Package ‘dartR.sim’

November 20, 2023
Type Package
Title Computer Simulations of 'SNP' Data
Version 0.70

Description Allows to simulate SNP data using genlight objects. For example, it is straight for-
ward to simulate a simple drift scenario with exchange of individuals between two popula-
tions or create a new genlight object based on allele frequencies of an existing genlight object.

Encoding UTF-8

Depends R (>=3.5), adegenet (>= 2.0.0), dartR.base, dartR.data,
ggplot2

Imports shiny, fields, utils, methods, stringi, stringr, data.table,
Rcpp, shinyBS, shinyjs, shinythemes, shinyWidgets, hierfstat,
reshape?

License GPL (>= 3)
RoxygenNote 7.2.3
NeedsCompilation no

Author Jose L. Mijangos [aut, cre],
Bernd Gruber [aut],
Arthur Georges [aut],
Carlo Pacioni [aut],
Peter J. Unmack [ctb],
Oliver Berry [ctb]
URL https://green-striped-gecko.github.io/dartR/,

https://github.com/green-striped-gecko/dartR.sim

BugReports https://github.com/green-striped-gecko/dartR.sim/issues
Maintainer Jose L. Mijangos <luis.mijangos@gmail.com>

Repository CRAN

Date/Publication 2023-11-20 19:30:02 UTC

https://green-striped-gecko.github.io/dartR/
https://github.com/green-striped-gecko/dartR.sim
https://github.com/green-striped-gecko/dartR.sim/issues

2

gl.diagnostics.sim

R topics documented:

gldiagnostics.sim L e e 2
glsim.create_dispersal 4
glsim.emigration e e 5
glsimind L 6
glsimmutate e 7
glsim.offspring 8
glsimWErun 0o e 9
glsimWFEtable 11
interactive_referenceo e e 13
INTEractive_SIM_TUIN+ v v v v e e e e e e e e e e e e e e e 14

Index 15

gl.diagnostics.sim Comparing simulations against theoretical expectations
Description

Comparing simulations against theoretical expectations

Usage

gl.diagnostics.sim(
X)
Ne,
iteration = 1,
pop_he = 1,

pops_fst = c(1, 2),
plot_theme = theme_dartR(),
plot.file = NULL,

plot.dir = NULL,

verbose = NULL

)
Arguments

X Output from function gl.sim.WF.run [required].

Ne Effective population size to use as input to compare theoretical expectations
[required].

iteration Iteration number to analyse [default 1].

pop_he Population name in which the rate of loss of heterozygosity is going to be com-
pared against theoretical expectations [default 1].

pops_fst Pair of populations in which FST is going to be compared against theoretical

expectations [default c¢(1,2)].

plot_theme User specified theme [default theme_dartR()].

gl.diagnostics.sim 3

plot.file Name for the RDS binary file to save (base name only, exclude extension) [de-
fault NULL]

plot.dir Directory in which to save files [default = working directory]

verbose Verbosity: 0, silent or fatal errors; 1, begin and end; 2, progress log ; 3, progress

and results summary; 5, full report [default NULL, unless specified using gl.set.verbosity].

Details
Two plots are presented comparing the simulations against theoretical expectations:

1. Expected heterozygosity under neutrality (Crow & Kimura, 1970, p. 329) is calculated as:
Het = HeO(1-(1/2Ne))"'t,
where Ne is effective population size, He0 is heterozygosity at generation 0 and t is the number
of generations.

2. Expected FST under neutrality (Takahata, 1983) is calculated as:
FST=1/(4Nem(n/(n-1))"2+1),
where Ne is effective populations size of each individual subpopulation, m is dispersal rate
and n the number of subpopulations (always 2).

Value

Returns plots comparing simulations against theoretical expectations

Author(s)

Custodian: Luis Mijangos — Post to https://groups.google.com/d/forum/dartr

References

* Crow JF, Kimura M. An introduction to population genetics theory. An introduction to popu-
lation genetics theory. 1970.

» Takahata N. Gene identity and genetic differentiation of populations in the finite island model.
Genetics. 1983;104(3):497-512.

See Also

gl.filter.callrate

Examples

ref_table <- gl.sim.WF.table(file_var=system.file('extdata',
'ref_variables.csv', package = 'dartR.data'),interactive_vars = FALSE)

res_sim <- gl.sim.WF.run(file_var = system.file('extdata',
'sim_variables.csv', package ='dartR.data'),ref_table=ref_table,

interactive_vars = FALSE,number_pops_phase2=2,population_size_phase2="50 50")

res <- gl.diagnostics.sim(x=res_sim,Ne=50)

https://groups.google.com/d/forum/dartr

4 gl.sim.create_dispersal

gl.sim.create_dispersal
Creates a dispersal file as input for the function gl.sim. WE.run

Description

This function writes a csv file called "dispersal_table.csv" which contains the dispersal variables
for each pair of populations to be used as input for the function gl.sim.WF.run.

The values of the variables can be modified using the columns "transfer_each_gen" and "num-
ber_transfers" of this file.

See documentation and tutorial for a complete description of the simulations. These documents can
be accessed by typing in the R console: browseVignettes(package="dartR”)

Usage

gl.sim.create_dispersal(
number_pops,
dispersal_type = "all_connected”,
number_transfers = 1,
transfer_each_gen = 1,
outpath = tempdir(),

outfile = "dispersal_table.csv",
verbose = NULL
)
Arguments
number_pops Number of populations [required].

dispersal_type One of: "all_connected", "circle" or "line" [default "all_connected"].

number_transfers
Number of dispersing individuals. This value can be . modified by hand after
the file has been created [default 1].

transfer_each_gen
Interval of number of generations in which dispersal occur. This value can be
modified by hand after the file has been created [default 1].

outpath Path where to save the output file. Use outpath=getwd() or outpath="" when
calling this function to direct output files to your working directory [default
tempdir(), mandated by CRAN].

outfile File name of the output file [default *dispersal_table.csv’].

verbose Verbosity: 0, silent or fatal errors; 1, begin and end; 2, progress log; 3, progress
and results summary; 5, full report [default 2, unless specified using gl.set.verbosity].
Value

A csv file containing the dispersal variables for each pair of populations to be used as input for the
function gl.sim.WF.run.

gl.sim.emigration 5

Author(s)

Custodian: Luis Mijangos — Post to https://groups.google.com/d/forum/dartr

See Also

gl.sim.WF.run

Other simulation functions: gl.sim.WF.run(), gl.sim.WF.table()

Examples

gl.sim.create_dispersal (number_pops=10)

gl.sim.emigration Simulates emigration between populations

Description

A function that allows to exchange individuals of populations within a genlight object (=simulate
emigration between populations).

There are two ways to specify emigration. If an emi.table is provided (a square matrix of dimen-
sion of the populations that specifies the emigration from column x to row y), then emigration is
deterministic in terms of numbers of individuals as specified in the table. If perc.mig and emi.m are
provided, then emigration is probabilistic. The number of emigrants is determined by the popula-
tion size times the perc.mig and then the population where to migrate to is taken from the relative
probability in the columns of the emi.m table.

Be aware if the diagonal is non zero then migration can occur into the same patch. So most often
you want to set the diagonal of the emi.m matrix to zero. Which individuals is moved is random,
but the order is in the order of populations. It is possible that an individual moves twice within an
emigration call(as there is no check, so an individual moved from population 1 to 2 can move again
from population 2 to 3).

Usage

gl.sim.emigration(x, perc.mig = NULL, emi.m = NULL, emi.table = NULL)

Arguments
X A genlight or list of genlight objects [required].
perc.mig Percentage of individuals that migrate (emigrates = nInd times perc.mig) [de-
fault NULL].
emi.m Probabilistic emigration matrix (emigrate from=column to=row) [default NULL]
emi.table If presented emi.m matrix is ignored. Deterministic emigration as specified in

the matrix (a square matrix of dimension of the number of populations). e.g.
an entry in the emi.table[2,1]<- 5’ means that five individuals emigrate from
population 1 to population 2 (from=columns and to=row) [default NULL].

https://groups.google.com/d/forum/dartr

6 gl.sim.ind

Value

A list or a single [depends on the input] genlight object, where emigration between population has
happened

Author(s)

Custodian: Bernd Gruber (Post to https://groups.google.com/d/forum/dartr)

Examples

X <- possums.gl

#one individual moves from every population to
#every other population

emi.tab <- matrix(1, nrow=nPop(x), ncol=nPop(x))
diag(emi.tab)<- @

np <- gl.sim.emigration(x, emi.table=emi.tab)

np

gl.sim.ind Simulates individuals based on allele frequencies

Description
This function simulates individuals based on the allele frequencies of a genlight object. The output
is a genlight object with the same number of loci as the input genlight object.

Usage
gl.sim.ind(x, n = 5@, popname = NULL)

Arguments
X Name of the genlight object containing the SNP data [required].
n Number of individuals that should be simulated [default 50].
popname A population name for the simulated individuals [default NULL].
Details

The function can be used to simulate populations for sampling designs or for power analysis. Check
the example below where the effect of drift is explored, by simply simulating several generation a
genlight object and putting in the allele frequencies of the previous generation. The beauty of the
function is, that it is lightning fast. Be aware this is a simulation and to avoid lengthy error checking
the function crashes if there are loci that have just NAs. If such a case can occur during your
simulation, those loci need to be removed, before the function is called.

Value

A genlight object with n individuals.

https://groups.google.com/d/forum/dartr

gl.sim.mutate 7

Author(s)

Bernd Gruber (bernd.gruber @canberra.edu.au)

Examples

glsim <- gl.sim.ind(testset.gl, n=10, popname='sims')

glsim

###Simulate drift over 10 generation

assuming a bottleneck of only 10 individuals

[ignoring effect of mating and mutation]

Simulate 20 individuals with no structure and 5@ SNP loci
founder <- glSim(n.ind = 20, n.snp.nonstruc = 50, ploidy=2)
#number of fixed loci in the first generation

res <- sum(colMeans(as.matrix(founder), na.rm=TRUE) %%2 ==0)
simgl <- founder
#49 generations of only 10 individuals
for (i in 2:50)
{
simgl <- gl.sim.ind(simgl, n=10, popname='sims"')
res[i]<- sum(colMeans(as.matrix(simgl), na.rm=TRUE) %%2 ==0)
3
plot(1:50, res, type='b', xlab='generation', ylab='# fixed loci')

gl.sim.mutate Simulates mutations within a genlight object

Description

This script is intended to be used within the simulation framework of dartR. It adds the ability to
add a constant mutation rate across all loci. Only works currently for biallelic data sets (SNPs).
Mutation rate is checking for all alleles position and mutations at loci with missing values are
ignored and in principle ’double mutations’ at the same loci can occur, but should be rare.

Usage

gl.sim.mutate(x, mut.rate = 1e-06)

Arguments

X Name of the genlight object containing the SNP data [required].

mut.rate Constant mutation rate over nInd*nLoc*2 possible locations [default 1e-6]
Value

Returns a genlight object with the applied mutations

8 gl.sim.offspring

Author(s)

Bernd Gruber (Post to https://groups.google.com/d/forum/dartr)

Examples

b2 <- gl.sim.mutate(bandicoot.gl,mut.rate=1e-4)
#check the mutations that have occurred
table(as.matrix(bandicoot.gl), as.matrix(b2))

gl.sim.offspring Simulates offspring based on alleles provided by parents

Description

This takes a population (or a single individual) of fathers (provided as a genlight object) and
mother(s) and simulates offspring based on 'random’ mating. It can be used to simulate popula-
tion dynamics and check the effect of those dynamics and allele frequencies, number of alleles.
Another application is to simulate relatedness of siblings and compare it to actual relatedness found
in the population to determine kinship.

Usage
gl.sim.offspring(
fathers,
mothers,
noffpermother,
sexratio = 0.5,
popname = "offspring”,
verbose = NULL
)
Arguments
fathers Genlight object of potential fathers [required].
mothers Genlight object of potential mothers simulated [required].

noffpermother Number of offspring per mother [required].

sexratio The sex ratio of simulated offspring (females / females +males, 1 equals 100
percent females) [default 0.5.].

popname population name of the returned genlight object [default offspring]

verbose Verbosity: 0, silent or fatal errors; 1, begin and end; 2, progress log; 3, progress

and results summary; 5, full report [default 2, unless specified using gl.set.verbosity].

Value

A genlight object with n individuals.

https://groups.google.com/d/forum/dartr

gl.sim. WErun 9

Author(s)

Bernd Gruber (Post to https://groups.google.com/d/forum/dartr)

Examples

#Simulate 10 potential fathers

gl.fathers <- glSim(10, 20, ploidy=2)

#Simulate 10 potential mothers

gl.mothers <- glSim(10, 20, ploidy=2)

res <- gl.sim.offspring(gl.fathers, gl.mothers, 2, sexratio=0.5)

gl.sim.WF.run Runs Wright-Fisher simulations

Description

This function simulates populations made up of diploid organisms that reproduce in non-overlapping
generations. Each individual has a pair of homologous chromosomes that contains interspersed se-
lected and neutral loci. For the initial generation, the genotype for each individual’s chromosomes
is randomly drawn from distributions at linkage equilibrium and in Hardy-Weinberg equilibrium.

See documentation and tutorial for a complete description of the simulations. These documents can
be accessed at http://georges.biomatix.org/dartR

Take into account that the simulations will take a little bit longer the first time you use the function
gl.sim.WFE.run() because C++ functions must be compiled.

Usage

gl.sim.WF.run(
file_var,
ref_table,
x = NULL,
file_dispersal = NULL,
number_iterations = 1,
every_gen = 10,
sample_percent = 50,
store_phasel = FALSE,
interactive_vars = TRUE,
seed = NULL,
verbose = NULL,

Arguments

file_var Path of the variables file ’sim_variables.csv’ (see details) [required if interac-
tive_vars = FALSE].

https://groups.google.com/d/forum/dartr

10 gl.sim. WErun

ref_table Reference table created by the function gl.sim.WF. table [required].

X Name of the genlight object containing the SNP data to extract values for some
simulation variables (see details) [default NULL].

file_dispersal Path of the file with the dispersal table created with the function gl.sim.create_dispersal
[default NULL].

number_iterations
Number of iterations of the simulations [default 1].

every_gen Generation interval at which simulations should be stored in a genlight object
[default 10].

sample_percent Percentage of individuals, from the total population, to sample and save in the
genlight object every generation [default 50].
store_phasel Whether to store simulations of phase 1 in genlight objects [default FALSE].
interactive_vars
Run a shiny app to input interactively the values of simulations variables [default

TRUE)].
seed Set the seed for the simulations [default NULL].
verbose Verbosity: 0, silent or fatal errors; 1, begin and end; 2, progress log; 3, progress

and results summary; 5, full report [default 2, unless specified using gl.set.verbosity].

Any variable and its value can be added separately within the function, will be
changed over the input value supplied by the csv file. See tutorial.

Details

Values for simulation variables can be submitted into the function interactively through a shiny app
if interactive_vars = TRUE. Optionally, if interactive_vars = FALSE, values for variables can be
submitted by using the csv file ’sim_variables.csv’ which can be found by typing in the R console:
system.file("extdata’, ’sim_variables.csv’, package =’dartR.data’).

The values of the variables can be modified using the third column (“value”) of this file.
The output of the simulations can be analysed seemingly with other dartR functions.

If a genlight object is used as input for some of the simulation variables, this function access the
information stored in the slots x$position and x$chromosome.

To show further information of the variables in interactive mode, it might be necessary to call first:
’library(shinyBS)’ for the information to be displayed.

The main characteristics of the simulations are:
» Simulations can be parameterised with real-life genetic characteristics such as the number, lo-

cation, allele frequency and the distribution of fitness effects (selection coefficients and domi-
nance) of loci under selection.

» Simulations can recreate specific life histories and demographics, such as source populations,
dispersal rate, number of generations, founder individuals, effective population size and cen-
sus population size.

 Each allele in each individual is an agent (i.e., each allele is explicitly simulated).

» Each locus can be customisable regarding its allele frequencies, selection coefficients, and
dominance.

gl.sim. WEtable 11

* The number of loci, individuals, and populations to be simulated is only limited by computing
resources.

* Recombination is accurately modeled, and it is possible to use real recombination maps as
input.

* The ratio between effective population size and census population size can be easily con-
trolled.

* The output of the simulations are genlight objects for each generation or a subset of genera-
tions.

* Genlight objects can be used as input for some simulation variables.

Value

Returns genlight objects with simulated data.

Author(s)

Custodian: Luis Mijangos — Post to https://groups.google.com/d/forum/dartr

See Also

gl.sim.WF.table

Other simulation functions: gl.sim.WF.table(), gl.sim.create_dispersal()

Examples

ref_table <- gl.sim.WF.table(file_var=system.file("extdata",
"ref_variables.csv”, package = "dartR.data"),interactive_vars = FALSE)

res_sim <- gl.sim.WF.run(file_var = system.file("extdata"”,
"sim_variables.csv"”, package ="dartR.data"),ref_table=ref_table,
interactive_vars = FALSE)

gl.sim.WF.table Creates the reference table for running gl.sim. WF.run

Description

This function creates a reference table to be used as input for the function gl.sim.WF.run. The
created table has eight columns with the following information for each locus to be simulated:

* q - initial frequency.

* h - dominance coefficient.

* s - selection coefficient.

e ¢ - recombination rate.

https://groups.google.com/d/forum/dartr

12 gl.sim. WE table

* loc_bp - chromosome location in base pairs.
* loc_cM - chromosome location in centiMorgans.
e chr_name - chromosome name.

* type - SNP type.

The reference table can be further modified as required.

See documentation and tutorial for a complete description of the simulations. These documents can
be accessed at http://georges.biomatix.org/dartR

Usage

gl.sim.WF.table(
file_var,
x = NULL,
file_targets_sel = NULL,
file_r_map = NULL,
interactive_vars = TRUE,
seed = NULL,
verbose = NULL,

Arguments
file_var Path of the variables file 'ref_variables.csv’ (see details) [required if interac-
tive_vars = FALSE].
X Name of the genlight object containing the SNP data to extract values for some

simulation variables (see details) [default NULL].
file_targets_sel

Path of the file with the targets for selection (see details) [default NULL].
file_r_map Path of the file with the recombination map (see details) [default NULL].

interactive_vars
Run a shiny app to input interactively the values of simulation variables [default

TRUE].
seed Set the seed for the simulations [default NULL].
verbose Verbosity: 0, silent or fatal errors; 1, begin and end; 2, progress log; 3, progress

and results summary; 5, full report [default 2, unless specified using gl.set.verbosity].

Any variable and its value can be added separately within the function, will be
changed over the input value supplied by the csv file. See tutorial.

Details

Values for the variables to create the reference table can be submitted into the function interactively
through a Shiny app if interactive_vars = TRUE. Optionally, if interactive_vars = FALSE, values for
variables can be submitted by using the csv file ‘ref_variables.csv’ which can be found by typing in
the R console: system.file(’extdata’, 'ref_variables.csv’, package =’dartR.data’).

interactive_reference 13

The values of the variables can be modified using the third column (“value™) of this file.

If a genlight object is used as input for some of the simulation variables, this function access the
information stored in the slots x$position and x$chromosome.

Examples of the format required for the recombination map file and the targets for selection file can
be found by typing in the R console:

* system.file(’extdata’, *fly_recom_map.csv’, package =’dartR.data’)

* system.file("extdata’, *fly_targets_of_selection.csv’, package =’dartR.data’)
To show further information of the variables in interactive mode, it might be necessary to call first:
’library(shinyBS)’ for the information to be displayed.
Value

Returns a list with the reference table used as input for the function gl.sim.WF.run and a table
with the values variables used to create the reference table.

Author(s)

Custodian: Luis Mijangos — Post to https://groups.google.com/d/forum/dartr

See Also

gl.sim.WF.run

Other simulation functions: gl.sim.WF.run(), gl.sim.create_dispersal()

Examples

ref_table <- gl.sim.WF.table(file_var=system.file("extdata",
"ref_variables.csv”, package = "dartR.data"),interactive_vars = FALSE)

res_sim <- gl.sim.WF.run(file_var = system.file("extdata",
"sim_variables.csv"”, package ="dartR.data"),ref_table=ref_table,
interactive_vars = FALSE)

interactive_reference Shiny app for the input of the reference table for the simulations

Description

Shiny app for the input of the reference table for the simulations

Usage

interactive_reference()

https://groups.google.com/d/forum/dartr

14 interactive_sim_run

Author(s)

Custodian: Luis Mijangos — Post to https://groups.google.com/d/forum/dartr

interactive_sim_run Shiny app for the input of the simulations variables

Description

Shiny app for the input of the simulations variables

Usage

interactive_sim_run()

Author(s)

Custodian: Luis Mijangos — Post to https://groups.google.com/d/forum/dartr

https://groups.google.com/d/forum/dartr
https://groups.google.com/d/forum/dartr

Index

+ simulation functions

gl

gl.
gl.
gl.
gl.
gl.
gl.
gl.
gl.

gl.
gl.
gl.

sim.create_dispersal, 4
sim.WF.run, 9
sim.WF.table, 11

.diagnostics.sim, 2

filter.callrate, 3

sim.
.emigration, 5
sim.
.mutate, 7

sim

sim

sim.
WF.run, 2,4, 5,9,11,13

sim

sim.

create_dispersal, 4, 10, 11, 13
ind, 6
offspring, 8

WF.table, 5, 10, 11, 11

interactive_reference, 13
interactive_sim_run, 14

15

	gl.diagnostics.sim
	gl.sim.create_dispersal
	gl.sim.emigration
	gl.sim.ind
	gl.sim.mutate
	gl.sim.offspring
	gl.sim.WF.run
	gl.sim.WF.table
	interactive_reference
	interactive_sim_run
	Index

