Package ‘data.tree’

November 12, 2023
Type Package

Title General Purpose Hierarchical Data Structure
Version 1.1.0

Date 2023-11-11

VignetteBuilder knitr, rmarkdown

Imports R6, stringi, methods

Suggests Formula, graphics, testthat, knitr, rmarkdown, ape, yaml,
networkD?3, jsonlite, treemap, party, partykit, doParallel,
foreach, htmlwidgets, DiagrammeR (>= 1.0.0), mockery, rpart

Enhances igraph

Description Create tree structures from hierarchical data, and traverse the
tree in various orders. Aggregate, cumulate, print, plot, convert to and from
data.frame and more. Useful for decision trees, machine learning, finance,
conversion from and to JSON, and many other applications.

License GPL (>=2)
URL https://github.com/gluc/data.tree

BugReports https://github.com/gluc/data.tree/issues
Depends R (>=3.5)

RoxygenNote 7.2.3

Encoding UTF-8

NeedsCompilation no

Author Russ Hyde [ctb] (improve dependencies),
Chris Hammill [ctb] (improve getting),
Facundo Munoz [ctb] (improve list conversion),
Markus Wamser [ctb] (fixed some typos),
Pierre Formont [ctb] (additional features),

Kent Russel [ctb] (documentation),
Noam Ross [ctb] (fixes),

Duncan Garmonsway [ctb] (fixes),
Christoph Glur [aut, cre] (R interface)

https://github.com/gluc/data.tree
https://github.com/gluc/data.tree/issues

2 R topics documented:

Maintainer Christoph Glur <christoph.glur@powerpartners.pro>
Repository CRAN
Date/Publication 2023-11-12 20:23:21 UTC

R topics documented:

16 101 3
AGEIegate e e e e e e e e e 3
AreNamesUnique e 5
as.data.frame.Node 5
as.dendrogram.Node 8
asdgraph.Node L 9
asdistNode e e 10
as.Node e e 11
as.Node.BinaryTree e 12
as.Node.data.frame e 13
as.Node.dendrogram e 15
as.Nodedist e e e 16
as.Node.party 18
as.Node.phylo e 20
as.Noderpart L. e e e e e e 21
as.phylo.Node L 22
averageBranchingFactoro oL o 23
CheckNameReservedWord 23
CHmb e 24
Clone e e e 25
CreateRandomTree e 26
CreateRegularTree e 26
Cumulate e e e e e 27
DefaultPlotHeight 27
Distance e e e e e 28
Do . . e 28
FindNode e e 29
FormatFixedDecimal e 30
FormatPercent 31
Get. . . . e 32
GetAttribute e e e e e e e e 33
GetPhyloNr o e 34
isLeaf e 35
isNotLeaf e e 36
iISNOtROOt e e 36
ISROOt . . . e 37
mushroom L e e 37
Navigate o o o e 38
Node e e 38
NODE_RESERVED_NAMES_CONST it 52

plotNode e 53

acme 3
printNode e 55
Prune e 57
Revert e 58
SEt . e e 58
SetFormat e 59
SOt . oo e e 60
ToNewick o e 61
Traverse e 62

Index 64

acme Sample Data: A Simple Company with Departments
Description

acme’s tree representation is accessed through its root, acme.

Usage

data(acme)

Format

A data.tree root Node

Details

* cost, only available for leaf nodes. Cost of the project.

* p probability that a project will be undertaken.

Aggregate Aggregate child values of a Node, recursively.

Description

The Aggregate method lets you fetch an attribute from a Node’s children, and then aggregate them
using aggFun. For example, you can aggregate cost by summing costs of child Nodes. This is

especially useful in the context of tree traversal, when using post-order traversal mode.

Usage

Aggregate(node, attribute, aggFun, ...)

4 Aggregate

Arguments
node the Node on which to aggregate
attribute determines what is collected. The attribute can be
* a.) the name of a field or a property/active of each Node in the tree, e.g.
acme$Get("p"”) or acme$Get ("position”)
* b.) the name of a method of each Node in the tree, e.g. acme$Get ("levelZeroBased"),
where e.g. acme$levelZeroBased <- function() acme$level - 1
* c.) afunction, whose first argument must be a Node e.g. acme$Get (function(node)
node$cost * node$p)
aggFun the aggregation function to be applied to the children’s attributes
any arguments to be passed on to attribute (in case it’s a function)
Details

As with Get, the attribute can be a field, a method or a function. If the attribute on a child is NULL,
Aggregate is called recursively on its children.

See Also

Node

Examples

data(acme)

#Aggregate on a field
Aggregate(acme, "cost”, sum)

#This is the same as:
HomeRolledAggregate <- function(node) {
sum(sapply(node$children, function(child) {
if (!is.null(child$cost)) child$cost
else HomeRolledAggregate(child)
1))

3
HomeRolledAggregate (acme)

#Aggregate using Get
print(acme, "cost”, minCost = acme$Get(Aggregate, "cost”, min))

#use Aggregate with a function:
Aggregate(acme, function(x) x$cost * x$p, sum)

#cache values along the way
acme$Do(function(x) x$cost <- Aggregate(x, "cost”, sum), traversal = "post-order")
acmeITcost

AreNamesUnique

AreNamesUnique Test whether all node names are unique.

Description

This can be useful for some conversions.

Usage

AreNamesUnique (node)
Arguments

node The root Node of the data. tree structure to test
Value

TRUE if all Node$name == TRUE for all nodes in the tree

See Also

as.igraph.Node

Examples

data(acme)
AreNamesUnique(acme)
acme$name <- "IT"
AreNamesUnique (acme)

as.data.frame.Node Convert a data. tree structure to a data.frame

Description

If a node field contains data of length > 1, then that is converted into a string in the data.frame.

6 as.data.frame.Node
Usage
S3 method for class 'Node'
as.data.frame(
X,
row.names = NULL,
optional = FALSE,
traversal = c("pre-order”, "post-order”, "in-order", "level”, "ancestor"),
pruneFun = NULL,
filterFun = NULL,
format = FALSE,
inheritFromAncestors = FALSE
)
ToDataFrameTree(x, ..., pruneFun = NULL)
ToDataFrameTable(x, ..., pruneFun = NULL)
ToDataFrameNetwork (
X,
direction = c("climb”, "descend”),
pruneFun = NULL,
format = FALSE,
inheritFromAncestors = FALSE
)
ToDataFrameTypeCol(x, ..., type = "level”, prefix = type, pruneFun = NULL)
Arguments
X The root Node of the tree or sub-tree to be convert to a data.frame
row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.
optional logical. If TRUE, setting row names and converting column names (to syntactic
names: see make.names) is optional.
the attributes to be added as columns of the data.frame. See Get for details. If a
specific Node does not contain the attribute, NA is added to the data.frame.
traversal any of ’pre-order’ (the default), *post-order’, ’in-order’, ’level’, or ’ancestor’.
See Traverse for details.
pruneFun allows providing a prune criteria, i.e. a function taking a Node as an input, and
returning TRUE or FALSE. If the pruneFun returns FALSE for a Node, then the
Node and its entire sub-tree will not be considered.
filterFun a function taking a Node as an argument. See Traverse for details.
format if FALSE (the default), then no formatting will be applied. If TRUE, then the first

formatter (if any) along the ancestor path is used for formatting.

as.data.frame.Node 7

inheritFromAncestors
if FALSE, and if the attribute is a field or a method, then only a Node itself is
searched for the field/method. If TRUE, and if the Node does not contain the
attribute, then ancestors are also searched.

direction when converting to a network, should the edges point from root to children
("climb") or from child to parent ("descend")?
type when converting type columns, the type is the discriminator, i.e. an attribute
(e.g. field name) of each node
prefix when converting type columns, the prefix used for the column names. Can be
NULL to omit prefixes.
Value

ToDataFrameTree: a data. frame, where each row represents a Node in the tree or sub-tree spanned
by x, possibly pruned according to pruneFun.

ToDataFrameTable: a data.frame, where each row represents a leaf Node in the tree or sub-tree
spanned by x, possibly pruned according to pruneFun.

ToDataFrameNetwork: a data.frame, where each row represents a Node in the tree or sub-tree
spanned by x, possibly pruned according to pruneFun. The first column is called *from’, while
the second is called ’to’, describing the parent to child edge (for direction "climb") or the child to
parent edge (for direction "descend"). If AreNamesUnique is TRUE, then the Network is based on
the Node$name, otherwise on the Node$pathString

ToDataFrameTypeCol: a data.frame in table format (i.e. where each row represents a leaf in the
tree or sub-tree spanned by x), possibly pruned according to pruneFun. In addition to ..., each
distinct type is output to a column.

Examples
data(acme)
acme$attributesAll
as.data.frame(acme, row.names = NULL, optional = FALSE, "cost”, "p")
ToDataFrameTree(acme, "cost”, "p")
ToDataFrameNetwork(acme, "cost”, "p", direction = "climb")
ToDataFrameTable(acme, "cost”, "p")

ToDataFrameTypeCol (acme)

#use the pruneFun:
acme$Do(function(x) x$totalCost <- Aggregate(x, "cost"”, sum), traversal = "post-order”)
ToDataFrameTree(acme, "totalCost”, pruneFun = function(x) x$totalCost > 300000)

#inherit

acme$Set(floor = c(1, 2, 3), filterFun = function(x) x$level == 2)

as.data.frame(acme, row.names = NULL, optional = FALSE, "floor"”, inheritFromAncestors = FALSE)
as.data.frame(acme, row.names = NULL, optional = FALSE, "floor"”, inheritFromAncestors = TRUE)

#using a function as an attribute:
acme$Accounting$Head <- "Mrs. Numright”
acme$Research$Head <- "Mr. Stein”

acmeITHead <- "Mr. Squarehead”

as.dendrogram.Node

ToDataFrameTable(acme, department = function(x) x$parent$name, "name”, "Head", "cost")

#tcomplex TypeCol
acmeITOutsource$AddChild("India")
acmeIT0utsource$AddChild("Poland™)

acme$Set(type = c('company', 'department', 'project', 'project',
'project', 'project', 'department', 'program',

'project', 'project', 'project'
)
)
print(acme, 'type')
ToDataFrameTypeCol (acme, type = 'type')

'department’,
'project’,

as.dendrogram.Node Convert a Node to a dendrogram

Description

Convert a data. tree structure to a dendrogram

Usage

S3 method for class 'Node'
as.dendrogram(
object,
heightAttribute = DefaultPlotHeight,
edgetext = FALSE,

Arguments

object The Node to convert
heightAttribute

The attribute (field name or function) storing the height

edgetext If TRUE, then the for non-leaf nodes the node name is stored as the dendro-

gram’s edge text.

Additional parameters

Value

An object of class dendrogram

See Also

Other Conversions from Node: ToNewick ()

as.igraph.Node 9

Examples

data(acme)
acmed <- as.dendrogram(acme)
plot(acmed, center = TRUE)

#you can take an attribute for the height:

acme$Do(function(x) x$myPlotHeight <- (10 - x$level))

acmed <- as.dendrogram(acme, heightAttribute = "myPlotHeight")
plot(acmed, center = TRUE)

#or directly a function
acmed <- as.dendrogram(acme, heightAttribute = function(x) 10 - x$level)
plot(acmed)

as.igraph.Node Convert a data. tree structure to an igraph network

Description

This requires the igraph package to be installed. Also, this requires the names of the Nodes to be
unique within the data. tree structure.

Usage

as.igraph.Node(
X,
vertexAttributes = character(),
edgeAttributes = character(),
directed = FALSE,

direction = c("climb”, "descend"),
)
Arguments
X The root Node to convert
vertexAttributes

A vector of strings, representing the attributes in the data. tree structure to add
as attributes to the vertices of the igraph

edgeAttributes A vector of strings, representing the attributes in the data. tree structure to add
as edge attributes of the igraph

directed Logical scalar, whether or not to create a directed graph.

direction when converting to a network, should the edges point from root to children
("climb") or from child to parent ("descend")?

Currently unused.

10

Value

an igraph object

See Also

AreNamesUnique

Examples

data(acme)
library(igraph)

ig <- as.igraph(acme,
plot(ig)

"p", c("level”, "isLeaf"))

as.list. Node

as.list.Node

Convert a data. tree structure to a list-of-list structure

Description

Convert a data. tree structure to a list-of-list structure

Usage

S3 method for class

as.list(
X)
mode = c("simple”, "explicit"”),
unname = FALSE,
nameName = ifelse(unname, "name", ""),
childrenName = "children”,
rootName = "",
keepOnly = NULL,
pruneFun = NULL,

ToListSimple(x, nameName =

ToListExplicit(
X7
unname = FALSE,
nameName = ifelse(unname, "name”, ""),
childrenName = "children”,

pruneFun = NULL,

'"Node'

"name"”, pruneFun

= NULL, ...)

as.Node

Arguments

X

mode

unname
nameName
childrenName

rootName

keepOnly

pruneFun

Examples

data(acme)

11

The Node to convert

How the list is structured. "simple" (the default) will add children directly as
nested lists. "explicit" puts children in a separate nested list called childrenName

If TRUE, and if mode is "explicit", then the nested children list will not have
named arguments. This can be useful e.g. in the context of conversion to JSON,
if you prefer the children to be an array rather than named objects.

The name that should be given to the name element
The name that should be given to the children nested list
The name of the node. If provided, this overrides Node$name

A character vector of attributes to include in the result. If NULL (the default), all
attributes are kept.

allows providing a prune criteria, i.e. a function taking a Node as an input, and
returning TRUE or FALSE. If the pruneFun returns FALSE for a Node, then the
Node and its entire sub-tree will not be considered.

Additional parameters passed to as.list.Node

str(ToListSimple(acme))
str(ToListSimple(acme, keepOnly = "cost"))

str(ToListExplicit(acme))
str(ToListExplicit(acme, unname = TRUE))
str(ToListExplicit(acme, unname = TRUE, nameName = "id"”, childrenName = "descendants"))

as.Node

Convert an object to a data. tree data structure

Description

Convert an object to a data. tree data structure

Usage

as.Node(x,

Arguments

X

.2

The object to be converted

Additional arguments

12 as.Node.BinaryTree

See Also

Other as.Node: as.Node.data.frame(), as.Node.dendrogram(), as.Node.list(), as.Node.phylo(),
as.Node.rpart()

as.Node.BinaryTree Convert a a SplitNode from the party package to a data. tree struc-
ture.

Description

Convert a a SplitNode from the party package to a data. tree structure.

Usage
S3 method for class 'BinaryTree'
as.Node(x, ...)

Arguments
X The BinaryTree

additional arguments (unused)

Examples
library(party)
airqg <- subset(airquality, !is.na(Ozone))
airct <- ctree(Ozone ~ ., data = airq,

controls = ctree_control(maxsurrogate = 3))

tree <- as.Node(airct)
tree

print(tree,
"label”,
criterion = function(x) round(x$criterion$maxcriterion, 3),
statistic = function(x) round(max(x$criterion$statistic), 3)

)

FindNode(tree, 6)$path

as.Node.data.frame 13

as.Node.data.frame Convert a data.frame to a data. tree structure

Description

Convert a data.frame to a data. tree structure

Usage
S3 method for class 'data.frame'
as.Node(
X)
mode = c("table"”, "network"),

pathName = "pathString”,
pathDelimiter = "/",
collLevels = NULL,

na.rm = TRUE
)
FromDataFrameTable(
table,

pathName = "pathString”,
pathDelimiter = "/",
colLevels = NULL,

na.rm = TRUE,

check = c("check”, "no-warn"”, "no-check")
)
FromDataFrameNetwork(network, check = c("check”, "no-warn”, "no-check"))

Arguments
X The data.frame in the required format.
Any other argument implementations of this might need

mode Either "table" (if x is a data.frame in tree or table format) or "network"
pathName The name of the column in x containing the path of the row

pathDelimiter The delimiter used to separate nodes in pathName

collLevels Nested list of column names, determining on what node levels the attributes are
written to.

na.rm If TRUE, then NA’s are treated as NULL and values will not be set on nodes

table adata.frame in table or tree format, i.e. having a row for each leaf (and option-

ally for additional nodes). There should be a column called pathName, separated
by pathDelimiter, describing the path of each row.

check Either

14 as.Node.data.frame

* "check": if the name conformance should be checked and warnings should
be printed in case of non-conformance (the default)

e "no-warn”: if the name conformance should be checked, but no warn-
ings should be printed in case of non-conformance (if you expect non-
conformance)

e "no-check” or FALSE: if the name conformance should not be checked;
use this if performance is critical. However, in case of non-conformance,
expect cryptic follow-up errors

network A data.frame in network format, i.e. it must adhere to the following require-
ments:

* It must contain as many rows as there are nodes (excluding the root, there
is no row for the root)

* Its first and second columns contain the network relationships. This can
be either climbing (from parent to children) or descending (from child to
parent)

* Its subsequent columns contain the attributes to be set on the nodes

* It must contain a single root

* There are no cycles in the network

Value

The root Node of the data. tree structure

See Also

as.data.frame.Node

Other as.Node: as.Node.dendrogram(), as.Node.list(), as.Node.phylo(), as.Node.rpart(),
as.Node()

Examples

data(acme)

#Tree

x <- ToDataFrameTree(acme, "pathString”, "p", "cost")
X

xN <- as.Node(x)

print(xN, "p", "cost")

#Table

X <- ToDataFrameTable(acme, "pathString”, "p", "cost")
X

XN <- FromDataFrameTable(x)

print(xN, "p", "cost")

#More complex Table structure, using collLevels

acme$Set(floor = c(1, 2, 3), filterFun = function(x) x$level == 2)
x <- ToDataFrameTable(acme, "pathString”, "floor"”, "p", "cost")

X

as.Node.dendrogram 15

xN <- FromDataFrameTable(x, colLevels = list(NULL, "floor"”, c("p", "cost")), na.rm = TRUE)

"nan

print(xN, "floor"”, "p", "cost")

#Network

x <- ToDataFrameNetwork(acme, "p", "cost"”, direction = "climb")
X

xN <- FromDataFrameNetwork(x)

print(xN, "p", "cost")

as.Node.dendrogram Convert a dendrogram to a data.tree Node

Description

Convert a dendrogram to a data.tree Node

Usage
S3 method for class 'dendrogram'
as.Node(
X’
name = "Root",
heightName = "plotHeight",
check = c("check”, "no-warn", "no-check"),
)
Arguments
X The dendrogram
name The name of the root Node
heightName The name under which the dendrogram’s height is stored
check Either

* "check": if the name conformance should be checked and warnings should
be printed in case of non-conformance (the default)

e "no-warn”: if the name conformance should be checked, but no warn-
ings should be printed in case of non-conformance (if you expect non-
conformance)

* "no-check"” or FALSE: if the name conformance should not be checked;
use this if performance is critical. However, in case of non-conformance,
expect cryptic follow-up errors

Additional parameters
Value

The root Node of a data.tree

16 as.Node.list

See Also

Other as.Node: as.Node.data.frame(), as.Node.list(), as.Node.phylo(), as.Node.rpart(),
as.Node()

Examples

hc <- hclust(dist(USArrests), "ave"
dend1 <- as.dendrogram(hc)

treel <- as.Node(dend1)
treel$attributesAll
treel$totalCount

treel1$leafCount

treel$height

as.Node.list Convert a nested 1ist structure to a data. tree structure

Description

Convert a nested 1ist structure to a data. tree structure

Usage

S3 method for class 'list'
as.Node(
X,
mode = c("simple”, "explicit"”),
nameName = "name”,
childrenName = "children”,
nodeName = NULL,
interpretNullAsList = FALSE,
check = c("check”, "no-warn”, "no-check"),

FromListExplicit(
explicitlList,
nameName = "name"”,
childrenName = "children”,
nodeName = NULL,
check = c("check”, "no-warn”, "no-check")

FromListSimple(
simplelist,
nameName = "name”,

as.Node.list 17

nodeName = NULL,
interpretNullAsList = FALSE,

check = c("check”, "no-warn”, "no-check”)
)
Arguments
X The 1ist to be converted.
mode How the list is structured. "simple" (the default) will interpret any list to be a
child. "explicit" assumes that children are in a nested list called childrenName
nameName The name of the element in the list that should be used as the name, can be

NULL if mode = explicit and the children lists are named, or if an automatic
name (running number) should be assigned

childrenName The name of the element that contains the child list (applies to mode "explicit’
only).

nodeName A name suggestion for x, if the name cannot be deferred otherwise. This is for
example the case for the root with mode explicit and named lists.

interpretNullAsList
If TRUE, then NULL-valued lists are interpreted as child nodes. Else, they are
interpreted as attributes. This has only an effect if mode is "simple".

check Either

* "check”: if the name conformance should be checked and warnings should
be printed in case of non-conformance (the default)

e "no-warn”: if the name conformance should be checked, but no warn-
ings should be printed in case of non-conformance (if you expect non-
conformance)

* "no-check"” or FALSE: if the name conformance should not be checked;
use this if performance is critical. However, in case of non-conformance,
expect cryptic follow-up errors

Any other argument to be passed to generic sub implementations
explicitList A list in which children are in a separate nested list called childrenName.

simplelList A list in which children are stored as nested list alongside other attributes. Any
list is interpreted as a child Node

See Also

Other as.Node: as.Node.data.frame(), as.Node.dendrogram(), as.Node.phylo(), as.Node.rpart(),
as.Node()

Examples

kingJosephs <- list(name = "Joseph I",
spouse = "Mary",
born = "1818-02-23",
died = "1839-08-29",
children = list(

18 as.Node.party

list(name = "Joseph II",
spouse = "Kathryn",
born = "1839-03-28",
died = "1865-12-19"),
list(name = "Helen",
born = "1840-17-08",
died = "1845-01-01")

)
FromListExplicit(kingJosephs)

kingJosephs <- list(head = "Joseph I",
spouse = "Mary",
born = "1818-02-23",
died = "1839-08-29",
list(head = "Joseph II",
spouse = "Kathryn”,
born = "1839-03-28",
died = "1865-12-19"),
list(head = "Helen",
born = "1840-17-08",
died = "1845-01-01")
)

FromListSimple(kingJosephs, nameName = "head")

kingJosephs <- list(spouse = "Mary",

born = "1818-02-23",

died = "1839-08-29",

*Joseph II' = list(spouse = "Kathryn",
born = "1839-03-28",
died = "1865-12-19"),

Helen = list(born = "1840-17-08",

died = "1845-01-01")

)
FromListSimple(kingJosephs, nodeName = "Joseph I")

as.Node.party Convert a a party from the partykit package to a data. tree structure.

Description

Convert a a party from the partykit package to a data. tree structure.

Usage

S3 method for class 'party'
as.Node(x, ...)

as.Node.party

Arguments
X The party object
other arguments (unused)
Examples
library(partykit)

data("WeatherPlay”, package = "partykit")
#i#t# splits #it#

split in overcast, humidity, and windy
sp_o <- partysplit(1L, index = 1:3)

sp_h <- partysplit(3L, breaks = 75)

sp_w <- partysplit(4L, index = 1:2)

query labels
character_split(sp_o)

#i## nodes #iHt
set up partynode structure
pn <- partynode(1L, split = sp_o, kids = list(
partynode(2L, split = sp_h, kids = list(
partynode(3L, info = "yes"),
partynode(4L, info = "no"))),
partynode(5L, info = "yes"),
partynode(6L, split = sp_w, kids = list(
partynode(7L, info = "yes"),
partynode(8L, info = "no")))))
pn
tree #it#
party: associate recursive partynode structure with data
py <- party(pn, WeatherPlay)
tree <- as.Node(py)

print(tree,
"splitname”,
count = function(node) nrow(node$data),
"splitlLevel”)

SetNodeStyle(tree,
label = function(node) paste@(node$name,
tooltip = function(node) paste@(nrow(node$data),

n, n

, node$splitname),
" observations”),

fontname = "helvetica”)
SetEdgeStyle(tree,

arrowhead = "none”,

label = function(node) node$splitlevel,

fontname = "helvetica”,

penwidth = function(node) 12 * nrow(node$data)/nrow(node$root$data),
color = function(node) {
pasteo("grey”,
100 - as.integer(100 * nrow(node$data)/nrow(node$root$data))
)

20 as.Node.phylo

)
Do(tree$leaves,
function(node) {
SetNodeStyle(node,
shape = "box",
color = ifelse(node$splitname == "yes"”, "darkolivegreen4”, "lightsalmon4"),
fillcolor = ifelse(node$splitname == "yes"”, "darkolivegreen1”, "lightsalmon"),
style = "filled, rounded”,
penwidth = 2
)
}
)
plot(tree)
as.Node.phylo Convert a phylo object from the ape package to a Node
Description

Convert a phylo object from the ape package to a Node

Usage

S3 method for class 'phylo’
as.Node(
X,
heightName = "plotHeight",
replaceUnderscores = TRUE,
namesNotUnique = FALSE,

)
Arguments
X The phylo object to be converted
heightName If the phylo contains edge lengths, then they will be converted to a height and
stored in a field named according to this parameter (the default is "height")
replaceUnderscores

if TRUE (the default), then underscores in names are replaced with spaces

namesNotUnique if TRUE, then the name of the Nodes will be prefixed with a unique id. This is
useful if the children of a parent have non-unique names.

any other parameter to be passed to sub-implementations

as.Node.rpart 21

See Also

Other ape phylo conversions: GetPhyloNr (), as.phylo.Node()

Other as.Node: as.Node.data.frame(), as.Node.dendrogram(), as.Node.list(), as.Node.rpart(),
as.Node()

Examples

#which bird familes have the max height?

library(ape)

data(bird.families)

bf <- as.Node(bird.families)

height <- bf$height

t <- Traverse(bf, filterFun = function(x) x$level == 25)
Get(t, "name")

as.Node.rpart Convert an rpart object to a data. tree structure

Description

Convert an rpart object to a data. tree structure

Usage

S3 method for class 'rpart'
as.Node(x, digits = getOption("digits”) - 3, use.n = FALSE, ...)

Arguments
X the rpart object to be converted
digits the number of digits to be used for numeric values in labels
use.n logical. Add cases to labels, see text.rpart for further information
any other argument to be passed to generic sub implementations
Value

a data. tree object. The tree contains a field rpart.id which references back to the original node
id in the row names of the rpart object.

See Also

Other as.Node: as.Node.data.frame(), as.Node.dendrogram(), as.Node.list(), as.Node.phylo(),
as.Node()

22 as.phylo.Node

Examples

if (require(rpart)) {
fit <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)

as.Node(fit)

as.phylo.Node Convert a Node to a phylo object from the ape package.

Description

This method requires the ape package to be installed and loaded.

Usage
as.phylo.Node(x, heightAttribute = DefaultPlotHeight, ...)
Arguments
X The root Node of the tree or sub-tree to be converted
heightAttribute
The attribute (field name or function) storing the height
any other argument
See Also

Other ape phylo conversions: GetPhyloNr(), as.Node.phylo()

Examples

library(ape)

data(acme)

acmephylo <- as.phylo(acme)
#plot (acmephylo)

averageBranchingFactor 23

averageBranchingFactor
Calculate the average number of branches each non-leaf has

Description

Calculate the average number of branches each non-leaf has

Usage

averageBranchingFactor(node)

Arguments

node The node to calculate the average branching factor for

CheckNameReservedWord Checks whether name is a reserved word, as defined in
NODE_RESERVED_NAMES_CONST.

Description

Checks whether name is a reserved word, as defined in NODE_RESERVED_NAMES_CONST.

Usage

CheckNameReservedWord(name, check = c("check”, "no-warn”, "no-check"))
Arguments

name the name to check

check Either

* "check": if the name conformance should be checked and warnings should
be printed in case of non-conformance (the default)

e "no-warn”: if the name conformance should be checked, but no warn-
ings should be printed in case of non-conformance (if you expect non-
conformance)

¢ "no-check"” or FALSE: if the name conformance should not be checked;

use this if performance is critical. However, in case of non-conformance,
expect cryptic follow-up errors

24 Climb

Climb Climb a tree from parent to children, by provided criteria.

Description
This method lets you climb the tree, from crutch to crutch. On each Node, the Climb finds the first
child having attribute value equal to the the provided argument.

Usage

#node$Climb(...)
Climb(node, ...)

Arguments
node The root Node of the tree or subtree to climb
an attribute-value pairlist to be searched. For brevity, you can also provide a
character vector to search for names.
Value

the Node having path . . ., or NULL if such a path does not exist

See Also
Node

Navigate

Examples

data(acme)

#the following are all equivalent
Climb(acme, 'IT', 'Outsource')

Climb(acme, name = 'IT', name = 'Outsource')
Climb(acme, 'IT')$Climb('Outsource')
Navigate(acme, path = "IT/Outsource”)

Climb(acme, name = "'IT')

Climb(acme, position = c(2, 1))

#or, equivalent:

Climb(acme, position = 2, position = 1)
Climb(acme, name = "IT", cost = 250000)

tree <- CreateRegularTree(5, 2)
tree$Climb(c(”1", "1"), position = c(2, 2))$path

Clone 25

Clone Clone a tree (creates a deep copy)

Description

The method also clones object attributes (such as the formatters), if desired. If the method is called
on a non-root, then the parent relationship is not cloned, and the resulting Node will be a root.

Usage

Clone(node, pruneFun = NULL, attributes = FALSE)

Arguments
node the root node of the tree or sub-tree to clone
pruneFun allows providing a prune criteria, i.e. a function taking a Node as an input, and
returning TRUE or FALSE. If the pruneFun returns FALSE for a Node, then the
Node and its entire sub-tree will not be considered.
attributes if FALSE, then R class attributes (e.g. formatters and grViz styles) are not
cloned. This makes the method faster.
Value

the clone of the tree or sub-tree

See Also

SetFormat

Examples

data(acme)

acmeClone <- Clone(acme)

acmeClone$name <- "New Acme"

acmeClone does not point to the same reference object anymore:
acme$name

#cloning a subtree
data(acme)

itClone <- Clone(acme$IT)
itClone$isRoot

26 CreateRegularTree

CreateRandomTree Create a tree for demo and testing

Description

Create a tree for demo and testing

Usage

CreateRandomTree(nodes = 100, root = Node$new("1"), id = 1)

Arguments
nodes The number of nodes to create
root the previous node (for recursion, typically use default value)
id The id (for recursion)
CreateRegularTree Create a tree for demo and testing
Description

Create a tree for demo and testing

Usage

CreateRegularTree(height = 5, branchingFactor = 3, parent = Node$new("1"))

Arguments

height the number of levels

branchingFactor
the number of children per node

parent the parent node (for recursion)

Cumulate 27

Cumulate Cumulate values among siblings

Description

For example, you can sum up values of siblings before this Node.

Usage
Cumulate(node, attribute, aggFun, ...)
Arguments
node The node on which we want to cumulate
attribute determines what is collected. The attribute can be
* a.) the name of a field or a property/active of each Node in the tree, e.g.
acme$Get ("p") or acme$Get("position”)
* b.) the name of a method of each Node in the tree, e.g. acme$Get("levelZeroBased"),
where e.g. acme$levelZeroBased <- function() acme$level -1
* c.) afunction, whose first argument must be a Node e.g. acme$Get (function(node)
node$cost * node$p)
aggFun the aggregation function to be applied to the children’s attributes
any arguments to be passed on to attribute (in case it’s a function)
Examples
data(acme)
acme$Do(function(x) x$cost <- Aggregate(x, "cost”, sum), traversal = "post-order”)
acme$Do(function(x) x$cumCost <- Cumulate(x, "cost", sum))
print(acme, "cost"”, "cumCost")
DefaultPlotHeight Calculates the height of a Node given the height of the root.
Description

This function puts leafs at the bottom (not hanging), and makes edges equally long. Useful for
easy plotting with third-party packages, e.g. if you have no specific height attribute, e.g. with
as.dendrogram.Node, ToNewick, and as.phylo.Node

Usage

DefaultPlotHeight(node, rootHeight = 100)

28

Arguments
node The node
rootHeight The height of the root
Examples
data(acme)

dacme <- as.dendrogram(acme, heightAttribute = function(x) DefaultPlotHeight(x, 200))

plot(dacme, center = TRUE)

Distance Find the distance between two nodes of the same tree

Description

The distance is measured as the number of edges that need to be traversed to reach node2 when

starting from nodel.

Usage

Distance(nodel, node2)

Arguments

node1l the first node in the tree

node?2 the second node in the same tree
Examples

data(acme)

Distance(FindNode(acme, "Outsource"), FindNode(acme, "Research”))

Do Executes a function on a set of nodes

Description

Executes a function on a set of nodes

FindNode 29

Usage

00-style:

node$Do(fun,
e,
traversal = c("pre-order”, "post-order"”, "in-order”, "level”, "ancestor"),
pruneFun = NULL,
#

filterFun = NULL)

traditional:

Do(nodes, fun, ...)
Arguments
nodes The nodes on which to perform the Get (typically obtained via Traverse)
fun the function to execute. The function is expected to be either a Method, or to

take a Node as its first argument

any additional parameters to be passed on to fun

See Also

Node
Get
Set

Traverse

Examples

data(acme)

traversal <- Traverse(acme)

Do(traversal, function(node) node$expectedCost <- node$p * node$cost)
print(acme, "expectedCost")

FindNode Find a node by name in the (sub-)tree

Description

Scans the entire sub-tree spanned by node and returns the first Node having the name specified. This
is mainly useful for trees whose name is unique. If AreNamesUnique is FALSE, i.e. if there is more
than one Node called name in the tree, then it is undefined which one will be returned. Also note
that this method is not particularly fast. See examples for a faster way to index large trees, if you
need to do multiple searches. See Traverse if you need to find multiple Nodes.

Usage

FindNode(node, name)

30 FormatFixedDecimal

Arguments
node The root Node of the tree or sub-tree to search
name The name of the Node to be returned

Value

The first Node whose name matches, or NULL if no such Node is found.

See Also

AreNamesUnique, Traverse

Examples

data(acme)
FindNode(acme, "Outsource")

#re-usable hashed index for multiple searches:

if (!AreNamesUnique(acme)) stop("Hashed index works for unique names only!")
trav <- Traverse(acme, "level")

names(trav) <- Get(trav, "name")

namelndex <- as.environment(trav)

#you could also use hash from package hash instead!

#nameIndex <- hash(trav)

nameIndex$Outsource

nameIndex$IT

FormatFixedDecimal Format a Number as a Decimal

Description

Simple function that can be used as a format function when converting trees to a data.frame

Usage

FormatFixedDecimal(x, digits = 3)

Arguments

X a numeric scalar or vector

digits the number of digits to print after the decimal point
Value

A string corresponding to X, suitable for printing

FormatPercent

Examples

data(acme)
print(acme, prob

31

= acme$Get("p", format = function(x) FormatFixedDecimal(x, 4)))

FormatPercent

Format a Number as a Percentage

Description

This utility method can be used as a format function when converting trees to a data. frame

Usage

FormatPercent(x, digits = 2, format = "f", ...)
Arguments

X A number

digits The number of digits to print

format The format to use

Any other argument passed to formatC

Value

A string corresponding to X, suitable for printing

See Also

formatC

Examples

data(acme)
print(acme, prob

= acme$Get("p", format = FormatPercent))

32 Get

Get Traverse a Tree and Collect Values

Description

The Get method is one of the most important ones of the data. tree package. It lets you traverse
a tree and collect values along the way. Alternatively, you can call a method or a function on each
Node.

Usage
00-style:
#node$Get (attribute,
.
traversal = c("pre-order”, "post-order”, "in-order”, "level”, "ancestor"),
pruneFun = NULL,
filterFun = NULL,
format = FALSE,
inheritFromAncestors = FALSE)

traditional:
Get(nodes,
attribute,

format = FALSE,
inheritFromAncestors = FALSE,
simplify = c(TRUE, FALSE, "array"”, "regular"))

Arguments

nodes The nodes on which to perform the Get (typically obtained via Traverse)
attribute determines what is collected. The attribute can be

* a.) the name of a field or a property/active of each Node in the tree, e.g.
acme$Get ("p") or acme$Get ("position”)

* b.) the name of a method of each Node in the tree, e.g. acme$Get ("levelZeroBased"),
where e.g. acme$levelZeroBased <- function() acme$level - 1

¢ c.) afunction, whose first argument must be a Node e.g. acme$Get (function(node)
node$cost * node$p)

in case the attribute is a function or a method, the ellipsis is passed to it as
additional arguments.

format if FALSE (the default), no formatting is being used. If TRUE, then the first for-
matter (if any) found along the ancestor path is being used for formatting (see
SetFormat). If format is a function, then the collected value is passed to that
function, and the result is returned.

GetAttribute 33

inheritFromAncestors
if TRUE, then the path above a Node is searched to get the attribute in case it
is NULL.

simplify same as sapply, i.e. TRUE, FALSE or "array". Additionally, you can specify
"regular" if each returned value is of length > 1, and equally named. See below
for an example.

Value

a vector containing the atrributes collected during traversal, in traversal order. NULL is converted
to NA, such that 1ength(Node$Get) == Node$totalCount

See Also

Node
Set
Do

Traverse

Examples

data(acme)
acme$Get("level”)
acme$Get ("totalCount”)

acme$Get (function(node) node$cost * node$p,
filterFun = isLeaf)

#This is equivalent:
nodes <- Traverse(acme, filterFun = isLeaf)
Get(nodes, function(node) node$cost * node$p)

#simplify = "regular” will preserve names
acme$Get(function(x) c(position = x$position, level = x$level), simplify = "regular”)
GetAttribute Get an attribute from a Node.
Description

Get an attribute from a Node.

34 GetPhyloNr

Usage

GetAttribute(
node,
attribute,
format = FALSE,
inheritFromAncestors = FALSE,
nullAsNa = TRUE

)
Arguments
node The Node from which the attribute should be fetched.
attribute determines what is collected. The attribute can be
* a.) the name of a field or a property/active of each Node in the tree, e.g.
acme$Get ("p") or acme$Get ("position”)
* b.) the name of a method of each Node in the tree, e.g. acme$Get("levelZeroBased"),
where e.g. acme$levelZeroBased <- function() acme$level -1
* c.) afunction, whose first argument must be a Node e.g. acme$Get (function(node)
node$cost * node$p)
in case the attribute is a function or a method, the ellipsis is passed to it as
additional arguments.
format if FALSE (the default), no formatting is being used. If TRUE, then the first for-
matter (if any) found along the ancestor path is being used for formatting (see
SetFormat). If format is a function, then the collected value is passed to that
function, and the result is returned.
inheritFromAncestors
if TRUE, then the path above a Node is searched to get the attribute in case it
is NULL.
nullAsNa If TRUE (the default), then NULL is returned as NA. Otherwise it is returned as
NULL.
Examples
data(acme)

GetAttribute(acmeITOutsource, "cost")

GetPhyloNr Determine the number a Node has after conversion to a phylo object

Description

Use this function when plotting a Node as a phylo, e.g. to set custom labels to plot.

isLeaf 35

Usage
GetPhyloNr(x, type = c("node"”, "edge"))

Arguments
X The Node
type Either "node" (the default) or "edge" (to get the number of the edge from x to its
parent)
Value

an integer representing the node

See Also

Other ape phylo conversions: as.Node.phylo(), as.phylo.Node()

Examples

library(ape)

library(data.tree)

data(acme)

ap <- as.phylo(acme)

#plot(ap)

#nodelabels("IT Dep.", GetPhyloNr(Climb(acme, "IT")))

#tedgelabels("Good!"”, GetPhyloNr(Climb(acme, "IT"”, "Switch to R"), "edge"))

isLeaf Check if a Node is a leaf

Description

Check if a Node is a leaf

Usage

isLeaf (node)

Arguments

node The Node to test.

Value

TRUE if the Node is a leaf, FALSE otherwise

36

isNotRoot

isNotLeaf Check if a Node is not a leaf

Description

Check if a Node is not a leaf

Usage

isNotLeaf (node)

Arguments

node The Node to test.

Value

FALSE if the Node is a leaf, TRUE otherwise

isNotRoot Check if a Node is not a root

Description

Check if a Node is not a root

Usage

isNotRoot (node)

Arguments

node The Node to test.

Value

FALSE if the Node is the root, TRUE otherwise

isRoot

37

isRoot Check if a Node is the root

Description

Check if a Node is the root

Usage

isRoot (node)

Arguments

node The Node to test.

Value

TRUE if the Node is the root, FALSE otherwise

mushroom Sample Data: Data Used by the ID3 Vignette

Description

mushroom contains attributes of mushrooms. We can use this data to predict a mushroom’s toxicity

based on its attributes. The attributes available in the data set are:

Usage

data(mushroom)

Format

data.frame

Details

* color the color of a mushroom
* size whether a mushroom is small or large
* points whether a mushroom has points

¢ edibility whether a mushroom is edible or toxic

38 Node

Navigate Navigate to another node by relative path.

Description

Navigate to another node by relative path.

Usage

Navigate(node, path)

Arguments

node The starting Node to navigate

path A string or a character vector describing the path to navigate
Details

The path is always relative to the node. Navigation to the parent is defined by .., whereas navi-
gation to a child is defined via the child’s name. If path is provided as a string, then the navigation
steps are separated by ’/’.

See Also
Climb

Examples

data(acme)
Navigate(acme$Research, "../IT/Outsource”)
Navigate(acme$Research, c(”.."”, "IT", "Outsource"))

Node Create a data. tree Structure With Nodes

Description

Node is at the very heart of the data. tree package. All trees are constructed by tying together Node
objects.

Usage

n1 <- Node$new("Node 1")

Node 39

Format

An R6Class generator object

Details

Assemble Node objects into a data. tree structure and use the traversal methods to set, get, and per-
form operations on it. Typically, you construct larger tree structures by converting from data. frame,
list, or other formats.

Most methods (e.g. node$Sort()) also have a functional form (e.g. Sort(node))

Active bindings

name Gets or sets the name of a Node. For example Node$name <- "Acme".

printFormatters gets or sets the formatters used to print a Node. Set this as a list to a root node.
The different formatters are h (horizontal), v (vertical), I (L), j (junction), and s (separator). For
example, you can set the formatters to 1ist(h = "\u2500" , v = "\u2502", 1 = "\u2514",
j ="\u251C", s="") to get a similar behavior as in fs::dir_tree(). The defaults are:
list(h="--", v="\u@oA6", 1 ="\u@eB0", j="\udoA6", s="")

parent Gets or sets the parent Node of a Node. Only set this if you know what you are doing, as
you might mess up the tree structure!

children Gets or sets the children 1ist of a Node. Only set this if you know what you are doing,
as you might mess up the tree structure!

isLeaf Returns TRUE if the Node is a leaf, FALSE otherwise
isRoot Returns TRUE if the Node is the root, FALSE otherwise
count Returns the number of children of a Node

totalCount Returns the total number of Nodes in the tree

path Returns a vector of mode character containing the names of the Nodes in the path from the
root to this Node

pathString Returns a string representing the path to this Node, separated by backslash
position The position of a Node within its siblings

fields Will be deprecated, use attributes instead

fieldsAll Will be deprecated, use attributesAll instead

attributes The attributes defined on this specific node

attributesAll The distinct union of attributes defined on all the nodes in the tree spanned by this
Node

levelName Returns the name of the Node, preceded by level times **’. Useful for printing and not
typically called by package users.

leaves Returns a list containing all the leaf Nodes

leafCount Returns the number of leaves are below a Node

level Returns an integer representing the level of a Node. For example, the root has level 1.
height Returns max(level) of any of the Nodes of the tree

isBinary Returns TRUE if all Nodes in the tree (except the leaves) have count = 2

40

Node

root Returns the root of a Node in a tree.
siblings Returns a list containing all the siblings of this Node

averageBranchingFactor Returns the average number of crotches below this Node

Methods

Public methods:

* Node$new()

¢ Node$AddChild()

¢ Node$AddChildNode()

* Node$AddSibling()

* Node$AddSiblingNode ()
* Node$RemoveChild()

* Node$RemoveAttribute()
* Node$Sort()

* Node$Revert()

* Node$Prune()

* Node$Climb()

* Node$Navigate()

* Node$Get ()

* Node$Do()

* Node$Set ()

* Node$clone()

Method new(): Create a new Node object. This is often used to create the root of a tree when
creating a tree programmatically.

Usage:

Node$new(name, check = c("check”, "no-warn”, "no-check"), ...)

Arguments:

name the name of the node to be created

check Either

* "check”: if the name conformance should be checked and warnings should be printed in
case of non-conformance (the default)

* "no-warn": if the name conformance should be checked, but no warnings should be
printed in case of non-conformance (if you expect non-conformance)

* "no-check” or FALSE: if the name conformance should not be checked; use this if per-
formance is critical. However, in case of non-conformance, expect cryptic follow-up
errors

. A name-value mapping of node attributes
Returns: A new ‘Node‘ object
Examples:

node <- Node$new("mynode”, x = 2, y = "value of y")
node$y

Node 41

Method AddChild(): Creates a Node and adds it as the last sibling as a child to the Node on
which this is called.

Usage:

Node$AddChild(name, check = c("check”, "no-warn”, "no-check”), ...)

Arguments:
name the name of the node to be created
check Either

* "check”: if the name conformance should be checked and warnings should be printed in
case of non-conformance (the default)

* "no-warn”: if the name conformance should be checked, but no warnings should be
printed in case of non-conformance (if you expect non-conformance)

* "no-check” or FALSE: if the name conformance should not be checked; use this if per-
formance is critical. However, in case of non-conformance, expect cryptic follow-up
errors

. A name-value mapping of node attributes
Returns: The new Node (invisibly)

Examples:

root <- Node$new("myroot”, myname = "I'm the root")
root$AddChild("child1”, myname = "I'm the favorite child")

child2 <- root$AddChild("child2", myname = "I'm just another child")
child3 <- child2$AddChild("child3"”, myname = "Grandson of a root!")
print(root, "myname")

Method AddChildNode(): Adds a Node as a child to this node.
Usage:
Node$AddChildNode(child)

Arguments:
child The child "Node" to add.

Returns: the child node added (this lets you chain calls)

Examples:

root <- Node$new("myroot")
child <- Node$new("mychild")
root$AddChildNode(child)

Method AddSibling(): Creates a new Node called name and adds it after this Node as a sibling.
Usage:
Node$AddSibling(name, check = c("check”, "no-warn”, "no-check”), ...)
Arguments:

name the name of the node to be created
check Either

Node

* "check”: if the name conformance should be checked and warnings should be printed in
case of non-conformance (the default)

* "no-warn": if the name conformance should be checked, but no warnings should be
printed in case of non-conformance (if you expect non-conformance)

* "no-check” or FALSE: if the name conformance should not be checked; use this if per-
formance is critical. However, in case of non-conformance, expect cryptic follow-up
errors

. A name-value mapping of node attributes
Returns: the sibling node (this lets you chain calls)
Examples:

#' root <- Node$new("myroot")
child <- root$AddChild("child1")
sibling <- child$AddSibling("sibling1")

Method AddSiblingNode(): Adds a Node after this Node, as a sibling.
Usage:
Node$AddSiblingNode(sibling)
Arguments:
sibling The "Node” to add as a sibling.
Returns: the added sibling node (this lets you chain calls, as in the examples)
Examples:

root <- Node$new("myroot")

child <- Node$new("mychild")

sibling <- Node$new("sibling")
root$AddChildNode(child)$AddSiblingNode(sibling)

Method RemoveChild(): Remove the child Node called name from a Node and returns it.

Usage:
Node$RemoveChild(name)

Arguments:

name the name of the node to be created
Returns: the subtree spanned by the removed child.

Examples:

node <- Node$new("myroot”)$AddChild("mychild”)$root
node$RemoveChild("mychild")

Method RemoveAttribute(): Removes attribute called name from this Node.
Usage:
Node$RemoveAttribute(name, stopIfNotAvailable = TRUE)

Arguments:

Node 43

name the name of the node to be created
stopIfNotAvailable Gives an error if stopIfNotAvailable and the attribute does not exist.

Examples:

node <- Node$new("mynode”)

node$RemoveAttribute(”age"”, stopIfNotAvailable = FALSE)
node$age <- 27

node$RemoveAttribute("age")

node

Method Sort(): Sort children of a Node or an entire data. tree structure

Usage:
Node$Sort(attribute, ..., decreasing = FALSE, recursive = TRUE)

Arguments:
attribute determines what is collected. The attribute can be

* a.) the name of a field or a property/active of each Node in the tree, e.g. acme$Get ("p")
or acme$Get ("position”)

* b.) the name of a method of each Node in the tree, e.g. acme$Get ("levelZeroBased"),
where e.g. acme$levelZeroBased <- function() acme$level -1

* c.) a function, whose first argument must be a Node e.g. acme$Get(function(node)
node$cost * node$p)

. any parameters to be passed on the the attribute (in case it’s a method or a function)
decreasing sort order
recursive if TRUE, the method will be called recursively on the Node’s children. This allows
sorting an entire tree.

Details: You can sort with respect to any argument of the tree. But note that sorting has
side-effects, meaning that you modify the underlying, original data.tree object structure.
See also Sort for the equivalent function.

Returns: Returns the node on which Sort is called, invisibly. This can be useful to chain Node
methods.
Examples:

data(acme)

acme$Do(function(x) x$totalCost <- Aggregate(x, "cost"”, sum), traversal = "post-order”)
Sort(acme, "totalCost”, decreasing = FALSE)

print(acme, "totalCost")

Method Revert(): Reverts the sort order of a Node’s children.
See also Revert for the equivalent function.

Usage:

Node$Revert(recursive = TRUE)

Arguments:

recursive if TRUE, the method will be called recursively on the Node’s children. This allows
sorting an entire tree.

44

Node

Returns: returns the Node invisibly (for chaining)

Method Prune(): Prunes a tree.

Pruning refers to removing entire subtrees. This function has side-effects, it modifies your data.tree
structure!

See also Prune for the equivalent function.
Usage:
Node$Prune (pruneFun)
Arguments:

pruneFun allows providing a a prune criteria, i.e. a function taking a Node as an input, and
returning TRUE or FALSE. If the pruneFun returns FALSE for a Node, then the Node and its
entire sub-tree will not be considered.

Returns: the number of nodes removed

Examples:

data(acme)

acme$Do(function(x) x$cost <- Aggregate(x, "cost”, sum))
Prune(acme, function(x) x$cost > 700000)

print(acme, "cost")

Method Climb(): Climb a tree from parent to children, by provided criteria.
Usage:
Node$Climb(...)
Arguments:

. an attribute-value pairlist to be searched. For brevity, you can also provide a character
vector to search for names.

node The root Node of the tree or subtree to climb
Details: This method lets you climb the tree, from crutch to crutch. On each Node, the C1imb
finds the first child having attribute value equal to the the provided argument.

See also Climb and Navigate
Climb(node, ...)

Returns: the Node having path . . ., or NULL if such a path does not exist

Examples:

data(acme)

#the following are all equivalent
Climb(acme, 'IT', 'Outsource')

Climb(acme, name = '"IT', name = 'Outsource')
Climb(acme, 'IT')$Climb('Outsource')
Navigate(acme, path = "IT/Outsource”)

Climb(acme, name = 'IT')

Climb(acme, position = c(2, 1))

Node

45

#or, equivalent:
Climb(acme, position = 2, position = 1)
Climb(acme, name = "IT"”, cost = 250000)

tree <- CreateRegularTree(5, 2)
tree$Climb(c(”1", "1"), position = c(2, 2))$path

Method Navigate(): Navigate to another node by relative path.

Usage:

Node$Navigate(path)

Arguments:

path A string or a character vector describing the path to navigate

node The starting Node to navigate

Details: The path is always relative to the Node. Navigation to the parent is defined by . .,
whereas navigation to a child is defined via the child’s name. If path is provided as a string, then

the navigation steps are separated by ’/’.
See also Navigate and Climb

Examples:

data(acme)

Navigate(acme$Research, "../IT/Outsource")
Navigate(acme$Research, c("..", "IT", "Outsource”))

Method Get (): Traverse a Tree and Collect Values

Usage:
Node$Get (
attribute,
traversal = c("pre-order”, "post-order”, "in-order”, "level”, "ancestor"),
pruneFun = NULL,
filterFun = NULL,
format = FALSE,
inheritFromAncestors = FALSE,
simplify = c(TRUE, FALSE, "array"”, "regular")
)
Arguments:

attribute determines what is collected. The attribute can be
* a.) the name of a field or a property/active of each Node in the tree, e.g. acme$Get ("p")
or acme$Get("position”)
* b.) the name of a method of each Node in the tree, e.g. acme$Get ("levelZeroBased"),
where e.g. acme$levelZeroBased <- function() acme$level -1
* c.) a function, whose first argument must be a Node e.g. acme$Get(function(node)
node$cost * node$p)

Node

. in case the attribute is a function or a method, the ellipsis is passed to it as additional
arguments.
traversal defines the traversal order to be used. This can be
pre-order Go to first child, then to its first child, etc.
post-order Go to the first branch’s leaf, then to its siblings, and work your way back to the
root
in-order Go to the first branch’s leaf, then to its parent, and only then to the leaf’s sibling
level Collect root, then level 2, then level 3, etc.
ancestor Take a node, then the node’s parent, then that node’s parent in turn, etc. This
ignores the pruneFun
function You can also provide a function, whose sole parameter is a Node object. The
function is expected to return the node’s next node, a list of the node’s next nodes, or
NULL.
Read the data.tree vignette for a detailed explanation of these traversal orders.
pruneFun allows providing a prune criteria, i.e. a function taking a Node as an input, and
returning TRUE or FALSE. If the pruneFun returns FALSE for a Node, then the Node and its
entire sub-tree will not be considered.
filterFun allows providing a a filter, i.e. a function taking a Node as an input, and returning
TRUE or FALSE. Note that if filter returns FALSE, then the node will be excluded from the
result (but not the entire subtree).
format if FALSE (the default), no formatting is being used. If TRUE, then the first formatter (if
any) found along the ancestor path is being used for formatting (see SetFormat). If format
is a function, then the collected value is passed to that function, and the result is returned.
inheritFromAncestors if TRUE, then the path above a Node is searched to get the attribute
in case it is NULL.
simplify same as sapply, i.e. TRUE, FALSE or "array". Additionally, you can specify "reg-
ular" if each returned value is of length > 1, and equally named. See below for an example.

Details: The Get method is one of the most important ones of the data. tree package. It lets
you traverse a tree and collect values along the way. Alternatively, you can call a method or a
function on each Node.

See also Get, Node, Set, Do, Traverse

Returns: avector containing the atrributes collected during traversal, in traversal order. NULL
is converted to NA, such that length(Node$Get) == Node$totalCount

Examples:

data(acme)
acme$Get("level”)
acme$Get ("totalCount™)

acme$Get (function(node) node$cost * node$p,
filterFun = islLeaf)

#This is equivalent:
nodes <- Traverse(acme, filterFun = islLeaf)
Get(nodes, function(node) node$cost * node$p)

Node 47

#simplify = "regular” will preserve names
acme$Get (function(x) c(position = x$position, level = x$level), simplify = "regular”)

Method Do(): Executes a function on a set of nodes

Usage:
Node$Do(
fun,
traversal = c("pre-order”, "post-order”, "in-order"”, "level”, "ancestor"),
pruneFun = NULL,
filterFun = NULL
)
Arguments:
fun the function to execute. The function is expected to be either a Method, or to take a Node
as its first argument
. A name-value mapping of node attributes
traversal defines the traversal order to be used. This can be
pre-order Go to first child, then to its first child, etc.

post-order Go to the first branch’s leaf, then to its siblings, and work your way back to the
root

in-order Go to the first branch’s leaf, then to its parent, and only then to the leaf’s sibling
level Collect root, then level 2, then level 3, etc.

ancestor Take a node, then the node’s parent, then that node’s parent in turn, etc. This
ignores the pruneFun

function You can also provide a function, whose sole parameter is a Node object. The
function is expected to return the node’s next node, a list of the node’s next nodes, or
NULL.

Read the data.tree vignette for a detailed explanation of these traversal orders.

pruneFun allows providing a prune criteria, i.e. a function taking a Node as an input, and
returning TRUE or FALSE. If the pruneFun returns FALSE for a Node, then the Node and its
entire sub-tree will not be considered.

filterFun allows providing a a filter, i.e. a function taking a Node as an input, and returning
TRUE or FALSE. Note that if filter returns FALSE, then the node will be excluded from the
result (but not the entire subtree).

Details: See also Node, Get, Set, Traverse

Examples:

data(acme)
acme$Do(function(node) node$expectedCost <- node$p * node$cost)
print(acme, "expectedCost")

Method Set(): Traverse a Tree and Assign Values

48

Node

Usage:

Node$Set (
traversal = c("pre-order”, "post-order”, "in-order"”, "level”, "ancestor"),
pruneFun = NULL,
filterFun = NULL

)

Arguments:
. each argument can be a vector of values to be assigned. Recycled.
traversal defines the traversal order to be used. This can be
pre-order Go to first child, then to its first child, etc.
post-order Go to the first branch’s leaf, then to its siblings, and work your way back to the
root
in-order Go to the first branch’s leaf, then to its parent, and only then to the leaf’s sibling
level Collect root, then level 2, then level 3, etc.
ancestor Take a node, then the node’s parent, then that node’s parent in turn, etc. This
ignores the pruneFun
function You can also provide a function, whose sole parameter is a Node object. The
function is expected to return the node’s next node, a list of the node’s next nodes, or
NULL.
Read the data.tree vignette for a detailed explanation of these traversal orders.
pruneFun allows providing a prune criteria, i.e. a function taking a Node as an input, and
returning TRUE or FALSE. If the pruneFun returns FALSE for a Node, then the Node and its
entire sub-tree will not be considered.
filterFun allows providing a a filter, i.e. a function taking a Node as an input, and returning
TRUE or FALSE. Note that if filter returns FALSE, then the node will be excluded from the
result (but not the entire subtree).

Details: The method takes one or more vectors as an argument. It traverses the tree, whereby
the values are picked from the vector. Also available as OO-style method on Node.
See also Node, Get, Do, Traverse

Returns: invisibly returns the nodes (useful for chaining)

Examples:

data(acme)
acme$Set (departmentId = 1:acme$totalCount, openingHours = NULL, traversal = "post-order")
acme$Set (head = c("Jack Brown",

"Mona Moneyhead”,

"Dr. Frank N. Stein”,

"Eric Nerdahl”

),

filterFun = function(x) !x$isLeaf

)

print(acme, "departmentId”, "head")

Method clone(): The objects of this class are cloneable with this method.

Node 49

Usage:
Node$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

For more details see the data. tree documentations, or the data. tree vignette: vignette("data.tree"”)
Node
Sort

Examples

library(data.tree)

acme <- Node$new("Acme Inc.")

accounting <- acme$AddChild("Accounting”)$
AddSibling("Research”)$
AddChild("New Labs")$
parent$
AddSibling("IT")$
AddChild("Outsource”)

print(acme)

e e
Method ‘Node$new*
B o

node <- Node$new("mynode”, x = 2, y = "value of y")
node$y

Bt o
Method ‘Node$AddChild®
B o

root <- Node$new("myroot”, myname = "I'm the root")
root$AddChild(”child1”, myname = "I'm the favorite child")

child2 <- root$AddChild("child2", myname = "I'm just another child")
child3 <- child2$AddChild("child3"”, myname = "Grandson of a root!")
print(root, "myname")

B oo
Method ‘Node$AddChildNode*
o

root <- Node$new("myroot")
child <- Node$new("mychild")
root$AddChildNode(child)

50

oo
Method “‘Node$AddSibling*
B o

#' root <- Node$new("myroot")
child <- root$AddChild("child1")
sibling <- child$AddSibling("siblingl1")

et
Method “Node$AddSiblingNode*
o

root <- Node$new("myroot")

child <- Node$new("mychild")

sibling <- Node$new("sibling")
root$AddChildNode(child)$AddSiblingNode(sibling)

H m o
Method ‘Node$RemoveChild*
B m o

node <- Node$new("myroot"”)$AddChild("mychild”)$root
node$RemoveChild("mychild")

B oo
Method ‘Node$RemoveAttribute*
HHE mm

node <- Node$new("mynode")

node$RemoveAttribute("age"”, stopIfNotAvailable = FALSE)
node$age <- 27

node$RemoveAttribute(”age")

node

B m o
Method “Node$Sort*
e

data(acme)

Node

acme$Do(function(x) x$totalCost <- Aggregate(x, "cost"”, sum), traversal = "post-order”)

Sort(acme, "totalCost"”, decreasing = FALSE)
print(acme, "totalCost")

oo
Method ‘Node$Prune*
B oo

Node

data(acme)

acme$Do(function(x) x$cost <- Aggregate(x, "cost”, sum))
Prune(acme, function(x) x$cost > 700000)

print(acme, "cost")

B oo
Method “*Node$Climb*
H m o

data(acme)

#the following are all equivalent
Climb(acme, 'IT', 'Outsource')

Climb(acme, name = 'IT', name = 'Outsource')
Climb(acme, 'IT')$Climb('Outsource')
Navigate(acme, path = "IT/Outsource”)

Climb(acme, name = 'IT')

Climb(acme, position = c(2, 1))

#or, equivalent:

Climb(acme, position = 2, position = 1)
Climb(acme, name = "IT", cost = 250000)

tree <- CreateRegularTree(5, 2)
tree$Climb(c(”1", "1"), position = c(2, 2))$path

o
Method ‘Node$Navigate®
H m o

data(acme)
Navigate(acme$Research, "../IT/Outsource”)
Navigate(acme$Research, c(”.."”, "IT", "Outsource"))

B m o
Method ‘Node$Get*
e

data(acme)

acme$Get("level”)
acme$Get("totalCount”)

acme$Get (function(node) node$cost * node$p,
filterFun = isLeaf)

#This is equivalent:

52 NODE_RESERVED _NAMES_CONST

nodes <- Traverse(acme, filterFun = islLeaf)
Get(nodes, function(node) node$cost * node$p)

#simplify = "regular” will preserve names

acme$Get(function(x) c(position = x$position, level = x$level), simplify = "regular”)
B m o

Method ‘Node$Do*

et

data(acme)

acme$Do(function(node) node$expectedCost <- node$p * node$cost)
print(acme, "expectedCost")

oo
Method ‘Node$Set*
e L P e

data(acme)
acme$Set(departmentId = 1:acme$totalCount, openingHours = NULL, traversal = "post-order")
acme$Set(head = c(”"Jack Brown",
"Mona Moneyhead",
"Dr. Frank N. Stein”,
"Eric Nerdahl”
),
filterFun = function(x) !x$isLeaf

)

print(acme, "departmentId”, "head")

NODE_RESERVED_NAMES_CONST
Names that are reserved by the Node class.

Description
These are reserved by the Node class, you cannot use these as attribute names. Note also that all
attributes starting with a . are reserved.

Usage

NODE_RESERVED_NAMES_CONST

Format

An object of class character of length 43.

plot.Node 53

plot.Node Plot a graph, or get a graphviz dot representation of the tree

Description

Use these methods to style your graph, and to plot it. The functionality is built around the Dia-
grammeR package, so for anything that goes beyond simple plotting, it is recommended to read its
documentation at https://rich-iannone.github.io/DiagrammeR/docs.html. Note that DiagrammeR is
only suggested by data.tree, so ‘plot‘ only works if you have installed it on your system.

Usage
S3 method for class 'Node'
plot(
X,
direction = c("climb”, "descend"),

pruneFun = NULL,
output = "graph”

)

ToDiagrammeRGraph(root, direction = c("climb"”, "descend”), pruneFun = NULL)

SetNodeStyle(node, inherit = TRUE, keepExisting = FALSE, ...)

SetEdgeStyle(node, inherit = TRUE, keepExisting = FALSE, ...)

SetGraphStyle(root, keepExisting = FALSE, ...)

GetDefaultTooltip(node)

Arguments

X The root node of the data.tree structure to plot
For the SetStyle methods, this can be any stlyeName / value pair. See https://graphviz.org/Documentation.
for details. For the plot.Node generic method, this is not used.

direction when converting to a network, should the edges point from root to children
("climb") or from child to parent ("descend")?

pruneFun allows providing a prune criteria, i.e. a function taking a Node as an input, and
returning TRUE or FALSE. If the pruneFun returns FALSE for a Node, then the
Node and its entire sub-tree will not be considered.

output A string specifying the output type; graph (the default) renders the graph using
the grviz () function and visNetwork renders the graph using the visnetwork()
function.

root The root Node of the data.tree structure to visualize.

54 plot.Node

node The Node of the data.tree structure on which you would like to set style at-
tributes.

inherit If TRUE, then children will inherit this node’s style. Otherwise they inherit from

this node’s parent. Note that the inherit always applies to the node, i.e. all style
attributes of a node and not to a single style attribute.

keepExisting If TRUE, then style attributes are added to possibly existing style attributes on

Details

the node.

Use SetNodeStyle and SetEdgeStyle to define the style of your plot. Use plot to display a
graphical representation of your tree.

The most common styles that can be set on the nodes are:

color

fillcolor

fixedsize true or false
fontcolor

fontname

fontsize

height

penwidth

shape box, ellipse, polygon, circle, box, etc.
style

tooltip

width

The most common styles that can be set on the edges are:

arrowhead e.g. normal, dot, vee
arrowsize

arrowtail

color

dir forward, back, both, none
fontcolor

fontname

fontsize

headport

label

minlen

penwidth

tailport

print.Node 55

e tooltip

A good source to understand the attributes is https://graphviz.org/Documentation.php. Another
good source is the DiagrammeR package documentation, or more specifically: https://rich-iannone.github.io/DiagrammeR/dc

In addition to the standard GraphViz functionality, the data. tree plotting infrastructure takes ad-
vantage of the fact that data.tree structure are always hierarchic. Thus, style attributes are inherited
from parents to children on an individual basis. For example, you can set the fontcolor to red on a
parent, and then all children will also have red font, except if you specifically disallow inheritance.
Labels and tooltips are never inherited.

Another feature concerns functions: Instead of setting a fixed value (e.g. SetNodeStyle(acme,
label = "Acme. Inc"), you can set a function (e.g. SetNodeStyle(acme, label = function(x)
x$name)). The function must take a Node as its single argument. Together with inheritance, this
becomes a very powerful tool.

The GetDefaultTooltip method is a utility method that can be used to print all attributes of a
Node.

There are some more examples in the “applications’ vignette, see vignette('applications’,
package = "data.tree")

Examples
data(acme)
SetGraphStyle(acme, rankdir = "TB")
SetEdgeStyle(acme, arrowhead = "vee", color = "blue”, penwidth = 2)

#per default, Node style attributes will be inherited:
SetNodeStyle(acme, style = "filled,rounded”, shape = "box"”, fillcolor = "GreenYellow”,
fontname = "helvetica”, tooltip = GetDefaultTooltip)
SetNodeStyle(acme$IT, fillcolor = "LightBlue”, penwidth = "5px")
#inheritance can be avoided:
SetNodeStyle(acme$Accounting, inherit = FALSE, fillcolor = "Thistle”,
fontcolor = "Firebrick”, tooltip = "This is the accounting department"”)
SetEdgeStyle(acme$Research$*New Labs*,
color = "red",
label = "Focus!",
penwidth = 3,
fontcolor = "red")
#use Do to set style on specific nodes:
Do(acme$leaves, function(node) SetNodeStyle(node, shape = "egg"))
plot(acme)

#print p as label, where available:
SetNodeStyle(acme, label = function(node) node$p)
plot(acme)

print.Node Print a Node in a human-readable fashion.

56 print.Node

Description

Print a Node in a human-readable fashion.

Usage

S3 method for class 'Node'
print(
X,
pruneMethod = c(”simple”, "dist", NULL),
limit = 100,
pruneFun = NULL,
row.names = T

Arguments

X The Node

Node attributes to be printed. Can be either a character (i.e. the name of a Node
field), a Node method, or a function taking a Node as a single argument. See
Get for details on the meaning of attribute.

pruneMethod The method can be used to prune for printing in a simple way. If NULL, the
entire tree is displayed. If "simple", then only the first 1imit nodes are dis-
played. If "dist", then Nodes are removed everywhere in the tree, according to
their level. If pruneFun is provided, then pruneMethod is ignored.

limit The maximum number of nodes to print. Can be NULL if the entire tree should
be printed.
pruneFun allows providing a prune criteria, i.e. a function taking a Node as an input, and

returning TRUE or FALSE. If the pruneFun returns FALSE for a Node, then the
Node and its entire sub-tree will not be considered.

row.names If TRUE (default), then the row names are printed out. Else, they are not.
Examples

data(acme)

print(acme, "cost”, "p")

print(acme, "cost”, probability = "p")
print(acme, expectedCost = function(x) x$cost * x$p)
do.call(print, c(acme, acme$attributesAll))

tree <- CreateRegularTree(4, 5)

print entire tree:

print(tree, pruneMethod = NULL)

print first 20 nodes:

print(tree, pruneMethod = "simple”, limit = 20)
print 20 nodes, removing leafs first:
print(tree, pruneMethod = "dist”, limit = 20)
provide your own pruning function:

Prune 57

print(tree, pruneFun = function(node) node$position != 2)
Prune Prunes a tree.
Description

Pruning refers to removing entire subtrees. This function has side-effects, it modifies your data.tree
structure!

Usage

Prune(node, pruneFun)

Arguments
node The root of the sub-tree to be pruned
pruneFun allows providing a prune criteria, i.e. a function taking a Node as an input, and
returning TRUE or FALSE. If the pruneFun returns FALSE for a Node, then the
Node and its entire sub-tree will not be considered.
Value

the number of nodes removed

See Also

Node

Examples

data(acme)

acme$Do(function(x) x$cost <- Aggregate(x, "cost”, sum))
Prune(acme, function(x) x$cost > 700000)

print(acme, "cost")

58 Set

Revert Reverts the sort order of a Node’s children.

Description

Reverts the sort order of a Node’s children.

Usage

Revert(node, recursive = TRUE)

Arguments
node the Node whose childrens’ sort order is to be reverted
recursive If TRUE, then revert is called recursively on all children.
Value

returns the Node invisibly (for chaining)

See Also

Node
Sort

Set Traverse a Tree and Assign Values

Description

The method takes one or more vectors as an argument. It traverses the tree, whereby the values are
picked from the vector. Also available as OO-style method on Node.

Usage
#00-style:
node$Set(...,
traversal = c("pre-order”, "post-order”, "in-order"”, "level”, "ancestor"),
pruneFun = NULL,
filterFun = NULL)
#traditional:

Set(nodes, ...)

SetFormat 59

Arguments
nodes The nodes on which to perform the Get (typically obtained via Traverse)
each argument can be a vector of values to be assigned. Recycled.
Value

invisibly returns the nodes (useful for chaining)

See Also

Node
Get
Do

Traverse

Examples

data(acme)
acme$Set(departmentId = 1:acme$totalCount, openingHours = NULL, traversal = "post-order")
acme$Set(head = c(”"Jack Brown",

"Mona Moneyhead",

"Dr. Frank N. Stein",

"Eric Nerdahl”

),

filterFun = function(x) !x$isLeaf

)

print(acme, "departmentId”, "head")

SetFormat Set a formatter function on a specific node

Description
Formatter functions set on a Node act as a default formatter when printing and using the Get method.
The formatter is inherited, meaning that whenever Get fetches an attribute from a Node, it checks
on the Node or on any of its ancestors whether a formatter is set.

Usage

SetFormat(node, name, formatFun)

Arguments
node The node on which to set the formatter
name The attribute name for which to set the formatter
formatFun The formatter, i.e. a function taking a value as an input, and formatting returning

the formatted value

60 Sort

See Also

Get
print.Node

Examples

data(acme)

acme$Set(id = 1:(acme$totalCount))

SetFormat(acme, "id", function(x) FormatPercent(x, digits = @))
SetFormat(Climb(acme, "IT"), "id", FormatFixedDecimal)

print(acme, "id")

Calling Get with an explicit formatter will overwrite the default set on the Node:
print(acme, id = acme$Get("id"”, format = function(x) paste@("id:", x)))

Or, to avoid formatters, even though you set them on a Node:
print(acme, id = acme$Get("id"”, format = identity))

Sort Sort children of a Node or an entire data. tree structure

Description

You can sort with respect to any argument of the tree. But note that sorting has side-effects, meaning
that you modify the underlying, original data.tree object structure.

Usage
Sort(node, attribute, ..., decreasing = FALSE, recursive = TRUE)
Arguments
node The node whose children are to be sorted
attribute determines what is collected. The attribute can be
* a.) the name of a field or a property/active of each Node in the tree, e.g.
acme$Get ("p") or acme$Get ("position”)
* b.) the name of a method of each Node in the tree, e.g. acme$Get ("levelZeroBased"),
where e.g. acme$levelZeroBased <- function() acme$level - 1
¢ c.) afunction, whose first argument must be a Node e.g. acme$Get (function(node)
node$cost * node$p)
any parameters to be passed on the the attribute (in case it’s a method or a func-
tion)
decreasing sort order
recursive if TRUE, Sort will be called recursively on the Node’s children. This allows sort-

ing an entire tree.

ToNewick 61

Value

Returns the node on which Sort is called, invisibly. This can be useful to chain Node methods.

See Also

Node

Revert

Examples

data(acme)

acme$Do(function(x) x$totalCost <- Aggregate(x, "cost"”, sum), traversal = "post-order”)
Sort(acme, "totalCost"”, decreasing = FALSE)

print(acme, "totalCost")

ToNewick Write a data. tree structure to Newick notation

Description

To read from Newick, you can use the ape package, and convert the resulting phylo object to a
data. tree structure.

Usage
ToNewick(node, heightAttribute = DefaultPlotHeight, ...)
Arguments
node The root Node of a tree or sub-tree to be converted
heightAttribute
The attribute (field name, method, or function) storing or calculating the height
for each Node
parameters that will be passed on the the heightAttributeName, in case it is a
function
See Also

Other Conversions from Node: as.dendrogram.Node ()

Examples

data(acme)

ToNewick (acme)

ToNewick(acme, heightAttribute = NULL)

ToNewick(acme, heightAttribute = function(x) DefaultPlotHeight(x, 200))
ToNewick(acme, rootHeight = 200)

62 Traverse

Traverse Traverse a tree or a sub-tree

Description

Traverse takes the root of a tree or a sub-tree, and "walks" the tree in a specific order. It returns a
list of Node objects, filtered and pruned by filterFun and pruneFun.

Usage

Traverse(
node,
traversal = c("pre-order”, "post-order”, "in-order", "level”, "ancestor"),
pruneFun = NULL,
filterFun = NULL

)
Arguments
node the root of a tree or a sub-tree that should be traversed
traversal any of ’pre-order’ (the default), *post-order’, ’in-order’, ’level’, ’ancestor’, or a
custom function (see details)
pruneFun allows providing a prune criteria, i.e. a function taking a Node as an input, and
returning TRUE or FALSE. If the pruneFun returns FALSE for a Node, then the
Node and its entire sub-tree will not be considered.
filterFun allows providing a a filter, i.e. a function taking a Node as an input, and returning
TRUE or FALSE. Note that if filter returns FALSE, then the node will be excluded
from the result (but not the entire subtree).
Details

The traversal order is as follows. (Note that these descriptions are not precise and complete. They
are meant for quick reference only. See the data.tree vignette for a more detailed description).
pre-order Go to first child, then to its first child, etc.

post-order Go to the first branch’s leaf, then to its siblings, and work your way back to the root
in-order Go to the first branch’s leaf, then to its parent, and only then to the leaf’s sibling

level Collect root, then level 2, then level 3, etc.

ancestor Take a node, then the node’s parent, then that node’s parent in turn, etc. This ignores the
pruneFun

function You can also provide a function, whose sole parameter is a Node object. The function is
expected to return the node’s next node, a list of the node’s next nodes, or NULL.

Value

a list of Nodes

Traverse

See Also

Node
Get
Set
Do

63

Index

+ Conversions from Node
as.dendrogram.Node, 8
ToNewick, 61

+* Newick
ToNewick, 61

+ ape phylo conversions
as.Node.phylo, 20
as.phylo.Node, 22
GetPhyloNr, 34

+ as.Node
as.Node, 11
as.Node.data.frame, 13
as.Node.dendrogram, 15
as.Node.list, 16
as.Node.phylo, 20
as.Node.rpart, 21

+ datasets
acme, 3
mushroom, 37
NODE_RESERVED_NAMES_CONST, 52

acme, 3

Aggregate, 3
AreNamesUnique, 5, 7, 29
as.data.frame.Node, 5, /4
as.dendrogram.Node, 8, 27, 61
as.igraph.Node, 9

as.list.Node, 10
as.Node, 11, 14, 16, 17,21
as.Node.BinaryTree, 12
as.Node.data.frame, 12, 13, 16, 17,21
as.Node.dendrogram, 12, 14, 15,17, 21
as.Node.list, /2, 14, 16, 16, 21
as.Node.party, 18
as.Node.phylo, 12, 14, 16, 17,20, 21, 22, 35
as.Node.rpart, 12, 14, 16, 17,21, 21
as.phylo.Node, 21, 22, 27, 35
averageBranchingFactor, 23

CheckNameReservedWord, 23

64

Climb, 24, 38, 44, 45
Clone, 25
CreateRandomTree, 26
CreateRegularTree, 26
Cumulate, 27

data.tree, 49
DefaultPlotHeight, 27
dendrogram, 8, 15
Distance, 28

Do, 28, 33, 46, 48, 59, 63

FindNode, 29
FormatFixedDecimal, 30
FormatPercent, 31
FromDataFrameNetwork
(as.Node.data.frame), 13
FromDataFrameTable
(as.Node.data.frame), 13
FromListExplicit (as.Node.list), 16
FromListSimple (as.Node.list), 16

Get, 4, 6, 29, 32, 4648, 59, 63
GetAttribute, 33
GetDefaultTooltip (plot.Node), 53
GetPhyloNr, 21, 22, 34

grviz(), 53

isLeaf, 35
isNotLeaf, 36
isNotRoot, 36
isRoot, 37

mushroom, 37

Navigate, 24, 38, 44, 45

Node, 4, 24, 25, 29, 32-34, 38, 38, 44-49,
53-55, 57-59, 61-63

NODE_RESERVED_NAMES_CONST, 52

plot.Node, 53

INDEX

print.Node, 55
Prune, 44, 57

R6Class, 39
Revert, 43,58, 61
rpart, 21

sapply, 33, 46

Set, 29, 33, 46, 47, 58, 63
SetEdgeStyle (plot.Node), 53
SetFormat, 32, 34, 46, 59
SetGraphStyle (plot.Node), 53
SetNodeStyle (plot.Node), 53
Sort, 43, 49, 58, 60

text.rpart, 21
ToDataFrameNetwork
(as.data.frame.Node), 5
ToDataFrameTable (as.data.frame.Node), 5
ToDataFrameTree (as.data.frame.Node), 5
ToDataFrameTypeCol
(as.data.frame.Node), 5
ToDiagrammeRGraph (plot.Node), 53
TolListExplicit (as.list.Node), 10
ToListSimple (as.list.Node), 10
ToNewick, 8, 27, 61
Traverse, 6, 29, 32, 33, 4648, 59, 62

visnetwork(), 53

65

	acme
	Aggregate
	AreNamesUnique
	as.data.frame.Node
	as.dendrogram.Node
	as.igraph.Node
	as.list.Node
	as.Node
	as.Node.BinaryTree
	as.Node.data.frame
	as.Node.dendrogram
	as.Node.list
	as.Node.party
	as.Node.phylo
	as.Node.rpart
	as.phylo.Node
	averageBranchingFactor
	CheckNameReservedWord
	Climb
	Clone
	CreateRandomTree
	CreateRegularTree
	Cumulate
	DefaultPlotHeight
	Distance
	Do
	FindNode
	FormatFixedDecimal
	FormatPercent
	Get
	GetAttribute
	GetPhyloNr
	isLeaf
	isNotLeaf
	isNotRoot
	isRoot
	mushroom
	Navigate
	Node
	NODE_RESERVED_NAMES_CONST
	plot.Node
	print.Node
	Prune
	Revert
	Set
	SetFormat
	Sort
	ToNewick
	Traverse
	Index

