data frame consisting of the relevant values)?

tikx (Optional) vector of locations of the tick marks on the x-axis.

xlim The x-limits of the plot. (See plot.default().)

ylim The y-limits of the plot. (See plot.default().)

xlab A label for the x-axis. (See plot.default().)

ylab A label for the y-axis. (See plot.default().)

main An overall title for the plot. (See plot.default(); see also title().)

Value

A data frame with numeric columns x and p. The x column consists of the integers from 0 to size.
The p column consists of the appropriate probabilities of the x values, calculated by dbetabinom()
from the rmutil package. The value is returned invisibly. A plot is produced as a side-effect if
plot is TRUE.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

plot.mleBb() plotDb() plot.mleDb()

Examples

plotBb(0.7,3,14,main="An exempular plot")
plotBb(0.3,3,14,col="red",xlab="count",main="A communist plot")
plotBb(0.1,10,14,col="blue",main="A royal plot")
plotBb(0.5,20,14,col="green",main="An ecological plot")
plotBb(0.5,20,14,xlim=c(0,15))
plotBb(0.5,20,14,xlim=c(0,15),tikx=3*(0:5))

plotDb Plot a db distribution.

Description

Plots the probabilities of a specified db distributon.

Usage

plotDb(alpha, beta, ntop, zeta, ..., plot = TRUE, tikx = NULL, xlim = NULL,
ylim = NULL, xlab = NULL, ylab = NULL, main = "")

plotDb 37

Arguments

alpha See ddb().

beta See ddb().

ntop See ddb().

zeta See ddb().

... Extra arguments that are passed to the plot() function.

plot Logical scalar; should a plot be produced (or should the function simply return
a data frame consisting of the relevant values)?

tikx (Optional) vector of locations of the tick marks on the x-axis.

xlim The x-limits of the plot. (See plot.default().)

ylim The y-limits of the plot. (See plot.default().)

xlab A label for the x-axis. (See plot.default().)

ylab A label for the y-axis. (See plot.default().)

main An overall title for the plot. (See plot.default(); see also title().)

Value

A data frame with numeric columns x and p. The x column consists of the integers from 0 to ntop
or from 1 to ntop depending on whether zeta is TRUE. The p column consists of the appropriate
probabilities of the x values, calculated by ddb(). The value is returned invisibly. A plot is produced
as a side-effect if plot is TRUE.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

plot.mleDb()

Examples

plotDb(2,3,14,FALSE,main="An exempular plot")
plotDb(2,3,14,TRUE,col="red",xlab="count",main="A communist plot")
plotDb(0.1,3,14,TRUE,col="blue",main="A royal plot")
plotDb(0.1,0.3,14,TRUE,col="green",main="An ecological plot")
plotDb(2,3,14,FALSE,xlim=c(0,15))
plotDb(2,3,14,FALSE,xlim=c(0,15),tikx=3*(0:5))
par(mfrow=c(2,1))
plotDb(2,2,5,FALSE,main=bquote(paste(alpha == 2,", ",beta == 2)),col="red")
plotDb(-2,-2,5,FALSE,main=bquote(paste(alpha == -2,", ",beta == -2)),col="blue")

38 simulate

simulate Simulate data from a db or beta binomial distribution.

Description

Simulate one or more data sets from a db or beta binomial distribution. The parameters of the distri-
bution may be equal to those obtained from fitting the distibution to data, using mleDb() or mleBb().
They may also be specified by the user via the function makeDbdpars() or makeBbdpars().

Usage

S3 method for class 'mleDb'
simulate(object, nsim = 1, seed = NULL, ...,

ndata = NULL, drop = TRUE)
S3 method for class 'mleBb'

simulate(object, nsim = 1, seed = NULL, ...,
ndata = NULL, drop = TRUE)

S3 method for class 'Dbdpars'
simulate(object, nsim = 1, seed = NULL, ...,

ndata = NULL, drop = TRUE)
S3 method for class 'Dbdpars'

simulate(object, nsim = 1, seed = NULL, ...,
ndata = NULL, drop = TRUE)

Arguments

object An object of class "mleDb" as returned by mleDb(), or of class "mleBb" as
returned by mleBb(), or of class "Dbdpars" as returned by makeDbdpars() or
of class "Bbdpars" as returned by makeBbdpars().

nsim The number of data sets to simulate.
seed Integer vector of seeds for random number generation. It should be of length

either 1 or nsim. If it is of length less than nsim then set.seed(seed[1]) is
called and seed is replaced by a vector of seeds of length nsim which is created
by sampling from 1:1e5. Note that in this case all entries but the first of seed
are ignored. If it is longer than nsim, then only the first nsim entries are used
and the others are ignored. If seed it is not supplied it is created by sampling
nsim values from 1:1e5.

... Not used.
ndata Integer vector specifying the lengths of the data sets to be simulated. If it is of

length less than nsim it is “recycled” to provide a vector of length nsim. If is
longer than nsim, then only the first nsim entries are used and the others are
ignored. If ndata is not supplied it is taken to be equal to the "ndata" attribute
of object (i.e. the length of the data set from which the parameters in object
were estimated.

drop Logical scalar; if TRUE and if nsim==1 then this function simply returns the
simulated data set (an integer vector) rather than a list of length 1 whose sole
entry is that data set. If nsim>1 then drop is ignored.

varBb 39

Details

The actual simulation is done by rdb() or by the rbetabinom() function from the rmutil package.

Value

A list, of length nsim, whose entries are integer vectors, the length of of the ith entry being equal
to ndata[i]. Each entry has an attribute "seed" which is the random number generation seed that
was used in the generation of the data in that entry. If nsim==1 and if drop is TRUE, then the value
is simply an integer vector (of length ndata[1]).

See Also

simulate() rdb()

Examples

X <- hmm.discnp::Downloads
fit <- mleDb(X,ntop=15,zeta=TRUE)
s1 <- simulate(fit)
s2 <- simulate(fit,nsim=5) # All data sets of length 267.
s3 <- simulate(fit,nsim=5,ndata=100*(2:6))
obj <- makeDbdpars(alpha=2,beta=3,ntop=20,zeta=TRUE,ndata=500)
s4 <- simulate(obj,nsim=5,seed=1:5)

varBb Variance of a beta binomial distribution.

Description

Calculate the variance of a random variable having a beta binomial distribution.

Usage

varBb(mo,...)
S3 method for class 'mleBb'
varBb(mo,...)
Default S3 method:
varBb(mo, s, size, ...)

Arguments

mo For the "mleBb" method this argument is an object of class "mleBb" as returned
by mleBb(). For the default method it is a numeric scalar, between 0 and 1,
playing the role of m (which may be interpreted as the “success” probability).
(See the help for dbetabinom().)

s Numeric scalar, greater than 0. The overdispersion parameter of the distribution.
(See the help for dbetabinom().)

40 varDb

size Integer scalar specifying the upper limit of the “support” of the beta binomial
distribution under consideration. The support is the set of integers {0, 1, ...,
size}. (See the help for dbetabinom().)

... Not used.

Details

For the "mleBb" method, the single argument should really be called (something like) “object”
and for the default method the first argument should be called m. However the argument lists must
satisfy the restrictions that “A method must have all the arguments of the generic, including . . . if
the generic does.” and “A method must have arguments in exactly the same order as the generic.”

For the "mleBb" method, the values of m and s are obtained from mo, and size is extracted from the
attributes of mo.

The variance of a beta binomial distribution is readily calculable “by hand”. These functions are
provided for convenience and to preserve parallelism with the db distribution.

Value

Numeric scalar equal to the variance of a beta binomial distributed random variable with the given
parameters.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

varDb() expValDb() expValBb()

Examples

varBb(0.7,0.1,15)
varBb(0.7,400,15)
X <- hmm.discnp::Downloads
fit <- mleBb(X,size=15)
varBb(fit)

varDb Variance of a db distribution.

Description

Calculate the variance of a random variable having a db distribution.

varDb 41

Usage

varDb(ao,...)
S3 method for class 'mleDb'
varDb(ao,...)
Default S3 method:
varDb(ao, beta, ntop, zeta=FALSE,...)

Arguments

ao For the "mleDb" method this argument is an object of class "mleDb" as returned
by mleDb(). For the default method it is a numeric scalar playing the role of
alpha (see ddb()).

beta See ddb().

ntop See ddb().

zeta See ddb().

... Not used.

Details

For the "mleDb" method, the single argument should really be called (something like) “object” and
for the default method the first argument should be called alpha. However the argument lists must
satisfy the restrictions that “A method must have all the arguments of the generic, including . . . if
the generic does.” and “A method must have arguments in exactly the same order as the generic.”

For the "mleDb" method, the values of alpha and beta are obtained from ao, and ntop, and zeta
are extracted from the attributes of ao.

The variance of a db distribution is theoretically intractable but is readily calculable numerically as∑
(x− µ)2 × Pr(X = x)

, where µ is the expected value of the given distribution.

Value

Numeric scalar equal to the variance of a db distributed random variable with the given parameters.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

ddb() expValDb()

42 vcov.mleBb

Examples

varDb(3,4,15)
varDb(3,4,15,TRUE)
X <- hmm.discnp::Downloads
fit <- mleDb(X,ntop=15,zeta=TRUE)
varDb(fit)

vcov.mleBb Retrieve the covariance matrix from an "mleBb" object.

Description

Extract the covariance matrix attribute an object of class "mleBb". I.e. obtain the estimated covari-
ance matrix of the maximum likelihood estimates of the parameters of a beta binomial distribution.

Usage

S3 method for class 'mleBb'
vcov(object, ...)

Arguments

object An object of class "mleBb" as returned by mleBb().

... Not used.

Details

The estimated covariance matrix is the inverse of the hessian of the negative log likelihood. (This
may also be referred to as the observed Fisher information — the Fisher information evaluated at
the maximum likelihood estimates of the parameters).

Value

A two-by-two positive definite (with any luck!) numeric matrix. It is an estimate of the covariance
matrix of the parameter estimates.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

vcov.mleDb) mleBb()

vcov.mleDb 43

Examples

X <- hrsRcePred
top1e <- X[X$sbjType=="Expert","top1"]
fit <- mleBb(top1e,size=10)
vcov(fit)

vcov.mleDb Retrieve the covariance matrix from an "mleDb" object.

Description

Extract the covariance matrix attribute an object of class "mleDb". I.e. obtain the estimated covari-
ance matrix of the maximum likelihood estimates of the parameters of a db distribution.

Usage

S3 method for class 'mleDb'
vcov(object, ...)

Arguments

object An object of class "mleDb" as returned by mleDb().

... Not used.

Details

The estimated covariance matrix is the inverse of the hessian of the negative log likelihood. (This
may also be referred to as the observed Fisher information — the Fisher information evaluated at
the maximum likelihood estimates of the parameters).

Value

A two-by-two positive definite (with any luck!) numeric matrix. It is an estimate of the covariance
matrix of the parameter estimates.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

vcov.mleBb) mleDb()

44 visRecog

Examples

X <- hmm.discnp::SydColDisc
X$y <- as.numeric(X$y)
X <- split(X,f=with(X,interaction(locn,depth)))
fitz <- lapply(X,function(x){mleDb(x$y,ntop=5)})
lapply(fitz,vcov)

visRecog Visual recognition data.

Description

Counts of successes in visual recognition memory for large and small binary pictures.

Usage

data("visRecog")

Format

A data frame with 30 observations on the following 4 variables.

deck An integer vector indicating which of two decks of cards, bearing graphic images, was used
in the given experiment.

subject An integer vector indexing the (human) subjects in the experiments.

tot5 An integer vector whose entries are counts of successes when the cards used consist of a 5×5
grid of “facets”.

tot10 An integer vector whose entries are counts of successes when the cards used consist of a
10× 10 grid of “facets”.

Details

Adult subjects were shown a series of cards, each bearing a simple graphic image. Each image
resembled one face of a Rubik’s cube, formed of either a 5x5 or a 10x10 grid of facets, each facet
being either black or white. Later, each subject was shown a series of 20 similar cards, exactly 10
of which had been shown to the subject previously. The subject’s task was to identify each image
as a new one, or as a previously seen one. The response variable tot5 is the number of correct
identifications, out of 20, for the 5× 5 cards. Similarly the variable tot10 is the number of correct
identifications for the 10× 10 cards.

Subjects 21–30 were (deliberately) tested with a different set of cards than subjects 1–20, to en-
sure that results were not a function of the original deck of cards. (This seems to have no actual
relevance.)

Source

The data are taken from the paper sited in References below. They were provided by a generous
email correspondent who prefers to remain anonymous.

visRecog 45

References

Green, D. M., and Purohit, A. K. (1976). Visual recognition memory for large and small binary
pictures. Journal of Experimental Psycholology: Human Learning and Memory 2, pp. 32–37.

Examples

dbfit5 <- with(visRecog,mleDb(tot5,20,TRUE))
dbfit10 <- with(visRecog,mleDb(tot10,20,TRUE))
set.seed(42) # To get repeatable Monte Carlo p-values.
print(gof(dbfit5,obsd=visRecog[["tot5"]],MC=TRUE)$pval) # 0.86
print(gof(dbfit10,obsd=visRecog[["tot10"]],MC=TRUE)$pval) # 0.68
bbfit5 <- with(visRecog,mleBb(tot5,20))
bbfit10 <- with(visRecog,mleBb(tot10,20))
set.seed(42) # To get repeatable Monte Carlo p-values.
print(gof(bbfit5,obsd=visRecog[["tot5"]],MC=TRUE)$pval) # 0.94
print(gof(bbfit10,obsd=visRecog[["tot10"]],MC=TRUE)$pval) # 0.70

Index

∗ Fisher information
finfo, 11

∗ covariance estimation
aHess, 2
finfo, 11
mcCovMat, 23
nHess, 30

∗ datagen
simulate, 38

∗ datasets
hrsRcePred, 16
visRecog, 44

∗ distribution
db, 3

∗ estimation
exactMeDb, 6

∗ expected value
expValBb, 8
expValDb, 10

∗ hessian
aHess, 2
nHess, 30

∗ hplot
llPlot, 17
plot.mleBb, 31
plot.mleDb, 33
plotBb, 35
plotDb, 36

∗ htest
gof, 13

∗ inference
aHess, 2
finfo, 11
mcCovMat, 23
nHess, 30

∗ math
expValBb, 8
expValDb, 10
varBb, 39

varDb, 40
∗ univar

expValBb, 8
expValDb, 10
varBb, 39
varDb, 40

∗ utilities
eow, 5
logLik, 20
makeBbdpars, 21
makeDbdpars, 22
mleBb, 25
ndata, 29
vcov.mleBb, 42
vcov.mleDb, 43

∗ variance
varBb, 39
varDb, 40

aHess, 2, 12, 26, 28, 31

contour, 18

db, 3
dbd (db), 3
ddb, 7, 10, 11, 18, 27, 28, 35, 37, 41
ddb (db), 3

eow, 5
exactMeDb, 6
expValBb, 8, 40
expValDb, 7, 9, 10, 40, 41

finfo, 3, 11

get.eow (eow), 5
gof, 13

hrsRcePred, 16, 26

legend, 32, 34

46

INDEX 47

llPlot, 17
logLik, 20

makeBbdpars, 21, 23, 38
makeDbdpars, 22, 23, 38
mcCovMat, 23
meBb, 25
meDb, 5, 7, 27, 28
mleBb, 2, 6, 9, 13, 20, 23, 25, 30–33, 38, 39, 42
mleDb, 2, 3, 5–7, 10, 13, 15, 18, 20, 23, 26, 27,

30, 31, 34, 35, 38, 41, 43

ndata, 29
nHess, 3, 30

optim, 6, 7, 13, 24–28, 31
optimHess, 30, 31
options, 6

pdb (db), 3
persp, 18
plot.default, 36, 37
plot.mleBb, 31, 36
plot.mleDb, 33, 36, 37
plotBb, 33, 35
plotDb, 35, 36, 36

qdb (db), 3

rdb, 39
rdb (db), 3

set.eow, 7, 25, 27
set.eow (eow), 5
simulate, 38, 39
simulate.Bbdpars, 21
simulate.Dbdpars, 23

title, 36, 37

varBb, 9, 39
varDb, 7, 9, 11, 40, 40
vcov.mleBb, 26, 42, 43
vcov.mleDb, 28, 42, 43
visRecog, 26, 44

	aHess
	db
	eow
	exactMeDb
	expValBb
	expValDb
	finfo
	gof
	hrsRcePred
	llPlot
	logLik
	makeBbdpars
	makeDbdpars
	mcCovMat
	mleBb
	mleDb
	ndata
	nHess
	plot.mleBb
	plot.mleDb
	plotBb
	plotDb
	simulate
	varBb
	varDb
	vcov.mleBb
	vcov.mleDb
	visRecog
	Index

