
Notes on the use of dae for design

C. J. Brien

December 1, 2024

Contents

1 Introduction 2
1.1 Functions to be used . 2
1.2 The paradigm . 3
1.3 Notation used for linear mixed models . 4

2 Single-allocation orthogonal design in R 5
2.1 Two potential designs for a 5× 5 grid of plots (Brien et al., 2023, Section 2) 5

2.1.1 Produce the randomized layout for an RCBD . 5
2.1.2 Produce the randomized layout for an LSqD . 7
2.1.3 Check the properties of the designs . 9
2.1.4 Questions . 10

2.2 Split-plot from Yates (1937) (See also Brien et al., 2023, Section 4.1) 10
2.2.1 Produce the randomized experimental layout . 10
2.2.2 Analysis of variance (anova) for the Yields . 13
2.2.3 Questions . 13

2.3 Split-unit design for an experiment in which time is randomized (Brien et al., 2023, Section 4.1) 14
2.3.1 Produce the randomized experimental layout . 14
2.3.2 Questions . 17

2.4 A design for a petrol additives experiment . 17
2.4.1 Questions . 21

3 Single-allocation, nonorthogonal design in R 22
3.1 Twenty treatments in an alpha design . 22

3.1.1 Produce the randomized layout for the alpha design and check its properties 22
3.1.2 Questions . 24

3.2 Balanced incomplete-block design from Joshi (1987) . 24
3.2.1 Input the Yields and check properties of the design . 24
3.2.2 Anova for the Yields . 25
3.2.3 Questions . 25

3.3 A design with rows and columns from Williams (2002) . 25
3.3.1 Input the design and check the properties of the design 26
3.3.2 Questions . 27

3.4 A resolved design for the wheat experiment that is near-A-optimal under a mixed model 28
3.4.1 Input the design and check the properties of the design 28

4 Miscellaneous experimental design topics in R 31
4.1 An environmental experiment . 31

4.1.1 Questions . 33
4.2 Block-treatment interactions for an experiment in which time is randomized (Brien et al., 2023,

Section 4.1) . 33
4.2.1 Questions . 34

4.3 A longitudinal greenhouse experiment that uses a generalized randomized block design (GRBD)(Brien
et al., 2023, Section 4.2) . 34
4.3.1 Questions . 36

4.4 A detergent experiment . 36
4.4.1 Produce the randomized layout for the BIBD and check its properties 36
4.4.2 Add nested factors and check the decomposition using them 38
4.4.3 Leave out Types and try decomposition with Bases and Additives in both orders 39
4.4.4 What if two observations are missing? . 40
4.4.5 Questions . 42

4.5 An experiment to investigate the effects of spraying Sultana grapes 42
4.5.1 Questions . 46

4.6 A Control treatment for an incomplete-block design . 46

1

4.7 The Casuarina experiment (continued) . 48
4.7.1 Questions . 59

5 Multiphase experiments in R 60
5.1 Athletic examples based on Brien et al. (2011) . 60

5.1.1 A standard single-phase athlete training experiment . 60
5.1.2 A simple two-phase athlete training experiment . 63
5.1.3 Allowing for lab processing order in the athletic training example 66

5.2 McIntyre’s (1955) two-phase example . 75
5.2.1 Check the properties of the randomized layout . 76
5.2.2 Questions . 78

5.3 A Plant Accelerator experiment with a split-unit design . 78
5.3.1 Produce the layout . 79
5.3.2 Check the properties of the design . 82
5.3.3 Examine the properties of the design for an alternative analysis 84
5.3.4 Questions . 85

5.4 Two-phase, wheat experiment with 49 lines . 85
5.4.1 Produce randomized layout for both phases and check its properties 85
5.4.2 Question . 88

5.5 Elaborate, two-phase, sensory experiment . 88
5.5.1 Check the properties of the randomized layout . 89
5.5.2 Questions . 90

1 Introduction

The R (R Core Team, 2024) package dae (Brien, 2024b) provides functions useful in the design and anova of
experiments. This document describes how to use some of them to produce layouts for experiments and to check
some of their properties. Brien et al. (2023) provide a general discussion of a paradigm for designing experiments
that utilizes dae functions.

1.1 Functions to be used

The functions in dae fall into the following categories and those that will be covered in this document are listed
and described:

1. Data

BIBDWheat.dat Data for a balanced incomplete block experiment.

Casuarina.dat Data for an experiment with rows and columns from Williams et al. (2002).

Cabinet1.des A design for one of the growth cabinets in an experiment with 50 lines and 4 harvests.

Exp249.mplot.des Systematic, main-plot design for an experiment to be run in a greenhouse.

Fac4Proc.dat Data for a 24 factorial experiment.

LatticeSquare t49.des A Lattice square design for 49 treatments.

McIntyreTMV.dat The design and data from McIntyre (1955) two-phase experiment.

Oats.dat Data for an experiment to investigate nitrogen response of 3 oats varieties from Yates (1937).

Sensory3Phase.dat Data for the three-phase sensory evaluation experiment in Brien and Payne (1999).

Sensory3PhaseShort.dat Data for the three-phase sensory evaluation experiment in Brien and Payne
(1999), but with short factor names.

SPLGrass.dat Data for an experiment to investigate the effects of grazing patterns on pasture composi-
tion.

2. Factor manipulation functions

2

fac.gen: Generate all combinations of several factors and, optionally, replicate them.

fac.recast: Recasts a factor by modifying the values in the factor vector and/or the levels attribute,
possibly combining some levels into a single level.

fac.uselogical: Forms a two-level factor from a logical object.

fac.combine: Combines several factors into one.

fac.divide: Divides a factor into several separate factors.

fac.multinested: Creates several factors, one for each level of a nesting.fac and each of whose values are
either generated within those of the level of nesting.fac or using the values of a nested.fac.

fac.nested: Creates a factor, the nested factor, whose values are generated within those of a nesting factor.

3. Design functions

designAnatomy: Given the layout for a design, obtain its anatomy via the canonical analysis of its
projectors to show the confounding and aliasing inherent in the design.

designLatinSqrSys: Generate a systematic plan for a Latin Square design.

designBlocksGGPlot: Adds block boundaries to a plot produced by designGGPlot.

designGGPlot: A graphical representation of an experimental design based on labels stored in a data.frame

using ggplot2.

designRandomize: Takes a systematic design and randomizes it according to the nesting (and crossing)
relationships between the recipient(unit) factors for the randomization.

no.reps: Computes the number of replicates for an experiment.

summary.pcanon: Summarizes the anatomy of a design, being the decomposition of the sample space
based on its canonical analysis, as produced by designAnatomy. The table produced includes the
degrees of freedom and summary statistics of the canonical efficiency factors.

efficiencies.pcanon: Extracts the canonical efficiency factors from a pcanon.object produced by desig-

nAnatomy.

4. ANOVA functions

5. Matrix functions

6. Projector and canonical efficiency functions

efficiencies.pcanon: Produces a list containing the canonical efficiency factors for the joint decomposition
of two or more sets of projectors (Brien and Bailey, 2009) obtained using designAnatomy.

7. Miscellaneous functions.

Documentation for these functions is available from the user manual via vignette("dae-manual", package="dae")

and their are some notes that show how to use some of them in vignette("DesignNotes", package="dae").

1.2 The paradigm

Fundamental to the approach in this document, and to using the functions described, is that a single allocation
involves allocating a set of allocated factors to a set of recipient factors. In many designs, this allocation is
achieved by randomization. However, sometimes there is systematic allocation or restricted allocation. Brien
et al. (2023) summarize the underlying paradigm in their Figure 1 and provide a detailed discussion of it. It
involves identifying an anticipated model prior to constructing a design, choosing a design that is optimal for
the anaticipated model, specifying initial, homogeneous and prior allocation models, and producing an anatomy
for terms in the homogeneous allocation model. In general, these models are linear mixed models

3

1.3 Notation used for linear mixed models

The general form for a linear mixed model is:

Y = Xβ + Zu+ e,

where β is the vector of fixed parameters, u is the vector of random effects, and e is the vector of residuals
corresponding to each observation. The matrices X and Z are the design matrices for the fixed and random
effects, respectively. Generally, X and β are conformably partitioned so that there is a separate submatrix and
subvector for each fixed term. Similarly, Z and u are conformably partitioned according to the random terms.

A linear mixed model is expressed in symbolic form by list of the fixed terms, followed by a ‘|’, and then a
list of the random terms. Terms contributing to the residuals are underlined.

4

2 Single-allocation orthogonal design in R

This class of experiments covers the orthogonal standard or textbook experiments and these experiments must
be single phase because they involve a single randomization, in the sense that the randomization can be achieved
with a single permutation. Hence there will be two sets of factors, or tiers, one set being allocated to the other
set. In designRandomize, these are referred to as the allocated and recipient sets of factors. They are also called
the unit and treatment factors, respectively.

Firstly, initialize by loading the dae library. Also check the version that is loaded.

library(dae)

Loading required package: ggplot2

packageVersion("dae")

[1] ’3.2.29’

2.1 Two potential designs for a 5× 5 grid of plots (Brien et al., 2023, Section 2)

Suppose an experiment to investigate five treatments is to be conducted on 25 plots, the 25 plots being arranged
in a 5× 5 grid. Two possible designs are a randomized complete-block design (RCBD) or a Latin square design
(LSqD). The factor-allocation diagram (Brien et al., 2011) for the RCBD is in Figure 1 and that for the LSqD
is in Figure 2.

�� ��5 Treatments

�

�
	5 Rows

5 Columns in R

5 treatments 25 units

Figure 1: Factor-allocation diagram for an RCBD: treatments are allocated to units; the arrow indicates that the factor Treatments
is randomized to Columns; Columns in R indicates that the Columns are considered to be nested within Rows for this randomization;
R = Rows.

�� ��5 Treatments

�

�
	5 Rows

5 Columns

5 treatments 25 units

⃝⊥

Figure 2: Factor-allocation diagram for an LSqD: treatments are allocated to units; the arrow indicates that the allocation is
randomized; the ‘⃝⊥ ’ at the end of the arrow indicates that an orthogonal design is used; the two lines from ‘⃝⊥ ’ indicates that the
Treatments are allocated to the combinations of Rows and Columns using the design.

2.1.1 Produce the randomized layout for an RCBD

Use designRandomize to randomize the treatments according to an RCBD. The arguments to designRandomize
that need to be set are (i) allocated, (ii) nested.recipients, (iii) recipient, and optionally, (iv) seed. The
allocated factors are also referred to as treatment factors and the recipient factors as block or unit factors. A
systematic arrangement of the allocated factors, corresponding to the values of the recipient factors, needs to be
supplied and there are a number of ways of doing this.

In these notes, the general approach is to set up a systematic design in a data.frame to separate this aspect
of constructing a design from the randomizing of a design. The naming convention used is that the name of the
data.frame containing the systematic design ends ends in .sys. This data.frame should contain the values of
both the recipient and the allocated factors, the latter in a systematic order that is appropriate for the design.
The dae function fac.gen will be used to generate the values of the recipient factors in standard order and
often will also be used to generate the values of the allocated factors.

5

Then the allocated and recipient factors are supplied to designRandomize by subsetting the columns of
the data.frames to just the appropriate factors for each argument. Note that the Treatments could also be
supplied as a factor and the recipient factors can be specified directly to the recipient argument as a list,
e.g. list(Rows=b, Columns=t). A data.frame containing the recipient and randomized allocated factors is
produced and the name for the data.frame with the randomized layout will end in .lay.

The randomization is controlled by nested.recipients: nested recipient factors are permuted within
those factors that nest them. Only the nesting is specified: it is assumed that if two factors are not nested then
they must be crossed. So for this example, given that the nested.recipients has Columns nested within Rows,
the randomized layout is obtained by permuting (i) Rows and (ii) Columns within Rows. Then the permuted
Rows and Columns and the systematic Treatments are sorted so that Rows and Columns are in standard order.

In this example, the allocated factor is Treatments, with 5 levels, and the recipient factors are Rows and
Columns, both with 5 levels. Suppose that Rows are to form the blocks.

Use the following R code to obtain and display the layout:

#’## Obtain the randomized layout

b <- 5

t <- 5

#’## Set up a systematic design

RCBD.sys <- cbind(fac.gen(generate = list(Rows=b, Columns=t)),

fac.gen(generate = list(Treatments = LETTERS[1:t]),

times = b))

#’## Obtain the randomized layout

RCBD.lay <- designRandomize(allocated = RCBD.sys["Treatments"],

recipient = RCBD.sys[c("Rows", "Columns")],

nested.recipients = list(Columns = "Rows"),

seed = 1134)

#’## Output the layout

RCBD.lay

Rows Columns Treatments

1 1 1 C

2 1 2 E

3 1 3 A

4 1 4 B

5 1 5 D

6 2 1 C

7 2 2 A

8 2 3 E

9 2 4 D

10 2 5 B

11 3 1 E

12 3 2 C

13 3 3 B

14 3 4 A

15 3 5 D

16 4 1 E

17 4 2 A

18 4 3 D

19 4 4 B

20 4 5 C

21 5 1 D

22 5 2 C

23 5 3 B

6

24 5 4 A

25 5 5 E

#’## Plot the layout

designGGPlot(RCBD.lay, labels = "Treatments", cellalpha = 0.75,

blockdefinition = cbind(1,t))

C E A B D

C A E D B

E C B A D

E A D B C

D C B A E

1 2 3 4 5

5

4

3

2

1

Columns

R
ow

s

Plot of Treatments

The function fac.gen is from the package dae and generates the factors in the list in standard order with
the specified numbers of levels or the levels in supplied character or numeric vectors. The seed is specified to
ensure that the same design is produced whenever designRandomize is run with these arguments.

2.1.2 Produce the randomized layout for an LSqD

Use designRandomize to randomize the treatments according to an LSqD, having obtained the systematic design
using fac.gen and designLatinSqrSys. For this design, Rows and Columns are crossed; there are no nested
factors. Consequently, the nested.recipients argument is omitted and designRandomize assumes that the
recipient factors are crossed. The layout can be obtained using the following R code:

b <- 5

t <- 5

#’## Set up a systematic design

LSqD.sys <- cbind(fac.gen(list(Rows=b, Columns=t)),

Treatments = factor(designLatinSqrSys(t), labels = LETTERS[1:t]))

#’## Obtain the randomized layout

LSqD.lay <- designRandomize(allocated = LSqD.sys["Treatments"],

recipient = LSqD.sys[c("Rows", "Columns")],

seed = 141)

#’## Output the layout

LSqD.lay

Rows Columns Treatments

7

1 1 1 C

2 1 2 D

3 1 3 B

4 1 4 E

5 1 5 A

6 2 1 D

7 2 2 E

8 2 3 C

9 2 4 A

10 2 5 B

11 3 1 E

12 3 2 A

13 3 3 D

14 3 4 B

15 3 5 C

16 4 1 A

17 4 2 B

18 4 3 E

19 4 4 C

20 4 5 D

21 5 1 B

22 5 2 C

23 5 3 A

24 5 4 D

25 5 5 E

#’## Plot the layout

designGGPlot(LSqD.lay, labels = "Treatments", cellalpha = 0.75,

blockdefinition = cbind(1,1))

C D B E A

D E C A B

E A D B C

A B E C D

B C A D E

1 2 3 4 5

5

4

3

2

1

Columns

R
ow

s

Plot of Treatments

8

2.1.3 Check the properties of the designs

The properties of the designs can be investigated using designAnatomy.
Because these experiments involve a single randomization, they are two-tiered. That is, there are just two

sets of factors involved in the randomization. As we have seen, the first set of factors is the set of allocated
(treatment) factors and the second set is the set of recipient (unit) factors. Further there will be a set of projectors
associated with each tier and designAnatomy is used to do an eigenanalysis of the relationships between the two
sets of projectors. The sets of projectors are specified to designAnatomy via model formulae, the formula for
the recipient factors coming first in the list for formulae.

For both the RCBD and LSqD the two sets of factors are (i) {Rows,Columns} and (ii) {Treatments}. What
differs between the two designs is the nesting/crossing relationship between Rows and Columns and this will be
expressed in the formulae.

Use the commands given below to produce the anatomies (like skeleton-anova tables but produced from an
eigenanalysis) for the RCBD and LSqD that have been obtained..

#’## Anatomy for the RCBD

RCBD.canon <- designAnatomy(formulae = list(units = ~ Rows/Columns,

trts = ~ Treatments),

grandMean = TRUE, data = RCBD.lay)

summary(RCBD.canon)

##

##

Summary table of the decomposition for units & trts

##

Source.units df1 Source.trts df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Rows 4

Columns[Rows] 20 Treatments 4 1.0000 1.0000 1

Residual 16

#’## Anatomy for the LSqD

LSqD.canon <- designAnatomy(formulae = list(units = ~ Rows*Columns,

trts = ~ Treatments),

grandMean = TRUE, data = LSqD.lay)

summary(LSqD.canon)

##

##

Summary table of the decomposition for units & trts

##

Source.units df1 Source.trts df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Rows 4

Columns 4

Rows#Columns 16 Treatments 4 1.0000 1.0000 1

Residual 12

Get the mixed-model terms for the analysis by rerunning the summary function with the labels.swap

argument set to TRUE.

#’## Term-based anatomy for the RCBD

summary(RCBD.canon, labels.swap = TRUE)

##

9

##

Summary table of the decomposition for units & trts

##

Term.units df1 Term.trts df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Rows 4

Rows:Columns 20 Treatments 4 1.0000 1.0000 1

Residual 16

#’## Term-based anatomy for the LSqD

summary(LSqD.canon, labels.swap = TRUE)

##

##

Summary table of the decomposition for units & trts

##

Term.units df1 Term.trts df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Rows 4

Columns 4

Rows:Columns 16 Treatments 4 1.0000 1.0000 1

Residual 12

2.1.4 Questions

1. What is the advantage of specifying a seed in designRandomize?

It means that the design can be reproduced in subsequent executions of the R script.

2. With what unit source is Treatments confounded in these designs and what is the difference in the inter-
pretation of these sources?

Treatments is confounded with the term Rows:Columns. For the RCBD, Treatments is confounded with
the source Columns[Rows]. For the LSqD, Treatments is confounded with the source Rows#Columns.
The source Columns[Rows] reflects the differences between Rows within Columns; Rows#Columns is the
interaction of Rows-and-Columns and reflects how the differences between Rows (Columns) vary between
Columns (Rows).

3. What would determine which of these two designs is used for a particular experiment?

In a discussion with the researcher, it needs to be determined whether overall Column differences can be
ruled out. If they can, then the RCBD should be used; otherwise, the LSqD would be used.

2.2 Split-plot from Yates (1937) (See also Brien et al., 2023, Section 4.1)

Yates (1937) describes a split-plot experiment that investigates the effects of three varieties of oats and four levels
of Nitrogen fertilizer. The varieties are assigned to the main plots using a randomized complete-block design with
6 blocks and the nitrogen levels are randomly assigned to the subplots in each main plot. The factor-allocation
diagram for the experiment is in Figure 3.

2.2.1 Produce the randomized experimental layout

Use fac.gen to obtain a systematic layout and then designRandomize to obtain a randomized layout for this
experiment. Check the properties of the design, as illustrated in the following R code:

10

�

�
	3 Variety

4 Nitrogen

�
�

�
�

6 Blocks

3 MPlots in B

4 Subplots in B, M

12 treatments 72 units

Figure 3: Factor-allocation diagram for a split-plot design: treatments are allocated to units; the arrows indicates that the factors
Variety and Nitrogen are randomized to MPlots and Subplots, respectively; MPlots in B indicates that the MPlots are considered
to be nested within Blocks for this randomization; Subplots in B, M indicates that the Subplots are considered to be nested within
Blocks and MPlots for this randomization; B = Blocks, M = MPlots

Oats.sys <- cbind(fac.gen(list(Blocks=6, MPlots=3, SubPlots=4)),

fac.gen(list(Variety=c("Victory","Golden Rain", "Marvellous"),

Nitrogen=c(0,0.2,0.4,0.6)), times=6))

Oats.lay <- designRandomize(allocated = Oats.sys[c("Variety", "Nitrogen")],

recipient = Oats.sys[c("Blocks", "MPlots", "SubPlots")],

nested.recipients = list(MPlots = "Blocks",

SubPlots = c("MPlots", "Blocks")),

seed = 235805)

#’## Display design produced

Oats.lay

Blocks MPlots SubPlots Variety Nitrogen

1 1 1 1 Marvellous 0.4

2 1 1 2 Marvellous 0

3 1 1 3 Marvellous 0.2

4 1 1 4 Marvellous 0.6

5 1 2 1 Victory 0

6 1 2 2 Victory 0.2

7 1 2 3 Victory 0.6

8 1 2 4 Victory 0.4

9 1 3 1 Golden Rain 0.2

10 1 3 2 Golden Rain 0.4

11 1 3 3 Golden Rain 0.6

12 1 3 4 Golden Rain 0

13 2 1 1 Marvellous 0.4

14 2 1 2 Marvellous 0.2

15 2 1 3 Marvellous 0

16 2 1 4 Marvellous 0.6

17 2 2 1 Victory 0.2

18 2 2 2 Victory 0

19 2 2 3 Victory 0.6

20 2 2 4 Victory 0.4

21 2 3 1 Golden Rain 0.6

22 2 3 2 Golden Rain 0.4

23 2 3 3 Golden Rain 0.2

24 2 3 4 Golden Rain 0

25 3 1 1 Golden Rain 0.2

26 3 1 2 Golden Rain 0.6

27 3 1 3 Golden Rain 0.4

28 3 1 4 Golden Rain 0

29 3 2 1 Marvellous 0.4

30 3 2 2 Marvellous 0.6

31 3 2 3 Marvellous 0

11

32 3 2 4 Marvellous 0.2

33 3 3 1 Victory 0.4

34 3 3 2 Victory 0.2

35 3 3 3 Victory 0

36 3 3 4 Victory 0.6

37 4 1 1 Marvellous 0

38 4 1 2 Marvellous 0.4

39 4 1 3 Marvellous 0.2

40 4 1 4 Marvellous 0.6

41 4 2 1 Golden Rain 0.2

42 4 2 2 Golden Rain 0.6

43 4 2 3 Golden Rain 0.4

44 4 2 4 Golden Rain 0

45 4 3 1 Victory 0.4

46 4 3 2 Victory 0

47 4 3 3 Victory 0.6

48 4 3 4 Victory 0.2

49 5 1 1 Golden Rain 0.2

50 5 1 2 Golden Rain 0

51 5 1 3 Golden Rain 0.6

52 5 1 4 Golden Rain 0.4

53 5 2 1 Marvellous 0

54 5 2 2 Marvellous 0.2

55 5 2 3 Marvellous 0.6

56 5 2 4 Marvellous 0.4

57 5 3 1 Victory 0.4

58 5 3 2 Victory 0.2

59 5 3 3 Victory 0.6

60 5 3 4 Victory 0

61 6 1 1 Marvellous 0

62 6 1 2 Marvellous 0.6

63 6 1 3 Marvellous 0.4

64 6 1 4 Marvellous 0.2

65 6 2 1 Victory 0.4

66 6 2 2 Victory 0.2

67 6 2 3 Victory 0

68 6 2 4 Victory 0.6

69 6 3 1 Golden Rain 0.6

70 6 3 2 Golden Rain 0.2

71 6 3 3 Golden Rain 0.4

72 6 3 4 Golden Rain 0

#’## Check its properties

Oats.canon <- designAnatomy(formulae = list(units = ~ Blocks/MPlots/SubPlots,

trts = ~ Variety*Nitrogen),

grandMean = TRUE, data = Oats.lay)

summary(Oats.canon, which.criteria = c("aeff", "order"))

##

##

Summary table of the decomposition for units & trts

##

Source.units df1 Source.trts df2 aefficiency order

Mean 1 Mean 1 1.0000 1

12

Blocks 5

MPlots[Blocks] 12 Variety 2 1.0000 1

Residual 10

SubPlots[Blocks:MPlots] 54 Nitrogen 3 1.0000 1

Variety#Nitrogen 6 1.0000 1

Residual 45

2.2.2 Analysis of variance (anova) for the Yields

After reading in the data, use the aov function to produce the anova as shown below. Note the use of the Error
function to produce two Residual lines, one each for Wplots and Subplots (Note the change from MPlots to
Wplots).

#’## Read in data for actual experiment

data("Oats.dat")

#’## Analyse by anova

oats.aov <- aov(Yield ~ Nitrogen*Variety +

Error(Blocks/Wplots/Subplots), data=Oats.dat)

summary(oats.aov)

##

Error: Blocks

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 5 15875 3175

##

Error: Blocks:Wplots

Df Sum Sq Mean Sq F value Pr(>F)

Variety 2 1786 893.2 1.485 0.272

Residuals 10 6013 601.3

##

Error: Blocks:Wplots:Subplots

Df Sum Sq Mean Sq F value Pr(>F)

Nitrogen 3 20021 6674 37.686 2.46e-12 ***

Nitrogen:Variety 6 322 54 0.303 0.932

Residuals 45 7969 177

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The anova table shown here is the same as the anatomy, but in a different format.

2.2.3 Questions

1. In what sense does this design involve a single randomization?

In the sense that the randomization of both Nitrogen and Variety can be achieved with a single permutation
of the units, the subplots.

2. What is the initial allocated model for this design? Is it equivalent to a randomization model? (Hint: see
Brien et al., 2023, Section 2.1)

The initial allocation mixed model is Mean + Variety + Nitrogen + VarietyˆNitrogen | Mean + Blocks +
BlocksˆMPlots + BlocksˆMPlotsˆSubPlots. The initial allocation model is equivalent to a randomization
model because the allocation was a randomization.

13

3. A factorial RCBD would involve randomizing the 3 × 4 = 12 treatments to the 12 subplots within each
block. What has been achieved in using the split-plot design as compared to a factorial RCBD?

The precision of the Variety differences has been sacrificed to increase the precision of the Nitrogen differ-
ences. This is the case because the Residual mean square for MPlots[Blocks] is substantially larger than that
for Subplots[BlocksˆMPlots]. If a factorial RCBD had been used, the Residual mean square for Plots[Blocks]
would be the weighted average of the two Residual mean squares from the split-plot experiment, the weight
being the Residual degrees of freedom. That is, the value of the Residual mean square for the factorial
RCBD would be between the values for the two Residual mean squares for the split-plot design.

2.3 Split-unit design for an experiment in which time is randomized (Brien et al.,
2023, Section 4.1)

A design is required for a conventional greenhouse experiment to investigate Zinc effects on plants of a medic
species. A response over five weeks is to be measured, but the measurement of the response requires destructive
harvesting of the plants. It is to involve four levels of Zinc and there are to be eight replicates of the Zinc-Weeks
combinations. The Weeks are assigned to the main units, formed from 4 pots, using a randomized complete-block
design with 8 blocks and the Zinc levels are randomly assigned to the pots in each main unit. The factor-allocation
diagram for the experiment is in Figure 4.

�

�
	5 Weeks

4 Zinc

�
�

�
�

8 Blocks

5 MainUnits in B

4 Pots in B, M

20 treatments 160 units

Figure 4: Factor-allocation diagram for a split-plot design: treatments are allocated to units; the arrows indicates that the factors
Weeks and Zinc are randomized to MainUnits and Pots, respectively; MainUnits in B indicates that the MainUnits are considered
to be nested within Blocks for this randomization; Pots in B, M indicates that the Pots are considered to be nested within Blocks
and MainUnits for this randomization; B = Blocks, M = MainUnits

2.3.1 Produce the randomized experimental layout

Use fac.gen to obtain a systematic layout and then designRandomize to obtain a randomized layout for this
experiment. Check the properties of the design, as illustrated in the R code below. Note that this experiment
has the additional requirement that the design be located in the greenhouse.

#’## Set up the systematic design

SUD.sys <- cbind(fac.gen(list(Blocks = 8, MainUnits = 5, Pots = 4)),

fac.gen(list(Weeks = LETTERS[1:5], Zinc = 4), times = 8))

#’## Obtain the randomized layout

SUD.lay <- designRandomize(allocated = SUD.sys[c("Zinc", "Weeks")],

recipient = SUD.sys[c("Blocks", "MainUnits", "Pots")],

nested.recipients = list(MainUnits = "Blocks",

Pots = c("MainUnits", "Blocks")),

seed = 3116)

#’## Locate the design in the glasshouse and plot

SUD.lay <- cbind(SUD.lay,

with(SUD.lay, fac.divide(Pots, list(PLane = 2, PPosn = 2))),

with(SUD.lay, fac.divide(Blocks, list(BLane = 2, BPosn = 4))))

SUD.lay <- within(SUD.lay,

{
Lanes <- fac.combine(list(BLane, PLane))

Positions <- fac.combine(list(BPosn, MainUnits, PPosn))

14

Treatments <- fac.combine(list(Weeks,Zinc), combine.levels = TRUE)

})
SUD.lay <- SUD.lay[c("Lanes", "Positions", "Blocks", "MainUnits", "Pots",

"Zinc", "Weeks", "Treatments")]

designGGPlot(SUD.lay, labels = "Treatments", label.size = 5,

row.factors = "Positions", column.factors = "Lanes",

cellfillcolour.column = "Weeks",

title = NULL, title.size = 18, axis.text.size = 15,

blockdefinition = cbind(10,2))

15

E,2
E,1

E,4
E,3

D,3
D,1

D,4
D,2

C,3
C,2

C,1
C,4

B,2
B,3

B,1
B,4

A,3
A,1

A,4
A,2

B,4
B,3

B,2
B,1

E,3
E,2

E,1
E,4

D,3
D,2

D,1
D,4

A,4
A,3

A,1
A,2

C,2
C,4

C,3
C,1

C,4
C,3

C,2
C,1

D,1
D,4

D,3
D,2

A,4
A,2

A,1
A,3

B,4
B,1

B,2
B,3

E,2
E,1

E,4
E,3

C,3
C,2

C,4
C,1

A,4
A,3

A,2
A,1

B,3
B,4

B,1
B,2

D,3
D,2

D,4
D,1

E,4
E,2

E,1
E,3

A,2
A,1

A,3
A,4

B,3
B,1

B,4
B,2

E,3
E,4

E,2
E,1

D,4
D,1

D,2
D,3

C,4
C,1

C,3
C,2

B,2
B,4

B,1
B,3

D,2
D,4

D,1
D,3

E,3
E,1

E,4
E,2

C,1
C,4

C,2
C,3

A,3
A,2

A,4
A,1

B,3
B,1

B,2
B,4

C,1
C,4

C,3
C,2

A,1
A,4

A,3
A,2

E,1
E,2

E,4
E,3

D,4
D,3

D,1
D,2

C,3
C,1

C,4
C,2

A,3
A,1

A,4
A,2

D,1
D,2

D,3
D,4

B,3
B,1

B,4
B,2

E,2
E,3

E,1
E,4

1 2 3 4

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

Lanes

P
os

iti
on

s

16

#’## Check its properties

SUD.canon <- designAnatomy(formulae = list(units = ~ Blocks/MainUnits/Pots,

trts = ~ Zinc*Weeks),

grandMean = TRUE, data = SUD.lay)

summary(SUD.canon)

##

##

Summary table of the decomposition for units & trts

##

Source.units df1 Source.trts df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Blocks 7

MainUnits[Blocks] 32 Weeks 4 1.0000 1.0000 1

Residual 28

Pots[Blocks:MainUnits] 120 Zinc 3 1.0000 1.0000 1

Zinc#Weeks 12 1.0000 1.0000 1

Residual 105

2.3.2 Questions

1. What is the initial allocated mixed model for this design? Is it equivalent to a randomization model?

The initial allocation mixed model is Mean + Weeks + Zinc + Weeks:Zinc | Mean + Blocks + Blocks:MainUnits
+

Blocks:MainUnits:Pots. The initial allocation model is equivalent to a randomization model because all
allocation was by randomization.

2. In general terms, how are the two Residual mean squares expected to compare in magnitude?

It is expected that the the Residual mean squares for MainUnits[Blocks] will be greater than the Residual
mean squares for Pots[Blocks:MainUnits].

2.4 A design for a petrol additives experiment

Box et al. (2005, Section 4.4) describes a car emission experiment that investigates 4 additives. It involves 4 cars
being driven by 4 drivers. Here we investigate increasing the replication by repeating the experiment on two
occasions. Suppose that the 4 cars differ between occasions.

In a data.frame called LSRepeat.sys, generate a systematic design using two 4 × 4 Latin squares to for
allocating the 4 Additives to the 32 tests, being the combinations of the 2 Occasions x 4 Drivers x 4 Cars.

Now a comparison is made of two different ways of randomizing this design. Firstly, we retain the factors
Occasions, Drivers and Cars from the systematic design. The factor-allocation diagram is in Figure 5.

�� ��4 Additives

�
�

�

2 Occasions
4 Drivers
4 Cars in O

4 treatments 32 units

⃝⊥

Figure 5: Factor-allocation diagram for repeated LSqDs: treatments are allocated to units; the arrow indicates that the allocation
is randomized; the ‘⃝⊥ ’ at the end of the arrow indicates that an orthogonal design is used; the two lines from ‘⃝⊥ ’ indicates that
the Additives are allocated to the combinations of Drivers and Cars within Occasions using the design.

#’## Obtain a randomized layout with Cars nested within Occasions

LSRepeat2b.lay <- designRandomize(allocated = LSRepeat.sys["Additives"],

recipient = LSRepeat.sys[c("Occasions", "Drivers",

17

"Cars")],

nested.recipients = list(Cars="Occasions"),

seed = 194)

#’## Plot the layout

designGGPlot(LSRepeat2b.lay, row.factors = "Cars", column.factors = c("Occasions", "Drivers"),

labels = "Additives", cellalpha = 0.75, blockdefinition = cbind(4,4))

B

A

D

C

C

B

A

D

D

C

B

A

A

D

C

B

C

B

A

D

D

C

B

A

A

D

C

B

B

A

D

C

Occasions: 1 Occasions: 2
1 2 3 4 1 2 3 4

4

3

2

1

Drivers

C
ar

s

Plot of Additives

#’## Get the anatomy of the layout

LSRepeat2b.canon <- designAnatomy(formulae = list(units = ~ (Occasions/Cars)*Drivers,

trts = ~ Additives),

grandMean = TRUE, data = LSRepeat2b.lay)

summary(LSRepeat2b.canon)

##

##

Summary table of the decomposition for units & trts

##

Source.units df1 Source.trts df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Occasions 1

Cars[Occasions] 6

Drivers 3

Occasions#Drivers 3

Cars#Drivers[Occasions] 18 Additives 3 1.0000 1.0000 1

Residual 15

Now we use only Drivers and Cars to do the randomization, but still attempt to include Occasions in the
analysis. The new factor-allocation diagram is in Figure 6.

#’## Obtain a randomized layout

LSRepeat.D8.sys <- LSRepeat.sys

LSRepeat.D8.sys$Cars <- with(LSRepeat.D8.sys, fac.combine(list(Occasions, Cars)))

18

�� ��4 Additives

�

�
	4 Drivers

8 Cars

4 treatments 32 units

⃝⊥

Figure 6: Factor-allocation diagram for repeated LSqDs: treatments are allocated to units; the arrow indicates that the allocation
is randomized; the ‘⃝⊥ ’ at the end of the arrow indicates that an orthogonal design is used; the two lines from ‘⃝⊥ ’ indicates that
the Additives are allocated to the combinations of Drivers and Cars using the design.

LSRepeat.D8.sys <- with(LSRepeat.D8.sys, LSRepeat.D8.sys[order(Drivers,Cars),])

LSRepeat2b.D8.lay <- designRandomize(allocated = LSRepeat.D8.sys["Additives"],

recipient = LSRepeat.D8.sys[c("Drivers", "Cars")],

seed = 149)

#’## Plot the layout

designGGPlot(LSRepeat2b.D8.lay, row.factors = "Drivers", column.factors = "Cars",

labels = "Additives", cellfillcolour.column = "Additives",

cellalpha = 0.75, blockdefinition = cbind(4,8))

C A C B D B A D

B D B A C A D C

A C A D B D C B

D B D C A C B A

1 2 3 4 5 6 7 8

4

3

2

1

Cars

D
riv

er
s

Plot of Additives

#’## Get the Anatomy of the layout

LSRepeat2.D8.canon <- designAnatomy(formulae = list(units = ~ Drivers*Cars,

trts = ~ Additives),

grandMean = TRUE, data = LSRepeat2b.D8.lay)

summary(LSRepeat2.D8.canon)

##

##

Summary table of the decomposition for units & trts

##

Source.units df1 Source.trts df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Drivers 3

Cars 7

19

Drivers#Cars 21 Additives 3 1.0000 1.0000 1

Residual 18

#’## Add Occasions to the analysis

LSRepeat2b.D8.lay$Occasions <- fac.recast(LSRepeat2b.D8.lay$Cars,

newlevels = rep(1:2, each=4))

LSRepeat2b.D8.lay

Drivers Cars Additives Occasions

1 1 1 C 1

2 1 2 A 1

3 1 3 C 1

4 1 4 B 1

5 1 5 D 2

6 1 6 B 2

7 1 7 A 2

8 1 8 D 2

9 2 1 B 1

10 2 2 D 1

11 2 3 B 1

12 2 4 A 1

13 2 5 C 2

14 2 6 A 2

15 2 7 D 2

16 2 8 C 2

17 3 1 A 1

18 3 2 C 1

19 3 3 A 1

20 3 4 D 1

21 3 5 B 2

22 3 6 D 2

23 3 7 C 2

24 3 8 B 2

25 4 1 D 1

26 4 2 B 1

27 4 3 D 1

28 4 4 C 1

29 4 5 A 2

30 4 6 C 2

31 4 7 B 2

32 4 8 A 2

LSRepeat2b.D8.canon <- designAnatomy(formulae = list(units = ~ (Occasions + Cars)*Drivers,

trts = ~ Additives),

grandMean = TRUE, data = LSRepeat2b.D8.lay)

summary(LSRepeat2b.D8.canon)

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Occasions 1

Cars[Occasions] 6

20

Drivers 3

Occasions#Drivers 3 Additives 3 0.1500 0.1250 2

Cars#Drivers[Occasions] 18 Additives 3 0.8289 0.7500 2

Residual 15

##

The design is not orthogonal

2.4.1 Questions

1. The Residual degrees of freedom for a single 4 × 4 Latin square are 6. Has the use of two 4 × 4 Latin
squares had the desired effect of increasing the Residual df? What other advantage does the use of two
Latin squares have over the use of a single Latin square?

Yes, the Residual df have been increased from 6 to 15. Using two Latin squares doubles the replication
as compared to a single Latin square, thereby increasing the precision of the experiment by decreasing the
standard error of differences between pairs of Additive means.

2. What is the difference between the two randomizations?

For the first randomization, the Additives are randomized to the Cars within Occasions so that each Driver
does all 4 Additives in the 4 Cars in an Occasion. The design is said to be resolved. This does not happen
with the randomization based on only Drivers and Cars.

3. How do the two anatomies that include Occasions differ?

The first anatomy is orthogonal and does not have any information about Additives confounded with
Cars#Drivers[Occasions]. On the other hand, the second anatomy, based on the layout where Occasions
was not included in the randomization, is not orthogonal. Additives information is partially confounded
with both Occasions#Drivers and Cars#Drivers[Occasions].

4. What effect does including Occasions#Drivers have on the anatomy?

Including Occasions#Drivers reduces the Residual DF by 3 (from 18 to 15).

21

3 Single-allocation, nonorthogonal design in R

This class of experiments covers the nonorthogonal standard or textbook experiments. Brien et al. (2023,
Section 5) discuss the anatomy and its interpretation for a nonorthogonal, balanced experiment.

3.1 Twenty treatments in an alpha design

The following table gives an alpha design for 20 treatments, taken from Williams et al. (2002, p.128). The design
has 3 replicates, each of which contains 5 blocks of 4 plots. It is a resolved design in that each replicate contains
a complete set of the treatments.

Table 1: Unrandomized alpha design for 20 treatments

1
Block 1 2 3 4 5

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

Replicate
2

1 2 3 4 5
1 2 3 4 5
7 8 9 10 6
13 14 15 11 12
19 20 16 17 18

3
1 2 3 4 5
1 2 3 4 5
8 9 10 6 7
15 11 12 13 14
17 18 19 20 16

The factor-allocation diagram for the experiment is in Figure 7.

�� ��20 Treatments

�
�

�

3 Reps
5 Blocks in R
4 Plots in R, B

20 treatments 60 plots

◦

Figure 7: Factor-allocation diagram for the alpha design: treatments are allocated to units; the arrow indicates that the allocation
is randomized; the ‘◦’ at the end of the arrow indicates that a nonorthogonal design is used; the two lines from ‘◦’ indicate that
the Treatments are allocated to the combinations of Blocks and Plots using the design; Blocks in R indicates that the Blocks are
considered to be nested within Reps for this randomization; Plots in R, B indicates that the Plots are considered to be nested within
Reps and Blocks for this randomization; R = Reps; B = Blocks.

3.1.1 Produce the randomized layout for the alpha design and check its properties

Use designRandomize to obtain the randomized layout and designAnatomy to check its properties.

#’## Set up the systematic design

Note that Treatments has been entered by rows within a replicate

alpha.sys <- cbind(fac.gen(list(Reps=3, Plots=4, Blocks=5)),

Treats = factor(c(1:20,

1:5, 7:10,6, 13:15,11,12, 19,20,16:18,

1:5, 8:10,6,7, 15,11:14, 17:20,16)))

#’## Obtain the randomized layout

alpha.lay <- designRandomize(allocated = alpha.sys["Treats"],

recipient = alpha.sys[c("Reps", "Plots", "Blocks")],

nested.recipients = list(Blocks = "Reps",

Plots = c("Reps", "Blocks")),

seed = 918508)

alpha.lay <- with(alpha.lay, alpha.lay[order(Reps,Blocks,Plots),])

#’## Check its properties

22

alpha.canon <- designAnatomy(formulae = list(units = ~ Reps/Blocks/Plots,

trts = ~ Treats),

which.criteria = "all",

grandMean = TRUE, data = alpha.lay)

summary(alpha.canon, which.criteria = "all")

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency eefficiency mefficiency sefficiency xefficiency

Mean 1 Mean 1 1.0000 1.0000 1.0000 0.0000 1.0000

Reps 2

Blocks[Reps] 12 Treats 12 0.2778 0.1667 0.3333 0.0152 0.4167

Plots[Reps:Blocks] 45 Treats 19 0.7447 0.5833 0.7895 0.0365 1.0000

Residual 26

order dforthog

1 1

##

2 0

3 7

##

##

The design is not orthogonal

The summary table shows us a number of summary statistics calculated from the canonical efficiency factors.
They are:

aefficiency: the harmonic mean of the nonzero canonical efficiency factors.

mefficiency: the mean of the nonzero canonical efficiency factors.

eefficiency: the minimum of the nonzero canonical efficiency factors.

sefficiency: the variance of the nonzero canonical efficiency factors.

xefficiency: the maximum of the nonzero canonical efficiency factors.

order: the order of balance and is the number of unique nonzero canonical efficiency factors.

dforthog: the number of canonical efficiency factors that are equal to one.

For this example it can be seen that (i) an average 74.47%, as measured by the harmonic mean, or 78.95%,
as measured by the arithmetic mean, of the information about Treats is confounded with the differences between
plots within the reps-blocks combinations and (ii) there are 3 different efficiency factors associated with the 19
Treats degrees of freedom estimated from Plots[Reps:Blocks], the smallest of which is 0.5833 and 7 of which are
one. In this case, where the treatments are equally replicated, it can be concluded that the mean variance of a
normalized treatment contrast is inversely proportional to the harmonic mean of the canonical efficiency factors,
that is, to 0.7447.

Get the mixed-model terms for the analysis by rerunning the summary function with the labels.swap

argument set to TRUE.

#’## Obtain the terms for the design

summary(alpha.canon, which.criteria = "all", labels.swap = TRUE)

##

##

23

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Term.units df1 Term.trts df2 aefficiency eefficiency mefficiency sefficiency xefficiency

Mean 1 Mean 1 1.0000 1.0000 1.0000 0.0000 1.0000

Reps 2

Reps:Blocks 12 Treats 12 0.2778 0.1667 0.3333 0.0152 0.4167

Reps:Blocks:Plots 45 Treats 19 0.7447 0.5833 0.7895 0.0365 1.0000

Residual 26

order dforthog

1 1

##

2 0

3 7

##

##

The design is not orthogonal

3.1.2 Questions

1. What is the randomization-based mixed model for this experiment?

The trts term (Source.trts) provides the fixed term and the units terms (Source.units) provide the ran-
dom terms. Hence, the symbolic, randomization-based, mixed model is Treats | Reps + RepsˆBlocks +
RepsˆBlocksˆPlots.

2. In a mixed-model analysis, which unit terms might you fit as fixed terms? Why?

Reps is a definite candidate for the following reasons. Firstly, Reps has only two degrees of freedom and
it will be difficult to estimate a variance component for it. Secondly, one does not want to estimate Treats
from Reps (there is no Treats information between Reps).

3.2 Balanced incomplete-block design from Joshi (1987)

Joshi (1987) gives an experiment to investigate six varieties of wheat that employs a balanced incomplete-block
design with 10 blocks, each consisting of three plots. The factor-allocation diagram for the experiment is in
Figure 8.

�� ��6 Varieties

�

�
	10 Blocks

3 Plots in B

6 varieties 30 plots

◦

Figure 8: Factor-allocation diagram for the balanced incomplete-block design: treatments are allocated to units; the arrow indicates
that the allocation is randomized; the ‘◦’ at the end of the arrow indicates that a nonorthogonal design is used; the two lines from
‘◦’ indicates that the Varieties are allocated to the combinations of Blocks and Plots using the design; Plots in B indicates that
the Plots are considered to be nested within Blocks for this randomization; B = Blocks.

3.2.1 Input the Yields and check properties of the design

Use the following R code to input the data for the experiment and check its properties.

#’## Input the design and data

data("BIBDWheat.dat")

#’## Check the properties of the design

24

bibdwheat.canon <- designAnatomy(formulae = list(units = ~ Blocks/Plots,

trts = ~ Varieties),

grandMean = TRUE, data = BIBDWheat.dat)

summary(bibdwheat.canon)

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Blocks 9 Varieties 5 0.2000 0.2000 1

Residual 4

Plots[Blocks] 20 Varieties 5 0.8000 0.8000 1

Residual 15

##

The design is not orthogonal

From this it is clear that 80% of the information about Varieties is available from the Plots[Blocks] source;
that is, 80% of the Varieties information is confounded with differences between plots within blocks. Of course,
the remaining 20% is confounded with Blocks.

3.2.2 Anova for the Yields

#’## Perform an anova

summary(aov(Yield ~ Varieties + Error(Blocks/Plots), data = BIBDWheat.dat))

##

Error: Blocks

Df Sum Sq Mean Sq F value Pr(>F)

Varieties 5 196.6 39.32 0.582 0.718

Residuals 4 270.4 67.59

##

Error: Blocks:Plots

Df Sum Sq Mean Sq F value Pr(>F)

Varieties 5 1156.4 231.29 4.021 0.0163 *

Residuals 15 862.9 57.53

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

3.2.3 Questions

1. What is the value of xefficiency for Varieties when confounded with Plots[Blocks] for this design? Why?

It is 0.80 because there is only the one value for the canonical efficiency factor between these two sources

2. How many nonzero eigenvalues does QVQBPQV have?

It has 5 nonzero eigenvalues because there is 5 df of Varieties confounded with Plots[Blocks].

3.3 A design with rows and columns from Williams (2002)

Williams et al. (2002, p.144) provide an example of a tree experiment that investigated differences between 60
provenances of a species of Casuarina tree, these provenances coming from 18 countries; the trees were inoculated
prior to planting at two different times. The design used was a split-unit design comprised of four rectangles

25

each of six rows by ten columns; the rectangles are located next to each other so that they are contiguous along
the rows. The two inoculation times were randomized to the rectangles (main units). The provenances were
randomized to the subunits using a resolved, latinized, row-column design, the rectangles forming replicates
of the Provenances. The latinization was by columns and was necessary because differences between Columns
(across Reps) was anticipated; it served to avoid multiple occurrences of a provenance in a column. At 30 months,
diameter at breast height (Dbh) was measured.

The factor-allocation diagram for the experiment is in Figure 9.�
�

�

2 InocTimes
18 Countries
60 Provenances in C

�
�

�

4 Reps
6 Rows in R

10 Columns

120 treatments 240 units

• ◦

Figure 9: Factor-allocation diagram for the row-and-column design: treatments are allocated to units; the arrows indicates that
the allocations are randomized; the two lines leading to the ‘•’ indicate that it is is the combinations of Countries and Provenances
that is allocated; the ‘◦’ at the end of the lower arrow indicates that a nonorthogonal design is used; the two lines from ‘◦’ indicates
that the Countries and Provenances are allocated to the combinations of Rows and Columns using the design; Rows in B indicates
that the Rows are considered to be nested within Reps for this randomization; R = Reps.

3.3.1 Input the design and check the properties of the design

Use the following R code to input the design and check its properties.

#’## Input the design

data("Casuarina.dat")

#’## Check the properties of the design

Casuarina.canon <- designAnatomy(formulae = list(units = ~ (Reps/Rows)*Columns,

trts = ~ InocTime*(Countries+Provenances)),

grandMean = TRUE, data = Casuarina.dat)

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Provenances[Countries]

and Countries are partially aliased in Rows[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Provenances[Countries]

and Countries are partially aliased in Reps#Columns

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Provenances[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Countries and

Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Countries and

Provenances[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Provenances[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and InocTime#Countries are partially aliased in Rows#Columns[Reps]

summary(Casuarina.canon, which = c("aeff", "eeff", "order", "dforth"))

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency eefficiency order dforthog

Mean 1 Mean 1 1.0000 1.0000 1 1

26

Reps 3 InocTime 1 1.0000 1.0000 1 1

Residual 2

Rows[Reps] 20 Countries 17 0.0145 0.0018 17 0

Provenances[Countries] 3 0.1622 0.1326 3 0

Columns 9 Countries 9 0.0137 0.0028 9 0

Reps#Columns 27 Countries 17 0.0134 0.0012 17 0

Provenances[Countries] 10 0.2320 0.1596 10 0

Rows#Columns[Reps] 180 Countries 17 0.7611 0.5588 17 0

Provenances[Countries] 42 0.6851 0.3429 42 0

InocTime#Countries 17 0.6808 0.4735 17 0

InocTime#Provenances[Countries] 42 0.5516 0.2009 42 0

Residual 62

##

Table of information (partially) aliased with previous sources derived from the same formula

##

Source df Alias In aefficiency

Provenances[Countries] 17 Countries Rows[Reps] 1.0000

Provenances[Countries] 17 Countries Reps#Columns 1.0000

Provenances[Countries] 17 Countries Rows#Columns[Reps] 0.0178

InocTime#Countries 17 Countries Rows#Columns[Reps] 0.0001

InocTime#Countries 17 Provenances[Countries] Rows#Columns[Reps] 0.0222

InocTime#Provenances[Countries] 17 Countries Rows#Columns[Reps] 0.0222

InocTime#Provenances[Countries] 42 Provenances[Countries] Rows#Columns[Reps] 0.0000

InocTime#Provenances[Countries] 17 InocTime#Countries Rows#Columns[Reps] 0.0178

eefficiency order dforthog

1.0000 1 17

1.0000 1 17

0.0025 17 0

0.0000 17 0

0.0042 17 0

0.0042 17 0

0.0000 42 0

0.0025 17 0

##

The design is not orthogonal

Firstly, note that designAnatomy has automatically detected that Provenances is nested within Countries,
even though Provenances has 60 unique levels: the sources for these two terms are Countries and Prove-
nances[Countries] and these have 17 and 42 degrees of freedom when estimated from Rows # Columns [Reps],
respectively. The total of these degrees of freedom is 59, one less than the number of Provenances, as expected.

Secondly, the partial aliasing evident in this design reflects a lack of (structure) balance between the treat-
ment sources within each units source. This is an undesirable, but unavoidable, feature of the design for this
experiment.

3.3.2 Questions

1. What is it about the design that makes it resolved for Provenances?

Each Rep contains all 60 Provenances once and only once, i.e. a complete replicate of the Provenances.

2. What is the disadvantage of allocating InocTimes to Reps?

There are only two Residual degrees of freedom for testing for the main effect for InocTimes.

27

3.4 A resolved design for the wheat experiment that is near-A-optimal under a
mixed model

Gilmour et al. (1995) provides an example of a wheat experiment for 25 Varieties in which a balanced lattice
square design was employed, it being a resolved row-column design.

The factor-allocation diagram for the experiment is in Figure 10.

�� ��25 Lines

�
�

�
�

3 SRows
2 SColumns
5 Rows in Sr, Sc
5 Columns in Sr, Sc

25 lines 150 units

◦

Figure 10: Factor-allocation diagram for the balanced lattice square design: treatments are allocated to units; the arrows indicates
that the allocations are randomized; the ‘◦’ at the end of the lower arrow indicates that a nonorthogonal design is used; the two
lines from ‘◦’ indicates that the Lines are allocated to the combinations of Rows and Columns using the design; Rows (Columns)
in Sr, Sc indicates that the Rows (Columns) are considered to be nested within SRows and SColumns for this randomization; Sr =
S(uper)Rows; Sc = S(uper)Columns.

3.4.1 Input the design and check the properties of the design

The design is available in the Wheat data set in the asremlPlus package (Brien, 2024a). Use the following R

code to input the design, plot it and check its properties.

#’## Get the design

library(asremlPlus)

ASReml-R needs to be loaded if the mixed-model functions are to be used.

##

ASReml-R is available from VSNi. Please visit http://www.vsni.co.uk/ for more information.

data(Wheat.dat)

latt.lay <- cbind(fac.gen(list(SRows = 2, Rows = 5, SColumns = 3, Columns =5)),

Wheat.dat["Variety"])

#’## Plot the design

#+ "LattDesign"

library(scales)

cell.colours <- hue_pal()(25)

designGGPlot(latt.lay, labels = "Variety",

row.factors = c("SRows", "Rows"), column.factors = c("SColumns", "Columns"),

facetstrips.switch = "y", facetstrips.placement = "outside.title",

colour.values = cell.colours, cellalpha = 0.75, label.size = 6,

blockdefinition = cbind(5,5))

28

1 2 4 3 5

6 7 9 8 10

21 22 24 23 25

11 12 14 13 15

16 17 19 18 20

3 18 8 13 23

1 16 6 11 21

5 20 10 15 25

2 17 7 12 22

4 19 9 14 24

19 23 2 6 15

8 12 16 25 4

11 20 24 3 7

22 1 10 14 18

5 9 13 17 21

16 24 10 13 2

12 20 1 9 23

4 7 18 21 15

25 3 14 17 6

8 11 22 5 19

18 25 9 11 2

5 7 16 23 14

6 13 22 4 20

24 1 15 17 8

12 19 3 10 21

10 4 17 11 23

12 6 24 18 5

19 13 1 25 7

21 20 8 2 14

3 22 15 9 16

SColumns: 1 SColumns: 2 SColumns: 3
S

R
ow

s:
 1

S
R

ow
s:

 2

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

5

4

3

2

1

5

4

3

2

1

Columns
R

ow
s

Plot of Variety

#’## Check the properties of the design

latt.canon <- designAnatomy(formulae = list(units = ~ (SRows:SColumns)/(Rows*Columns),

trts = ~ Variety),

grandMean = TRUE, data = latt.lay)

summary(latt.canon, which.criteria = c("aeff", "order"))

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency order

Mean 1 Mean 1 1.0000 1

SRows:SColumns 5

29

Rows[SRows:SColumns] 24 Variety 24 0.1667 1

Columns[SRows:SColumns] 24 Variety 24 0.1667 1

Rows#Columns[SRows:SColumns] 96 Variety 24 0.6667 1

Residual 72

##

The design is not orthogonal

30

4 Miscellaneous experimental design topics in R

This section includes examples showing the effects of missing values, recognizing pseudoreplication and the use
of nested factorials.

Firstly, initialize by loading the libraries that will be used and setting the output width.

library(dae, quietly = TRUE)

options(width=100)

4.1 An environmental experiment

Suppose an environmental scientist wants to investigate the effect on the biomass of burning areas of natural
vegetation. There are available two areas separated by several kilometres for use in the investigation. It is only
possible to either burn or not burn an entire area. The area to be burnt is randomly selected and the other area
is to be left unburnt as a control. Further, 30 locations in each area are to be randomly sampled and the biomass
measured at each location. The factor-allocation diagram for the experiment is in Figure 11.�� ��2 Burning

�

�
	2 Areas

30 Location in A

2 treatments 60 locations

Figure 11: Factor-allocation diagram for the environmental experiment: treatments are allocated to locations; the arrow indicates
that the factor Burning is randomized to Areas; Locations in A indicates that the Locations are considered to be nested within
Areas; A = Areas.

Obtain the randomized layout for this experiment and check its properties.

#’## Obtain the randomized layout

Burn.sys <- cbind(fac.gen(list(Areas=2, Locations=30)),

Burn = factor(rep(c("Burn", "NoBurn"), each=30)))

Burn.lay <- designRandomize(allocated = Burn.sys["Burn"],

recipient = Burn.sys[c("Areas", "Locations")],

nested.recipients = list(Locations = "Areas"),

seed = 872159)

#’## plot the design

designGGPlot(Burn.lay, labels = "Burn", row.factors = "Locations", column.factors = "Areas")

31

Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn
Burn

NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn
NoBurn

1 2

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

Areas
Lo

ca
tio

ns

Plot of Burn

#’## Check its properties

Burn.canon <- designAnatomy(formulae = list(units = ~Areas/Locations,

trts = ~Burn),

grandMean = TRUE, data = Burn.lay)

summary(Burn.canon)

##

##

Summary table of the decomposition for units & trts

##

Source.units df1 Source.trts df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Areas 1 Burn 1 1.0000 1.0000 1

32

Locations[Areas] 58

4.1.1 Questions

1. How is the pseudo-replication involved in this experiment manifested in the anatomy? (Brien et al. (2023,
Section 4.3) discuss the issues associated with pseudoreplication.)

Because (i) Areas and Burn are alongside each other in the anova table, (ii) they both have 1 degree
of freedom, and (iii) the single canonical efficiency factor is one, then Areas and Burn are completely
confounded. That is, the pseudoreplication has resulted in differences between Areas and between Burns
being inextricably mixed up.

2. The randomization-based mixed model for the experiment is Burn | Areas + Areas:Locations. What
difficulties do you anticipate in attempting to fit this model? How could the model be modified so that a
fit can be obtained? Brien and Demétrio (2009) call models formed by removing terms to enable a fit to be
achieved ‘models of convenience’. What dangers do you foresee in basing conclusions on the fitted model
of convenience?

There will be a singularity in the model because Areas is confounded with Burn. A fit could be obtained by
removing Areas from the random model. The problem is that a test of Burn would then be based on the
ratio of variability in Burn differences to an estimate of the variance of Locations-within-Areas variability.
This does not include Areas variability and so the denominator is likely to be underestimated; p-values
based from this test are likely to be too small and significant differences are more likely to be declared where
there are none as compared to when an estimate of Areas variability is included in the denominator of the
F -statistic.

4.2 Block-treatment interactions for an experiment in which time is randomized
(Brien et al., 2023, Section 4.1)

The properties of a split-unit design have been examined in Section 2.3 for an experiment in which the effects
on Zinc over five weeks were investigated. In that investigation, the terms in the initial allocation model were
considered. Here the properties of a homogeneous model with block-treatment interactions are checked. If you
have not saved the design, reconstruct it as shown below; otherwise, use the saved design. Then, obtain the
anatomy to establish its properties.

#’## Set up the systematic design

SUD.sys <- cbind(fac.gen(list(Blocks = 8, MainUnits = 5, Pots = 4)),

fac.gen(list(Weeks = LETTERS[1:5], Zinc = 4), times = 8))

#’## Obtain the randomized layout

SUD.lay <- designRandomize(allocated = SUD.sys[c("Zinc", "Weeks")],

recipient = SUD.sys[c("Blocks", "MainUnits", "Pots")],

nested.recipients = list(MainUnits = "Blocks",

Pots = c("MainUnits", "Blocks")),

seed = 3116)

#’## Check its properties

SUD.BT.canon <- designAnatomy(formulae = list(units = ~ Blocks/MainUnits/Pots,

trts = ~ Blocks*Zinc*Weeks),

grandMean = TRUE, data = SUD.lay)

summary(SUD.BT.canon)

##

##

Summary table of the decomposition for units & trts

33

##

Source.units df1 Source.trts df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Blocks 7 Blocks 7 1.0000 1.0000 1

MainUnits[Blocks] 32 Weeks 4 1.0000 1.0000 1

Blocks#Weeks 28 1.0000 1.0000 1

Pots[Blocks:MainUnits] 120 Zinc 3 1.0000 1.0000 1

Blocks#Zinc 21 1.0000 1.0000 1

Zinc#Weeks 12 1.0000 1.0000 1

Blocks#Zinc#Weeks 84 1.0000 1.0000 1

4.2.1 Questions

1. What do you conclude from the anatomy about the estimability of terms?

It is not possible to separately estimate MainUnits[Blocks] and Blocks#Weeks. It is also not possible to
separately estimate Pots[Blocks:MainUnits] and Blocks#Zinc#Weeks.

2. How might you change the design so that the block-treatment interactions are separately estimable?

Employ a generalized randomized block design (GRBD) for the main-unit design to randomize the Weeks.

4.3 A longitudinal greenhouse experiment that uses a generalized randomized
block design (GRBD)(Brien et al., 2023, Section 4.2)

Consider an experiment in a glasshouse that has equipment to automatically image plants daily, the images being
processed to produce a measure related to plant biomass. Suppose that the experiment to investigate the effects
of four levels of Zinc on medic plants is to be run in this glasshouse and that the plants are to be imaged over
14 Days. It is to involve 12 replicates and the experimental area can accommodate 48 pots in grid of four lanes
by 12 positions, each pot having a single plant. Previous experience is that the differences between pots in the
same lane separated by more than two pots are likely to be larger than between those separated by no more than
two pots. Also, pots in the front pair of lanes are likely to differ from pots in the back pair of lanes. That is,
Blocks consisting of eight pots arranged in two lanes by four positions are likely to be relatively homogeneous.
Further, suppose that it is thought that the response to Zinc may differ between the Blocks. As Brien et al.
(2023, Section 3.2) conclude, a GRBD is a suitable design for this experiment.

The factor allocation diagram for this experiment is given in Figure 12

�� ��4 Zinc

�
�

�
�

6 Blocks

8 Pots in B

14 Days

4 treatments 672 units

Figure 12: Factor-allocation diagram showing the treatments allocation to units for the longitudinal experiment that uses a
generalized randomized block design: the arrow indicates that Zinc is allocated to Pots within B using randomization; B = Blocks.

Obtain the randomized layout for this longitudinal experiment.

#’## Construct a systematic design

longi.sys <- cbind(fac.gen(list(Blocks = 6, Pots = 8, Days = 14)),

fac.gen(list(Zinc = LETTERS[1:4]), times = 12, each = 14))

#’## Obtain the randomized layout

longi.lay <- designRandomize(allocated = longi.sys["Zinc"],

recipient = longi.sys[c("Blocks", "Pots", "Days")],

nested.recipients = list(Pots = "Blocks"),

34

seed = 5733)

#’## Add factors for Lane and Position

longi.lay <- cbind(with(longi.lay, fac.divide(Blocks,

factor.names = list(PLanes = 2,

QPositions = 3))),

with(longi.lay, fac.divide(Pots,

factor.names = list(Lanes = 2,

Positions = 4))),

longi.lay)

longi.lay <- within(longi.lay,

{
Lanes <- fac.combine(list(PLanes, Lanes))

Positions <- fac.combine(list(QPositions, Positions))

})
longi.lay <- longi.lay[, -match(c("PLanes", "QPositions"), names(longi.lay))]

#’## Plot the layout

designGGPlot(subset(longi.lay, Days == "1"),

row.factors = "Lanes", column.factors = "Positions",

labels = "Zinc", label.size = 8,

title = NULL, title.size = 25, axis.text.size = 20,

blockdefinition = cbind(2,4))

D D A B

C C A B

D A D C

A B B C

D C B A

D B C A

D B C B

D A C A

D D B C

A B C A

D B C C

A B A D

1 2 3 4 5 6 7 8 9 10 11 12

4

3

2

1

Positions

La
ne

s

The homogeneous allocation model given by Brien et al. (2023, Section 4.2) is:

Mean + Z + D+ Z'D | Mean + B + B'Z + B'P + B'D+ B'Z'D+ B'P'D.

Check the properties of the layout corresponding to the homogeneous allocation model using an anatomy.

longi.BZD.canon <- designAnatomy(formulae = list(units = ~ (Blocks/Pots)*Days,

trtblks = ~ Blocks*Zinc*Days),

grandMean = TRUE, data = longi.lay)

summary(longi.BZD.canon)

##

35

##

Summary table of the decomposition for units & trtblks

##

Source.units df1 Source.trtblks df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Blocks 5 Blocks 5 1.0000 1.0000 1

Pots[Blocks] 42 Zinc 3 1.0000 1.0000 1

Blocks#Zinc 15 1.0000 1.0000 1

Residual 24

Days 13 Days 13 1.0000 1.0000 1

Blocks#Days 65 Blocks#Days 65 1.0000 1.0000 1

Pots#Days[Blocks] 546 Zinc#Days 39 1.0000 1.0000 1

Blocks#Zinc#Days 195 1.0000 1.0000 1

Residual 312

4.3.1 Questions

1. What are the block-treatments interactions in this experiment? Are they all estimable?

They are Blocks#Zinc, Zinc#Days and Blocks#Zinc#Days. All of these block-treatments interactions are
estimable.

2. How do the properties of the longitudinal experiment differ from those of the experiment in which Weeks
are randomized (Sections 2.3 and 4.2)?

The fundamental difference is that Weeks are randomized, whereas Days are not allocated; Days are poten-
tial recipient factors. This affects the nature of the inference possible for terms involvng Weeks and Days.
In particular, randomization cannot be used as the basis of the inference for terms incolving Days, whereas
it can for terms involving Weeks.

4.4 A detergent experiment

Mead et al. (2012) describe an experiment to investigate nine detergent formulations that were compared by
washing plates one at a time until they were clean. There were only 3 basins available at any one time and so a
BIBD with 12 blocks was used to assign formulations to washing instances. Each basin has a different operator
who washed at the same rate at each time of washing. The response is the number of plates washed before the
foam disappears.

The treatments involve two bases, four additive amounts and a control; they are:
1. base I + three parts additive
2. base I + two parts additive
3. base I + one part additive
4. base I
5. base II + three parts additive
6. base II + two parts additive
7. base II + one part additive
8. base II
9. Control
The factor-allocation diagram for the experiment is in Figure 13.
The systematic incomplete-block design is shown in Table 2.

4.4.1 Produce the randomized layout for the BIBD and check its properties

36

�� ��9 Formulations

�

�
	12 Runs

3 Basins in R

9 treatments 24 washes

◦

Figure 13: Factor-allocation diagram for the detergent experiment: treatments are allocated to washes; the arrow indicates that
the allocation is randomized; the ‘◦’ at the end of the arrow indicates that a nonorthogonal design is used; the two lines from ‘◦’
indicate that the Treatments are allocated to the combinations of Runs and Basins using the design; Basins in R indicates that the
Basins are considered to be nested within Runs for this randomization; R = Runs.

Table 2: Systematic balanced incomplete-block design for 9 treatments in blocks of 3

Basin
Run 1 2 3
1 1 2 3
2 4 5 6
3 7 8 9
4 1 4 7
5 2 5 8
6 3 6 9
7 1 5 9
8 2 6 7
9 3 4 8
10 1 6 8
11 2 4 9
12 3 5 7

b <- 12

k <- 3

t <- 9

#’## Input the systematic design and randomize

BIBD.sys <- cbind(fac.gen(list(Runs = b, Basins = k)),

Formulations = factor(c(1:9,

1, 4, 7,

2, 5, 8,

3, 6, 9,

1, 5, 9,

2, 6, 7,

3, 4, 8,

1, 6, 8,

2, 4, 9,

3, 5, 7)))

#’## Randomize the systematic design

BIBD.lay <- designRandomize(allocated = BIBD.sys["Formulations"],

recipient = BIBD.sys[c("Runs", "Basins")],

nested.recipients = list(Basins = "Runs"),

seed = 64686)

#’### Check properties of the BIBD

BIBD.canon <- designAnatomy(formulae = list(units = ~ Runs/Basins,

trts = ~ Formulations),

37

grandMean = TRUE, data = BIBD.lay)

summary(BIBD.canon, which.criteria = c(’aeff’, ’order’))

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency order

Mean 1 Mean 1 1.0000 1

Runs 11 Formulations 8 0.2500 1

Residual 3

Basins[Runs] 24 Formulations 8 0.7500 1

Residual 16

##

The design is not orthogonal

4.4.2 Add nested factors and check the decomposition using them

BIBD.lay <- within(BIBD.lay,

{
Types <- fac.uselogical(Formulations == "9", labels = c("Control", "New"))

Bases <- fac.recast(Formulations,

newlevels = c(rep(c("I", "II"), each = 4), "Control"))

Additives <- fac.recast(Formulations,

newlevels = c(rep(c("four", "three", "two", "none"),

times = 2), "Control"))

})

BIBD.nest.canon <- designAnatomy(formulae = list(units = ~ Runs/Basins,

trts = ~ Types/(Bases*Additives)),

grandMean = TRUE, data = BIBD.lay)

summary(BIBD.nest.canon, which.criteria = c(’aeff’, ’order’))

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency order

Mean 1 Mean 1 1.0000 1

Runs 11 Types 1 0.2500 1

Bases[Types] 1 0.2500 1

Additives[Types] 3 0.2500 1

Bases#Additives[Types] 3 0.2500 1

Residual 3

Basins[Runs] 24 Types 1 0.7500 1

Bases[Types] 1 0.7500 1

Additives[Types] 3 0.7500 1

Bases#Additives[Types] 3 0.7500 1

Residual 16

##

The design is not orthogonal

38

4.4.3 Leave out Types and try decomposition with Bases and Additives in both orders

BIBD.nest2.canon <- designAnatomy(formulae = list(units = ~ Runs/Basins,

trts = ~ Bases*Additives),

grandMean = TRUE, data = BIBD.lay)

summary(BIBD.nest2.canon, which.criteria = c(’aeff’, ’order’))

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency order

Mean 1 Mean 1 1.0000 1

Runs 11 Bases 2 0.2500 1

Additives 3 0.2500 1

Bases#Additives 3 0.2500 1

Residual 3

Basins[Runs] 24 Bases 2 0.7500 1

Additives 3 0.7500 1

Bases#Additives 3 0.7500 1

Residual 16

##

Table of information (partially) aliased with previous sources derived from the same formula

##

Source df Alias In aefficiency order

Additives 1 Bases trts 1.0000 1

Additives 3 ## Information remaining trts 1.0000 1

##

The design is not orthogonal

BIBD.nest2.canon <- designAnatomy(formulae = list(units = ~ Runs/Basins,

trts = ~ Additives*Bases),

grandMean = TRUE, data = BIBD.lay)

summary(BIBD.nest2.canon, which.criteria = c(’aeff’, ’order’))

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency order

Mean 1 Mean 1 1.0000 1

Runs 11 Additives 4 0.2500 1

Bases 1 0.2500 1

Additives#Bases 3 0.2500 1

Residual 3

Basins[Runs] 24 Additives 4 0.7500 1

Bases 1 0.7500 1

Additives#Bases 3 0.7500 1

Residual 16

##

Table of information (partially) aliased with previous sources derived from the same formula

##

Source df Alias In aefficiency order

Bases 1 Additives trts 1.0000 1

39

Bases 1 ## Information remaining trts 1.0000 1

##

The design is not orthogonal

4.4.4 What if two observations are missing?

Two observations that are not the Control are set to missing and the anatomy obtained. The greatest effect is
surprisingly on the comparison between the Control and New.

#’## Investigate the effect of two-missing observations

#+ "BIBDDet"

BIBD.Miss.lay <- BIBD.lay

BIBD.Miss.lay$Formulations[c(14,15)] <- NA

designGGPlot(BIBD.Miss.lay, labels = "Formulations",

row.factors = "Runs", column.factors = "Basins",

blockdefinition = rbind(c(1,3)))

Warning: Removed 2 rows containing missing values or values outside the scale range (‘geom text()‘).

40

4 8 3

2 8 5

7 5 3

7 9 8

9

6 1 8

3 1 2

3 6 9

4 7 1

7 2 6

4 9 2

5 4 6

1 2 3

12

11

10

9

8

7

6

5

4

3

2

1

Basins
R

un
s

Plot of Formulations

BIBD.Miss.canon <- designAnatomy(formulae = list(units = ~ Runs/Basins,

trts = ~ Types/(Bases*Additives)),

grandMean = TRUE, data = na.omit(BIBD.Miss.lay))

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Additives[Types] and

Types are partially aliased in Runs

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Bases#Additives[Types]

and Bases[Types] are partially aliased in Runs

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Additives[Types] and

Types are partially aliased in Basins[Runs]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Bases#Additives[Types]

and Bases[Types] are partially aliased in Basins[Runs]

41

summary(BIBD.Miss.canon, which.criteria = c(’aeff’, ’order’))

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency order

Mean 1 Mean 1 1.0000 1

Runs 11 Types 1 0.4333 1

Bases[Types] 1 0.2667 1

Additives[Types] 3 0.1899 2

Bases#Additives[Types] 3 0.2679 2

Residual 3

Basins[Runs] 22 Types 1 0.5667 1

Bases[Types] 1 0.7333 1

Additives[Types] 3 0.7759 2

Bases#Additives[Types] 3 0.7258 2

Residual 14

##

Table of information (partially) aliased with previous sources derived from the same formula

##

Source df Alias In aefficiency order

Additives[Types] 1 Types Runs 0.1453 1

Bases#Additives[Types] 1 Bases[Types] Runs 0.0132 1

Additives[Types] 1 Types Basins[Runs] 0.0196 1

Bases#Additives[Types] 1 Bases[Types] Basins[Runs] 0.0022 1

##

The design is not orthogonal

4.4.5 Questions

1. What do you conclude about the properties of the design both without and with the nested factors?

Without the nested factors, the BIBD is balanced. It retains this balance when Formulations is partitioned
using the nested factors. This is to be expected with a balanced design because all Formulations contrasts
have the same efficiency. The intrablock efficiency factor is 0.75, which is acceptable

2. What is the effect of removing the Types factor?

The one df for Types is included with the main effect fitted immediately after Types. Clearly the Types
factor needs to be separated out before fitting the other factors to remove this arbitrariness in composition
of sources.

3. What is the advantage of using nested factors for this experiment?

It enables the main effects and interactions of Bases and Additives to be explored.

4. Is there any reason to think that a row-column design might be better than a block design for this experi-
ment?

There would be if the same three operators are used for each Run, and there is reason to believe that
systematic differences between the operators. A row-column design would reduce the influence of these
differences on the precision of the experiment.

4.5 An experiment to investigate the effects of spraying Sultana grapes

Clingeleffer et al. (1977) report an experiment to investigate the effects of tractor speed and spray pressure on
the quality of dried sultanas. The response was the lightness of the dried sultanas which is measured using a

42

Hunterlab D25 L colour difference meter. Lighter sultanas are considered to be of better quality and these will
have a higher lightness measurement (L). There were three tractor speeds and two spray pressures resulting
in 6 treatment combinations which were applied to 6 plots, each consisting of 12 vines, using a randomized
complete-block design with three blocks.

The factor-allocation diagram for the experiment is in Figure 14.

3 Speed

2 Pressure

3 Blocks

6 Plots in B

6 treatments 18 units

•

Figure 14: Factor-allocation diagram for the spraying design: treatments are allocated to units; the two lines leading to the
‘•’ indicate that it is is the combinations of Speed and Pressure that are allocated; the arrow from the ‘•’ indicates that these
combinations are randomized to Plots in B; Plots in B indicates that the Plots are considered to be nested within Blocks for this
randomization; B = Blocks

However, these 6 treatment combinations resulted in only 4 rates of spray application as indicated in the
following table.

Table 3: Application rates for the sprayer experiment

Tractor speed (km hr−1)
Pressure (kPa) 3.6 2.6 1.8

140 2090 2930 4120
330 2930 4120 5770

That is, there are 4 different rates of application, two of which have different combinations of Tractor speed
and Spray pressure. So, a factor, Rates, with four levels is set up to compare the means of the four rates and
then separate nested factors for each rate are generated. The factor-allocation diagram corresponding to a model
based on these rates factors is in Figure 15.

4 Rates
2 Rate2090 in R
3 Rate2930 in R
3 Rate4120 in R
2 Rate5770 in R

3 Blocks
6 Plots in B

6 treatments 18 units

•

Figure 15: Factor-allocation diagram for the spraying design with nested factors: treatments are allocated to units; the lines
leading to the ‘•’ indicate that it is is the combinations of five Rates factors that are allocated; the arrow from the ‘•’ indicates
that these combinations are randomized to Plots in B; Plots in B indicates that the Plots are considered to be nested within Blocks
for this randomization; B = Blocks

We set up the RCBD for Speed and Pressure then derive the Rate factors.

b <- 3

t <- 6

#’## Construct a systematic layout

RCBD.sys <- cbind(fac.gen(generate = list(Blocks=b, Plots=t)),

fac.gen(generate = list(Pressure = c("140", "330"),

Speed = c("3.6", "2.6", "1.8")), times = b))

#’## Obtain the randomized layout

RCBD.lay <- designRandomize(allocated = RCBD.sys[c("Pressure", "Speed")],

43

recipient = RCBD.sys[c("Blocks", "Plots")],

nested.recipients = list(Plots = "Blocks"),

seed = 353441)

#’## Add nested factors

RCBD.lay <- within(RCBD.lay,

{
Treatments <- fac.combine(list(Pressure, Speed), combine.levels = TRUE)

Rates <- fac.recast(Treatments,

newlevels = c("2090", "2930", "4120",

"2930", "4120", "5770"))

})
RCBD.lay <- with(RCBD.lay, cbind(RCBD.lay,

fac.multinested(nesting.fac = Rates,

nested.fac = Treatments,

fac.prefix = "Rate")))

#’## Output the layout

RCBD.lay

Blocks Plots Pressure Speed Rates Treatments Rate2090 Rate2930 Rate4120 Rate5770

1 1 1 330 1.8 5770 330,1.8 rest rest rest 330,1.8

2 1 2 140 1.8 4120 140,1.8 rest rest 140,1.8 rest

3 1 3 330 3.6 2930 330,3.6 rest 330,3.6 rest rest

4 1 4 140 2.6 2930 140,2.6 rest 140,2.6 rest rest

5 1 5 140 3.6 2090 140,3.6 140,3.6 rest rest rest

6 1 6 330 2.6 4120 330,2.6 rest rest 330,2.6 rest

7 2 1 140 3.6 2090 140,3.6 140,3.6 rest rest rest

8 2 2 140 1.8 4120 140,1.8 rest rest 140,1.8 rest

9 2 3 330 2.6 4120 330,2.6 rest rest 330,2.6 rest

10 2 4 330 1.8 5770 330,1.8 rest rest rest 330,1.8

11 2 5 140 2.6 2930 140,2.6 rest 140,2.6 rest rest

12 2 6 330 3.6 2930 330,3.6 rest 330,3.6 rest rest

13 3 1 330 3.6 2930 330,3.6 rest 330,3.6 rest rest

14 3 2 330 2.6 4120 330,2.6 rest rest 330,2.6 rest

15 3 3 140 1.8 4120 140,1.8 rest rest 140,1.8 rest

16 3 4 330 1.8 5770 330,1.8 rest rest rest 330,1.8

17 3 5 140 3.6 2090 140,3.6 140,3.6 rest rest rest

18 3 6 140 2.6 2930 140,2.6 rest 140,2.6 rest rest

#’## Plot the layout

#+ "RCBDSpray_v1"

designGGPlot(RCBD.lay, labels = "Treatments",

cellfillcolour.column = "Rates",

row.factors = "Blocks", column.factors = "Plots",

axis.text.size = 20, label.size = 6,

title = "Plot of Treatments (coloured for Rates)",

blockdefinition = cbind(1,t))

44

330,1.8 140,1.8 330,3.6 140,2.6 140,3.6 330,2.6

140,3.6 140,1.8 330,2.6 330,1.8 140,2.6 330,3.6

330,3.6 330,2.6 140,1.8 330,1.8 140,3.6 140,2.6

1 2 3 4 5 6

3

2

1

Plots
B

lo
ck

s

Plot of Treatments (coloured for Rates)

Now check the properties of the design with the nested factors.

RCBD.canon <- designAnatomy(formulae = list(units = ~ Blocks/Plots,

trts = ~ Rates/(Rate2090 + Rate2930 + Rate4120 +

Rate5770)),

grandMean = TRUE, data = RCBD.lay)

Warning in porthogonalize.list(projectors = Q, formula = formula, keep.order = keep.order,

: Rates:Rate2090 is aliased with previous terms in the formula and has been removed

Warning in porthogonalize.list(projectors = Q, formula = formula, keep.order = keep.order,

: Rates:Rate5770 is aliased with previous terms in the formula and has been removed

summary(RCBD.canon, which.criteria = "aeff")

45

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency

Mean 1 Mean 1 1.0000

Blocks 2

Plots[Blocks] 15 Rates 3 1.0000

Rate2930[Rates] 1 1.0000

Rate4120[Rates] 1 1.0000

Residual 10

##

Table of information (partially) aliased with previous sources derived from the same formula

##

Source df Alias In aefficiency

Rates:Rate2090 3 Rates trts 1.0000

Rates:Rate2090 0 ## Aliased trts 1.0000

Rates:Rate5770 3 Rates trts 1.0000

Rates:Rate5770 0 ## Aliased trts 1.0000

4.5.1 Questions

1. What is the prior allocation model for this design?

The initial allocation mixed model is Mean + Pressure + Speed + Pressure:Speed | Mean + Blocks +
Blocks:Plots. The fixed model is reparameterized to be based on Rates terms: Mean + Rates + Rates:Rates2930
+ Rates:Rates4120 | Mean + Blocks + Blocks:Plots. The fixed model can also be specified simply as Rates
+ Rates2930 + Rates4120.

2. How does the prior allocation model differ from the randomization model for this design?

Only in its parameterization of the fixed model, although Blocks might also be moved to the fixed model.

3. Why are terms involving Rate2090 and Rate5770 not included in the prior allocation model?

Because there is only one combination of Pressure and Speed for each of these Rates so that, as shown in
the Table of aliasing accompanying the Summary table for the anatomy, both Rate2090 and Rate5770 are
aliased with Rates.

4.6 A Control treatment for an incomplete-block design

An incomplete-block design for 6 treatments in 6 blocks of size 4 is obtained from Cochran and Cox (1957, p.
379).

b <- 6

k <- 4

t <- 6

#’## Input the systematic design and randomize

PBIBD.sys <- cbind(fac.gen(list(Blocks = b, Units = k)),

Treatments = factor(c(1,4,2,5,

2,5,3,6,

3,6,1,4,

4,1,5,2,

5,2,6,3,

6,3,4,1)))

46

Randomize the design and check its properties

#’### Randomize design according to the plots structure

PBIBD.lay <- designRandomize(allocated = PBIBD.sys["Treatments"],

recipient = PBIBD.sys[c("Blocks", "Units")],

nested.recipients = list(Units = "Blocks"),

seed = 65460)

PBIBD.lay

Blocks Units Treatments

1 1 1 1

2 1 2 3

3 1 3 4

4 1 4 6

5 2 1 1

6 2 2 2

7 2 3 5

8 2 4 4

9 3 1 4

10 3 2 1

11 3 3 6

12 3 4 3

13 4 1 2

14 4 2 3

15 4 3 6

16 4 4 5

17 5 1 1

18 5 2 4

19 5 3 2

20 5 4 5

21 6 1 2

22 6 2 5

23 6 3 3

24 6 4 6

#’### Check properties of the od layout

PBIBD.canon <- designAnatomy(formulae = list(units = ~ Blocks/Units,

trts = ~ Treatments),

grandMean = TRUE, data = PBIBD.lay)

summary(PBIBD.canon, which.criteria = c(’aeff’, ’xeff’, ’eeff’,’order’, ’dforth’))

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency xefficiency eefficiency order dforthog

Mean 1 Mean 1 1.0000 1.0000 1.0000 1 1

Blocks 5 Treatments 2 0.2500 0.2500 0.2500 1 0

Residual 3

Units[Blocks] 18 Treatments 5 0.8824 1.0000 0.7500 2 3

Residual 13

##

The design is not orthogonal

Investigate the effect of designating a treatment to be a Control and including a Control factor in the fixed

47

model. It is noted that, in this case at least, it does not matter which treatment is designated to be the control.

#’## Investigate a Control contrast (say treatment 1) for the od design

PBIBD.lay$Control <- with(PBIBD.lay, fac.uselogical(Treatments == 1,

labels = c("Control", "rest")))

PBIBD.canon <- designAnatomy(formulae = list(units = ~ Blocks/Units,

trts = ~ Control + Treatments),

grandMean = TRUE, data = PBIBD.lay)

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Treatments[Control] and

Control are partially aliased in Blocks

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Treatments[Control] and

Control are partially aliased in Units[Blocks]

summary(PBIBD.canon, which.criteria = c(’aeff’, ’xeff’, ’eeff’,’order’, ’dforth’))

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency xefficiency eefficiency order dforthog

Mean 1 Mean 1 1.0000 1.0000 1.0000 1 1

Blocks 5 Control 1 0.1000 0.1000 0.1000 1 0

Treatments[Control] 1 0.2500 0.2500 0.2500 1 0

Residual 3

Units[Blocks] 18 Control 1 0.9000 0.9000 0.9000 1 0

Treatments[Control] 4 0.8824 1.0000 0.7500 3 2

Residual 13

##

Table of information (partially) aliased with previous sources derived from the same formula

##

Source df Alias In aefficiency xefficiency eefficiency order dforthog

Treatments[Control] 1 Control Blocks 1.0000 1.0000 1.0000 1 1

Treatments[Control] 1 Control Units[Blocks] 0.0196 0.0196 0.0196 1 0

##

The design is not orthogonal

#’### Try other treatments

PBIBD.lay$Control <- with(PBIBD.lay, fac.uselogical(Treatments == "3",

labels = c("Control", "rest")))

#Rerun the designAnatomy and summary functions

1. Why must the Control source be balanced?

Because it has a single degree of freedom and so there can only be one value for the single efficiency factor.

4.7 The Casuarina experiment (continued)

In Section 3.3 an exploration was made of the properties of the split-unit design for an experiment to investigate
the differences between 60 provenances of a species of Casuarina tree, these provenances coming from 18 countries;
the trees were inoculated prior to planting at two different times.

The experiment involves nested factors in that the provenances came from 12 countries so that the factor
Provenances is nested within Countries. Here we investigate a model that has separate terms for each country
that model differences between provenances from each country. The factor-allocation diagram based on this
model is in Figure 16.

48

'

&

$

%

2 InocTimes
18 Countries
5 ProvAust in C
2 ProvBenin in C
4 ProvChina in C
4 ProvEgypt in C
4 ProvFiji in C
2 ProvGuam in C
7 ProvIndia in C
9 ProvKenya in C

10 ProvMalay in C
2 ProvMaur in C
2 ProvPNG in C
4 ProvPhill in C
2 ProvPRico in C
3 ProvSolIs in C
4 ProvSriLa in C
5 ProvThai in C
3 ProvVanu in C
6 ProvViet in C

�

�

�

�

4 Reps

6 Rows in R

10 Columns

120 treatments 240 units

• ◦

Figure 16: Factor-allocation diagram for the row-and-column design: treatments are allocated to units; the arrow indicates that
the allocations are randomized; the lines leading to the ‘•’ indicate that it is is the combinations of Countries and Provenances that
is allocated; the ‘◦’ at the end of the lower arrow indicates that a nonorthogonal design is used; the two lines from ‘◦’ indicate
that the Countries and Provenances are allocated to the combinations of Rows and Columns using the design; Rows in R indicates
that the Rows are considered to be nested within Reps for this randomization; each of the factors beginning with Prov and followed
by ”in C” indicates that they are nested within Countries; R = Reps; C = Countries.

Use the dae function fac.multinested to generate the individual nested factors for each country.

#’## Input the design

data(Casuarina.dat)

#’## Add the nested factors

Casuarina.dat <- cbind(Casuarina.dat,

with(Casuarina.dat, fac.multinested(nesting.fac = Countries,

nested.fac = Provenances,

fac.prefix = "Prov_")))

This example has two difficulties that need to be dealt with. Firstly, a number of Countries contribute only
one Provenance and terms for differences amongst provenances from those countries are superfluous. Secondly,
because of the large number of terms and considerable nonothogonality in the design, it is difficult to get a full
decomposition. To overcome this, the following measures are taken:

� Leave out nested terms for countries with only a single provenance;

� Reduce the tolerances on testing for idempotency using the function set.daeTolerance;

� Do not attempt to partition the InocTimes#Provenances[Countries] interaction.

#’## Produce a list of Countries that have one than Provenance and construct the trts formula

fac.names <- paste0("Prov_", levels(Casuarina.dat$Countries))

no.prov <- unlist(lapply(Casuarina.dat[fac.names], function(fac) length(levels(fac[1]))-1))

(multProv <- names(no.prov[no.prov > 1]))

[1] "Prov_Australia" "Prov_China" "Prov_Egypt" "Prov_Fiji" "Prov_India"

[6] "Prov_Kenya" "Prov_Malaysia" "Prov_Phillipines" "Prov_SolomomIs" "Prov_SriLanka"

[11] "Prov_Thailand" "Prov_Vanuatu" "Prov_Vietnam"

trts.form <- as.formula(paste0("~ Countries/(",

paste0(multProv, collapse = "+"),

")+InocTime/Countries/Provenances"))

(trts.form)

49

~Countries/(Prov_Australia + Prov_China + Prov_Egypt + Prov_Fiji +

Prov_India + Prov_Kenya + Prov_Malaysia + Prov_Phillipines +

Prov_SolomomIs + Prov_SriLanka + Prov_Thailand + Prov_Vanuatu +

Prov_Vietnam) + InocTime/Countries/Provenances

#’## Check the properties of the design

set.daeTolerance(1e-05)

Casuarina.canon <- designAnatomy(formulae = list(units = ~ (Reps/Rows)*Columns,

trts = trts.form),

keep.order = TRUE,

grandMean = TRUE,

data = Casuarina.dat)

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Australia[Countries]

and Countries are partially aliased in Rows[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Australia[Countries]

and Countries are partially aliased in Reps#Columns

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov China[Countries]

and Countries are partially aliased in Reps#Columns

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov China[Countries]

and Prov Australia[Countries] are partially aliased in Reps#Columns

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Egypt[Countries]

and Countries are partially aliased in Reps#Columns

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Fiji[Countries] and

Countries are partially aliased in Reps#Columns

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Fiji[Countries] and

Prov Australia[Countries] are partially aliased in Reps#Columns

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Fiji[Countries] and

Prov Egypt[Countries] are partially aliased in Reps#Columns

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov India[Countries]

and Countries are partially aliased in Reps#Columns

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov India[Countries]

and Prov Australia[Countries] are partially aliased in Reps#Columns

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov India[Countries]

and Prov China[Countries] are partially aliased in Reps#Columns

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov India[Countries]

and Prov Egypt[Countries] are partially aliased in Reps#Columns

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov India[Countries]

and Prov Fiji[Countries] are partially aliased in Reps#Columns

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Australia[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov China[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov China[Countries]

and Prov Australia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Egypt[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Egypt[Countries]

and Prov China[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Fiji[Countries] and

Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Fiji[Countries] and

Prov Australia[Countries] are partially aliased in Rows#Columns[Reps]

50

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Fiji[Countries] and

Prov Egypt[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov India[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov India[Countries]

and Prov Australia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov India[Countries]

and Prov China[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov India[Countries]

and Prov Egypt[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov India[Countries]

and Prov Fiji[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Kenya[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Kenya[Countries]

and Prov Australia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Kenya[Countries]

and Prov China[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Kenya[Countries]

and Prov Egypt[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Kenya[Countries]

and Prov Fiji[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Kenya[Countries]

and Prov India[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Malaysia[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Malaysia[Countries]

and Prov Australia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Malaysia[Countries]

and Prov China[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Malaysia[Countries]

and Prov Egypt[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Malaysia[Countries]

and Prov Fiji[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Malaysia[Countries]

and Prov India[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Malaysia[Countries]

and Prov Kenya[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Phillipines[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Phillipines[Countries]

and Prov Australia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Phillipines[Countries]

and Prov China[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Phillipines[Countries]

and Prov Egypt[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Phillipines[Countries]

and Prov India[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Phillipines[Countries]

and Prov Kenya[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Phillipines[Countries]

and Prov Malaysia[Countries] are partially aliased in Rows#Columns[Reps]

51

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov SolomomIs[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov SolomomIs[Countries]

and Prov Kenya[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov SolomomIs[Countries]

and Prov Malaysia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov SriLanka[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov SriLanka[Countries]

and Prov Australia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov SriLanka[Countries]

and Prov China[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov SriLanka[Countries]

and Prov Egypt[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov SriLanka[Countries]

and Prov Kenya[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov SriLanka[Countries]

and Prov Malaysia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Thailand[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Thailand[Countries]

and Prov Australia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Thailand[Countries]

and Prov China[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Thailand[Countries]

and Prov Egypt[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Thailand[Countries]

and Prov Fiji[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Thailand[Countries]

and Prov India[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Thailand[Countries]

and Prov Kenya[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Thailand[Countries]

and Prov Malaysia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Thailand[Countries]

and Prov Phillipines[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vanuatu[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vanuatu[Countries]

and Prov China[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vanuatu[Countries]

and Prov India[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vanuatu[Countries]

and Prov Kenya[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vanuatu[Countries]

and Prov Malaysia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vanuatu[Countries]

and Prov SriLanka[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vietnam[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vietnam[Countries]

and Prov Australia[Countries] are partially aliased in Rows#Columns[Reps]

52

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vietnam[Countries]

and Prov China[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vietnam[Countries]

and Prov Egypt[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vietnam[Countries]

and Prov India[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vietnam[Countries]

and Prov Kenya[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vietnam[Countries]

and Prov Malaysia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vietnam[Countries]

and Prov Phillipines[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vietnam[Countries]

and Prov SriLanka[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Prov Vietnam[Countries]

and Prov Thailand[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Prov Australia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Prov China[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Prov Egypt[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Prov Fiji[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Prov India[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Prov Kenya[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Prov Malaysia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Prov Phillipines[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Prov SolomomIs[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Prov SriLanka[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Prov Thailand[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Prov Vanuatu[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Countries#InocTime and

Prov Vietnam[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Prov Australia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Prov China[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Prov Egypt[Countries] are partially aliased in Rows#Columns[Reps]

53

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Prov Fiji[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Prov India[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Prov Kenya[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Prov Malaysia[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Prov Phillipines[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Prov SolomomIs[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Prov SriLanka[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Prov Thailand[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Prov Vanuatu[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Prov Vietnam[Countries] are partially aliased in Rows#Columns[Reps]

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Countries#InocTime are partially aliased in Rows#Columns[Reps]

summary(Casuarina.canon, which = c("aeff", "eeff", "order", "dforth"))

##

##

Summary table of the decomposition for units & trts (based on adjusted quantities)

##

Source.units df1 Source.trts df2 aefficiency eefficiency order dforthog

Mean 1 Mean 1 1.0000 1.0000 1 1

Reps 3 InocTime 1 1.0000 1.0000 1 1

Residual 2

Rows[Reps] 20 Countries 17 0.0145 0.0018 17 0

Prov_Australia[Countries] 3 0.0001 0.0000 3 0

Columns 9 Countries 9 0.0137 0.0028 9 0

Reps#Columns 27 Countries 17 0.0134 0.0012 17 0

Prov_Australia[Countries] 3 0.0522 0.0350 3 0

Prov_China[Countries] 1 0.0318 0.0318 1 0

Prov_Egypt[Countries] 2 0.0044 0.0023 2 0

Prov_Fiji[Countries] 2 0.0041 0.0021 2 0

Prov_India[Countries] 2 0.0705 0.0566 2 0

Rows#Columns[Reps] 180 Countries 17 0.7611 0.5588 17 0

Prov_Australia[Countries] 3 0.7259 0.6874 3 0

Prov_China[Countries] 2 0.7260 0.6771 2 0

Prov_Egypt[Countries] 2 0.7346 0.7309 2 0

Prov_Fiji[Countries] 2 0.7314 0.6754 2 0

Prov_India[Countries] 5 0.7097 0.6231 5 0

Prov_Kenya[Countries] 7 0.7128 0.6269 7 0

Prov_Malaysia[Countries] 8 0.7120 0.5745 8 0

Prov_Phillipines[Countries] 2 0.6736 0.6704 2 0

Prov_SolomomIs[Countries] 1 0.6838 0.6838 1 0

Prov_SriLanka[Countries] 2 0.7220 0.6759 2 0

Prov_Thailand[Countries] 3 0.7069 0.6701 3 0

54

Prov_Vanuatu[Countries] 1 0.7297 0.7297 1 0

Prov_Vietnam[Countries] 4 0.6975 0.6281 4 0

Countries#InocTime 17 0.6808 0.4735 17 0

InocTime#Provenances[Countries] 42 0.5516 0.2009 42 0

Residual 62

##

Table of information (partially) aliased with previous sources derived from the same formula

##

Source df Alias In aefficiency

Prov_Australia[Countries] 3 Countries Rows[Reps] 0.9251

Prov_Australia[Countries] 3 Countries Reps#Columns 0.5010

Prov_China[Countries] 2 Countries Reps#Columns 0.6772

Prov_China[Countries] 2 Prov_Australia[Countries] Reps#Columns 0.0597

Prov_Egypt[Countries] 2 Countries Reps#Columns 0.7933

Prov_Fiji[Countries] 2 Countries Reps#Columns 0.4978

Prov_Fiji[Countries] 2 Prov_Australia[Countries] Reps#Columns 0.0028

Prov_Fiji[Countries] 2 Prov_Egypt[Countries] Reps#Columns 0.0645

Prov_India[Countries] 5 Countries Reps#Columns 0.3421

Prov_India[Countries] 3 Prov_Australia[Countries] Reps#Columns 0.1025

Prov_India[Countries] 2 Prov_China[Countries] Reps#Columns 0.0613

Prov_India[Countries] 2 Prov_Egypt[Countries] Reps#Columns 0.0173

Prov_India[Countries] 2 Prov_Fiji[Countries] Reps#Columns 0.0321

Prov_Australia[Countries] 3 Countries Rows#Columns[Reps] 0.0161

Prov_China[Countries] 2 Countries Rows#Columns[Reps] 0.0178

Prov_China[Countries] 2 Prov_Australia[Countries] Rows#Columns[Reps] 0.0003

Prov_Egypt[Countries] 2 Countries Rows#Columns[Reps] 0.0245

Prov_Egypt[Countries] 2 Prov_China[Countries] Rows#Columns[Reps] 0.0028

Prov_Fiji[Countries] 2 Countries Rows#Columns[Reps] 0.0110

Prov_Fiji[Countries] 2 Prov_Australia[Countries] Rows#Columns[Reps] 0.0007

Prov_Fiji[Countries] 2 Prov_Egypt[Countries] Rows#Columns[Reps] 0.0005

Prov_India[Countries] 5 Countries Rows#Columns[Reps] 0.0115

Prov_India[Countries] 3 Prov_Australia[Countries] Rows#Columns[Reps] 0.0040

Prov_India[Countries] 2 Prov_China[Countries] Rows#Columns[Reps] 0.0036

Prov_India[Countries] 2 Prov_Egypt[Countries] Rows#Columns[Reps] 0.0014

Prov_India[Countries] 2 Prov_Fiji[Countries] Rows#Columns[Reps] 0.0042

Prov_Kenya[Countries] 7 Countries Rows#Columns[Reps] 0.0083

Prov_Kenya[Countries] 3 Prov_Australia[Countries] Rows#Columns[Reps] 0.0102

Prov_Kenya[Countries] 2 Prov_China[Countries] Rows#Columns[Reps] 0.0082

Prov_Kenya[Countries] 2 Prov_Egypt[Countries] Rows#Columns[Reps] 0.0065

Prov_Kenya[Countries] 2 Prov_Fiji[Countries] Rows#Columns[Reps] 0.0035

Prov_Kenya[Countries] 5 Prov_India[Countries] Rows#Columns[Reps] 0.0015

Prov_Malaysia[Countries] 8 Countries Rows#Columns[Reps] 0.0068

Prov_Malaysia[Countries] 3 Prov_Australia[Countries] Rows#Columns[Reps] 0.0058

Prov_Malaysia[Countries] 2 Prov_China[Countries] Rows#Columns[Reps] 0.0093

Prov_Malaysia[Countries] 2 Prov_Egypt[Countries] Rows#Columns[Reps] 0.0079

Prov_Malaysia[Countries] 2 Prov_Fiji[Countries] Rows#Columns[Reps] 0.0088

Prov_Malaysia[Countries] 5 Prov_India[Countries] Rows#Columns[Reps] 0.0077

Prov_Malaysia[Countries] 7 Prov_Kenya[Countries] Rows#Columns[Reps] 0.0005

Prov_Phillipines[Countries] 2 Countries Rows#Columns[Reps] 0.0199

Prov_Phillipines[Countries] 2 Prov_Australia[Countries] Rows#Columns[Reps] 0.0018

Prov_Phillipines[Countries] 2 Prov_China[Countries] Rows#Columns[Reps] 0.0033

Prov_Phillipines[Countries] 2 Prov_Egypt[Countries] Rows#Columns[Reps] 0.0017

Prov_Phillipines[Countries] 2 Prov_India[Countries] Rows#Columns[Reps] 0.0116

55

Prov_Phillipines[Countries] 2 Prov_Kenya[Countries] Rows#Columns[Reps] 0.0030

Prov_Phillipines[Countries] 2 Prov_Malaysia[Countries] Rows#Columns[Reps] 0.0090

Prov_SolomomIs[Countries] 1 Countries Rows#Columns[Reps] 0.0244

Prov_SolomomIs[Countries] 1 Prov_Kenya[Countries] Rows#Columns[Reps] 0.0103

Prov_SolomomIs[Countries] 1 Prov_Malaysia[Countries] Rows#Columns[Reps] 0.0108

Prov_SriLanka[Countries] 2 Countries Rows#Columns[Reps] 0.0192

Prov_SriLanka[Countries] 2 Prov_Australia[Countries] Rows#Columns[Reps] 0.0020

Prov_SriLanka[Countries] 2 Prov_China[Countries] Rows#Columns[Reps] 0.0062

Prov_SriLanka[Countries] 2 Prov_Egypt[Countries] Rows#Columns[Reps] 0.0017

Prov_SriLanka[Countries] 2 Prov_Kenya[Countries] Rows#Columns[Reps] 0.0079

Prov_SriLanka[Countries] 2 Prov_Malaysia[Countries] Rows#Columns[Reps] 0.0027

Prov_Thailand[Countries] 3 Countries Rows#Columns[Reps] 0.0109

Prov_Thailand[Countries] 3 Prov_Australia[Countries] Rows#Columns[Reps] 0.0000

Prov_Thailand[Countries] 2 Prov_China[Countries] Rows#Columns[Reps] 0.0003

Prov_Thailand[Countries] 2 Prov_Egypt[Countries] Rows#Columns[Reps] 0.0024

Prov_Thailand[Countries] 2 Prov_Fiji[Countries] Rows#Columns[Reps] 0.0065

Prov_Thailand[Countries] 3 Prov_India[Countries] Rows#Columns[Reps] 0.0014

Prov_Thailand[Countries] 3 Prov_Kenya[Countries] Rows#Columns[Reps] 0.0059

Prov_Thailand[Countries] 3 Prov_Malaysia[Countries] Rows#Columns[Reps] 0.0021

Prov_Thailand[Countries] 2 Prov_Phillipines[Countries] Rows#Columns[Reps] 0.0019

Prov_Vanuatu[Countries] 1 Countries Rows#Columns[Reps] 0.0185

Prov_Vanuatu[Countries] 1 Prov_China[Countries] Rows#Columns[Reps] 0.0107

Prov_Vanuatu[Countries] 1 Prov_India[Countries] Rows#Columns[Reps] 0.0070

Prov_Vanuatu[Countries] 1 Prov_Kenya[Countries] Rows#Columns[Reps] 0.0103

Prov_Vanuatu[Countries] 1 Prov_Malaysia[Countries] Rows#Columns[Reps] 0.0044

Prov_Vanuatu[Countries] 1 Prov_SriLanka[Countries] Rows#Columns[Reps] 0.0072

Prov_Vietnam[Countries] 4 Countries Rows#Columns[Reps] 0.0144

Prov_Vietnam[Countries] 3 Prov_Australia[Countries] Rows#Columns[Reps] 0.0021

Prov_Vietnam[Countries] 2 Prov_China[Countries] Rows#Columns[Reps] 0.0028

Prov_Vietnam[Countries] 2 Prov_Egypt[Countries] Rows#Columns[Reps] 0.0025

Prov_Vietnam[Countries] 4 Prov_India[Countries] Rows#Columns[Reps] 0.0017

Prov_Vietnam[Countries] 4 Prov_Kenya[Countries] Rows#Columns[Reps] 0.0031

Prov_Vietnam[Countries] 4 Prov_Malaysia[Countries] Rows#Columns[Reps] 0.0019

Prov_Vietnam[Countries] 2 Prov_Phillipines[Countries] Rows#Columns[Reps] 0.0061

Prov_Vietnam[Countries] 2 Prov_SriLanka[Countries] Rows#Columns[Reps] 0.0080

Prov_Vietnam[Countries] 3 Prov_Thailand[Countries] Rows#Columns[Reps] 0.0005

Countries#InocTime 17 Countries Rows#Columns[Reps] 0.0001

Countries#InocTime 3 Prov_Australia[Countries] Rows#Columns[Reps] 0.0147

Countries#InocTime 2 Prov_China[Countries] Rows#Columns[Reps] 0.0186

Countries#InocTime 2 Prov_Egypt[Countries] Rows#Columns[Reps] 0.0182

Countries#InocTime 2 Prov_Fiji[Countries] Rows#Columns[Reps] 0.0085

Countries#InocTime 5 Prov_India[Countries] Rows#Columns[Reps] 0.0114

Countries#InocTime 7 Prov_Kenya[Countries] Rows#Columns[Reps] 0.0095

Countries#InocTime 8 Prov_Malaysia[Countries] Rows#Columns[Reps] 0.0100

Countries#InocTime 2 Prov_Phillipines[Countries] Rows#Columns[Reps] 0.0263

Countries#InocTime 1 Prov_SolomomIs[Countries] Rows#Columns[Reps] 0.0198

Countries#InocTime 2 Prov_SriLanka[Countries] Rows#Columns[Reps] 0.0126

Countries#InocTime 3 Prov_Thailand[Countries] Rows#Columns[Reps] 0.0211

Countries#InocTime 1 Prov_Vanuatu[Countries] Rows#Columns[Reps] 0.0099

Countries#InocTime 4 Prov_Vietnam[Countries] Rows#Columns[Reps] 0.0162

InocTime#Provenances[Countries] 17 Countries Rows#Columns[Reps] 0.0222

InocTime#Provenances[Countries] 3 Prov_Australia[Countries] Rows#Columns[Reps] 0.0647

InocTime#Provenances[Countries] 2 Prov_China[Countries] Rows#Columns[Reps] 0.0604

56

InocTime#Provenances[Countries] 2 Prov_Egypt[Countries] Rows#Columns[Reps] 0.0636

InocTime#Provenances[Countries] 2 Prov_Fiji[Countries] Rows#Columns[Reps] 0.0779

InocTime#Provenances[Countries] 5 Prov_India[Countries] Rows#Columns[Reps] 0.0693

InocTime#Provenances[Countries] 7 Prov_Kenya[Countries] Rows#Columns[Reps] 0.0528

InocTime#Provenances[Countries] 8 Prov_Malaysia[Countries] Rows#Columns[Reps] 0.0488

InocTime#Provenances[Countries] 2 Prov_Phillipines[Countries] Rows#Columns[Reps] 0.0750

InocTime#Provenances[Countries] 1 Prov_SolomomIs[Countries] Rows#Columns[Reps] 0.0579

InocTime#Provenances[Countries] 2 Prov_SriLanka[Countries] Rows#Columns[Reps] 0.0502

InocTime#Provenances[Countries] 3 Prov_Thailand[Countries] Rows#Columns[Reps] 0.0720

InocTime#Provenances[Countries] 1 Prov_Vanuatu[Countries] Rows#Columns[Reps] 0.0442

InocTime#Provenances[Countries] 4 Prov_Vietnam[Countries] Rows#Columns[Reps] 0.0527

InocTime#Provenances[Countries] 17 Countries#InocTime Rows#Columns[Reps] 0.0178

eefficiency order dforthog

0.8435 3 0

0.3667 3 0

0.5119 2 1

0.0349 2 0

0.6920 2 0

0.3561 2 0

0.0014 2 0

0.0514 2 0

0.1666 5 0

0.0708 3 0

0.0356 2 0

0.0092 2 0

0.0174 2 0

0.0113 3 0

0.0120 2 0

0.0002 2 0

0.0229 2 0

0.0020 2 0

0.0063 2 0

0.0004 2 0

0.0002 2 0

0.0040 5 0

0.0018 3 0

0.0021 2 0

0.0008 2 0

0.0026 2 0

0.0025 7 0

0.0059 3 0

0.0059 2 0

0.0043 2 0

0.0023 2 0

0.0004 5 0

0.0017 8 0

0.0033 3 0

0.0063 2 0

0.0058 2 0

0.0066 2 0

0.0033 5 0

0.0001 7 0

0.0162 2 0

57

0.0009 2 0

0.0022 2 0

0.0010 2 0

0.0088 2 0

0.0017 2 0

0.0065 2 0

0.0244 1 0

0.0103 1 0

0.0108 1 0

0.0161 2 0

0.0015 2 0

0.0039 2 0

0.0010 2 0

0.0067 2 0

0.0014 2 0

0.0063 3 0

0.0000 3 0

0.0001 2 0

0.0016 2 0

0.0059 2 0

0.0006 3 0

0.0034 3 0

0.0009 3 0

0.0010 2 0

0.0185 1 0

0.0107 1 0

0.0070 1 0

0.0103 1 0

0.0044 1 0

0.0072 1 0

0.0067 4 0

0.0009 3 0

0.0020 2 0

0.0019 2 0

0.0007 4 0

0.0012 4 0

0.0007 4 0

0.0053 2 0

0.0053 2 0

0.0002 3 0

0.0000 17 0

0.0090 3 0

0.0138 2 0

0.0148 2 0

0.0052 2 0

0.0038 5 0

0.0027 7 0

0.0026 8 0

0.0208 2 0

0.0198 1 0

0.0073 2 0

0.0153 3 0

0.0099 1 0

58

0.0102 4 0

0.0042 17 0

0.0497 3 0

0.0515 2 0

0.0489 2 0

0.0598 2 0

0.0395 5 0

0.0273 7 0

0.0228 8 0

0.0626 2 0

0.0579 1 0

0.0426 2 0

0.0501 3 0

0.0442 1 0

0.0348 4 0

0.0025 17 0

##

The design is not orthogonal

4.7.1 Questions

1. How does this analysis compare with that conducted in Section 3.3?

The 42 df for Provenances[Countries] has been split into the differences between provenances for each
country. Otherwise, the decompositions are the same.

59

5 Multiphase experiments in R

This class of experiments differs from those previously presented in that they often employ two or more random-
izations or allocations, each to a different type of unit. As a result, there will be three or more sets of factors,
or tiers, to deal with; further, when there are three sets of factors, three formula will need to be supplied to
designAnatomy.

5.1 Athletic examples based on Brien et al. (2011)

Brien et al. (2011) give several designs for an athletic experiment that illustrate the basic principles to be employed
in designing multiphase experiments. Here designs for two different multiphase scenarios are considered, both
being based on a first-phase that is the testing phase and employs a split-unit design.

5.1.1 A standard single-phase athlete training experiment

First, a split-unit design is generated for an experiment in which the performance of an athlete when subject to
nine different training conditions is tested. The nine training conditions are the combinations of three surfaces
and three intensities of training. Also, assume that the prime interest is in surface differences, with intensities
included to observe the surfaces over a range of intensities. The experiment is to involve 12 athletes, three per
month for four consecutive months; each athlete undergoes three tests. The heart rate of the athlete is to be
taken immediately upon completion of a test.

A split-plot design is to be employed for the experiment: the three intensities are randomized to the three
athletes in each month and the three surfaces are randomized to the three tests that each athlete is to undergo.
The factor-allocation diagram is shown in Figure 17. Generate a randomized layout for the experiment.

�

�
	3 Intensities

3 Surfaces

�
�

�
�

4 Months

3 Athletes in M

3 Tests in M, A

9 training conditions 36 tests

Figure 17: Factor-allocation diagram for the standard athlete training experiment: training conditions are randomized to tests;
the two left-hand arrows indicate that the levels of Intensities and Surfaces are randomized to Athletes and Tests, respectively; M
= Months; A = Athletes.

#’## Phase 1: Construct a systematic layout and generate a randomized layout for the first phase

split.sys <- cbind(fac.gen(list(Months = 4, Athletes = 3, Tests = 3)),

fac.gen(list(Intensities = LETTERS[1:3], Surfaces = 3),

times = 4))

split.lay <- designRandomize(allocated = split.sys[c("Intensities", "Surfaces")],

recipient = split.sys[c("Months", "Athletes", "Tests")],

nested.recipients = list(Athletes = "Months",

Tests = c("Months", "Athletes")),

seed = 2598)

split.lay

Months Athletes Tests Intensities Surfaces

1 1 1 1 B 3

2 1 1 2 B 2

3 1 1 3 B 1

4 1 2 1 C 2

5 1 2 2 C 1

6 1 2 3 C 3

7 1 3 1 A 1

8 1 3 2 A 2

60

9 1 3 3 A 3

10 2 1 1 B 1

11 2 1 2 B 2

12 2 1 3 B 3

13 2 2 1 A 3

14 2 2 2 A 2

15 2 2 3 A 1

16 2 3 1 C 1

17 2 3 2 C 3

18 2 3 3 C 2

19 3 1 1 B 1

20 3 1 2 B 3

21 3 1 3 B 2

22 3 2 1 C 2

23 3 2 2 C 3

24 3 2 3 C 1

25 3 3 1 A 2

26 3 3 2 A 3

27 3 3 3 A 1

28 4 1 1 A 3

29 4 1 2 A 2

30 4 1 3 A 1

31 4 2 1 B 1

32 4 2 2 B 2

33 4 2 3 B 3

34 4 3 1 C 1

35 4 3 2 C 3

36 4 3 3 C 2

#’## Get anatomy to check properties of the design

split.canon <- designAnatomy(formulae = list(tests = ~ Months/Athletes/Tests,

cond = ~ Intensities*Surfaces),

grandMean = TRUE, data = split.lay)

summary(split.canon, which.criteria="none")

##

##

Summary table of the decomposition for tests & cond

##

Source.tests df1 Source.cond df2

Mean 1 Mean 1

Months 3

Athletes[Months] 8 Intensities 2

Residual 6

Tests[Months:Athletes] 24 Surfaces 2

Intensities#Surfaces 4

Residual 18

#’## Plot the design

#+ "SplitDes_v2"

split.lay <- within(split.lay,

Conditions <- fac.combine(list(Intensities, Surfaces),

combine.levels = TRUE))

plt <- designGGPlot(split.lay, labels = "Conditions",

61

row.factors = "Tests", column.factors = c("Months", "Athletes"),

cellalpha = 0.75, label.size = 6,

blockdefinition = rbind(c(3,1)), blocklinecolour = "darkgreen",

printPlot = FALSE)

designBlocksGGPlot(plt, nrows = 3, ncolumns = 3, blockdefinition = rbind(c(3,3)),

facetstrips.placement = "outside.title")

B,3

B,2

B,1

C,2

C,1

C,3

A,1

A,2

A,3

B,1

B,2

B,3

A,3

A,2

A,1

C,1

C,3

C,2

B,1

B,3

B,2

C,2

C,3

C,1

A,2

A,3

A,1

A,3

A,2

A,1

B,1

B,2

B,3

C,1

C,3

C,2

Months: 1 Months: 2 Months: 3 Months: 4

1 2 3 1 2 3 1 2 3 1 2 3

3

2

1

Athletes

Te
st

s

Plot of Conditions

Question

1. Why was a split-plot design chosen for this experiment?

Because it is likely that variation between tests within an athlete will be smaller than variation between

62

athletes within a month. Hence, because the prime interest is in Surfaces, they are assigned to tests within
an athlete and will have better precision than Intensities, which have been assigned to the more variable
athletes within a month.

5.1.2 A simple two-phase athlete training experiment

Suppose that, in addition to heart rate taken immediately upon completion of a test, the free haemoglobin is to
be measured using blood specimens taken from the athletes after each test and transported to the laboratory
for analysis. That is, a second laboratory phase is required to obtain the new response. In this phase, because
the specimens become available monthly, the batch of specimens for one month are to be processed, in a random
order, before those for the next month are available. The factor-allocation diagram for this experiment is in
Figure 18, the dashed line indicating that Months are systematically allocated to Batches. The randomizations
in this diagram are composed (Brien and Bailey, 2006) and is one of the two types of randomizations in a chain
(Bailey and Brien, 2016). This means that the second-phase randomization only need to consider how the tests
factors are to be assigned to locations; training conditions can be ignored in determining the second-phase design.

�

�
	3 Intensities

3 Surfaces

�
�

�
�

4 Months

3 Athletes in M

3 Tests in M, A

�
�

�
�

4 Batches

9 Locations in B

9 training conditions 36 tests 36 locations

•

Figure 18: Factor-allocation diagram for the two-phase athlete training experiment: training conditions are randomized to tests
and tests are allocated to locations; the two left-hand arrows indicate that the levels of Intensities and Surfaces are randomized to
Athletes and Tests, respectively; the dashed arrow indicates that Months are systematically allocated to Batches; the ‘•’ indicates
that the combinations of the levels of Athletes and Tests are randomized to the Locations; M = Months; A = Athletes; B = Batches.

Using the following R code, obtain a layout for the second phase and check the properties of the layout. In
doing this, the first-phase layout is randomized. However, because Months is not randomized to Batches, the
argument except in designRandomize is used to effect the systematic allocation.

#’# Generate a layout for a simple two-phase athlete training experiment

#’

#’## Phase 1 - the split-plot design that has already been generated.

#’## Phase 2 - randomize tests (and training conditions) to locations,

#’## but Months assigned systematically to Batches

#’## so except Batches from the randomization

eg1.lay <- designRandomize(allocated = split.lay,

recipient = list(Batches = 4, Locations = 9),

nested.recipients = list(Locations = "Batches"),

except = "Batches",

seed = 71230)

eg1.lay

Batches Locations Months Athletes Tests Intensities Surfaces Conditions

1 1 1 1 2 3 C 3 C,3

2 1 2 1 1 2 B 2 B,2

3 1 3 1 2 2 C 1 C,1

4 1 4 1 3 1 A 1 A,1

5 1 5 1 3 2 A 2 A,2

6 1 6 1 1 1 B 3 B,3

7 1 7 1 2 1 C 2 C,2

8 1 8 1 1 3 B 1 B,1

9 1 9 1 3 3 A 3 A,3

10 2 1 2 3 1 C 1 C,1

11 2 2 2 2 2 A 2 A,2

63

12 2 3 2 1 3 B 3 B,3

13 2 4 2 1 2 B 2 B,2

14 2 5 2 3 2 C 3 C,3

15 2 6 2 2 1 A 3 A,3

16 2 7 2 2 3 A 1 A,1

17 2 8 2 3 3 C 2 C,2

18 2 9 2 1 1 B 1 B,1

19 3 1 3 1 1 B 1 B,1

20 3 2 3 3 1 A 2 A,2

21 3 3 3 2 3 C 1 C,1

22 3 4 3 2 2 C 3 C,3

23 3 5 3 2 1 C 2 C,2

24 3 6 3 3 3 A 1 A,1

25 3 7 3 3 2 A 3 A,3

26 3 8 3 1 2 B 3 B,3

27 3 9 3 1 3 B 2 B,2

28 4 1 4 2 3 B 3 B,3

29 4 2 4 2 1 B 1 B,1

30 4 3 4 1 1 A 3 A,3

31 4 4 4 1 2 A 2 A,2

32 4 5 4 1 3 A 1 A,1

33 4 6 4 3 1 C 1 C,1

34 4 7 4 2 2 B 2 B,2

35 4 8 4 3 2 C 3 C,3

36 4 9 4 3 3 C 2 C,2

#’## Plot the layout

#+ Athlete_eg1lay

eg1.lay$Conditions <- with(eg1.lay, fac.combine(list(Intensities, Surfaces),

combine=TRUE, sep=","))

designGGPlot(eg1.lay, labels = "Conditions",

row.factors = "Locations", column.factors = "Batches",

cellfillcolour.column = "Athletes", cellalpha = 0.75, label.size = 6,

title = "Randomized Intensities-Surfaces combinations",

blockdefinition = rbind(c(9,1)),

ggplotFuncs = list(xlab("Batches (Months)"),

theme(legend.position = "right")))

64

C,3

B,2

C,1

A,1

A,2

B,3

C,2

B,1

A,3

C,1

A,2

B,3

B,2

C,3

A,3

A,1

C,2

B,1

B,1

A,2

C,1

C,3

C,2

A,1

A,3

B,3

B,2

B,3

B,1

A,3

A,2

A,1

C,1

B,2

C,3

C,2

1 2 3 4

9

8

7

6

5

4

3

2

1

Batches (Months)
Lo

ca
tio

ns

Athletes
1

2

3

Randomized Intensities−Surfaces combinations

Check the properties of the design.

65

#’## Check properties of the design

eg1.canon <- designAnatomy(formulae = list(locs = ~ Batches/Locations,

tests = ~ Months/Athletes/Tests,

cond = ~ Intensities*Surfaces),

grandMean = TRUE, data = eg1.lay)

summary(eg1.canon, which.criteria="none")

##

##

Summary table of the decomposition for locs, tests & cond

##

Source.locs df1 Source.tests df2 Source.cond df3

Mean 1 Mean 1 Mean 1

Batches 3 Months 3

Locations[Batches] 32 Athletes[Months] 8 Intensities 2

Residual 6

Tests[Months:Athletes] 24 Surfaces 2

Intensities#Surfaces 4

Residual 18

Questions

1. What would be the allocation-based mixed model for this experiment, an allocation-based mixed model
having the same terms as the randomization-based mixed model that would apply if all the allocations had
been made by randomizing. Do you anticipate any problem in fitting it?

The allocation-based mixed model is formed by treating all training-conditions factors as fixed and the
remaining factors as random. Hence, the symbolic mixed model is Intensities + Surfaces + Intensi-
tiesˆSurfaces | Months + MonthsˆAthletes + MonthsˆAthletesˆTests + Batches + BatchesˆLocations. The
problem in fitting it would be that Months and Batches are confounded so that the variance model is singular.

2. Compare the units for the two phases in this experiment?

A unit in the first phase is a test conducted on an athlete in a particular month; in the second phase, a
unit is a location of a test within a batch. That is, the unit in the first phase is an athlete’s test and in the
second phase is a blood specimen in a lab location.

3. What are the outcomes for the two phases for this experiment?

The outcome for the first phase is the heart rate for a test and a blood specimen from the test; the outcome
for the second phase, is the free haemglobin measured at a location.

5.1.3 Allowing for lab processing order in the athletic training example

Brien (2017) discusses a design, and its properties, that differs in the second phase from that described in
Section 5.1.2: it assumes that lab processing order within a batch is important and so the second phase now
requires a row-column design. However, one cannot consider a design for just Months, Athletes and Tests and
ignore Intensities and Surfaces, as was done in the previous design. Indeed prime consideration needs to be
given to Intensities and Surfaces. That is, a suitable cross-phase design for allocating Intensities and Surfaces to
Batches and Locations is needed. However, the second-phase design that allocates Months, Athletes and Tests
to Batches and Locations has to be considered in that it must account for the split-unit nature of the first-phase
design.

For the second-phase design, the Months are associated with Batches. Then each triple of consecutive
locations in a batch are associated with a single athlete, one of those for the month associated with the batch.
This leaves tests to be assigned to locations within triples. Thus, the cross-phase design will need to allocate
efficiently an intensity to a location triple and surface to the locations within a triple.

The cross-phase design is a balanced factorial design (Hinkelmann and Kempthorne, 2005, Section 12.5) and
can be constructed using two extended Latin squares (ELS) as follows:

66

1. a 3 × 4 ELS, formed from a 3 × 3 Latin square by repeating one of its columns, will be used to allocate
Intensities to the 3 Locations triples × 4 Months.

2. A 3× 4 ELS will be used to allocate Surfaces to the 3 Locations × 4 Months within a triple; the same ELS
is used for the three triples.

3. To ensure no repeat Intensities-Surfaces combinations for a Location, the two Batches to which the repeated
columns of the ELS for Intensities are assigned must be different from the two Batches to which repeated
columns of the ELS for Surfaces are assigned.

The factor-allocation diagram, for this design, is in Figure 19. In this diagram, the training conditions and
tests panels are surrounded by a dashed rectangle and lines go from the training conditions sources to the lines
from the test sources. This indicates that the result of the allocation in the first phase needs to be explicitly
taken into account in the second-phase allocation. The randomizations involved have been called a randomized-
inclusive randomizations (Brien and Bailey, 2006) and are one of the two types of randomizations in a chain
(Bailey and Brien, 2016). Because Batches and Locations are crossed, the second phase randomization is achieved
by independently permuting the Batches and Locations. A design with the same properties had been previously
constructed by Rosemary Bailey (pers. comm.).

�

�
	3 Intensities

3 Surfaces

�
�

�
�

4 Months

3 Athletes in M

3 Tests in M, A

�
�

�
�

4 Batches

9 Locations

9 training conditions 36 tests 36 locations

• ◦

Figure 19: Factor-allocation diagram for the two-phase athlete training experiment with a row-column design for the second phase:
training conditions are randomized to tests, then training conditions and tests are randomized to locations; the ‘•’ indicates that
the observed combinations of the levels of Intensities, Surfaces, Athletes and Tests are randomized to locations; the ‘◦’ indicates
that a nonorthogonal design was used in this randomization to the combinations of the levels of Batches and Locations; the dashed
arrow indicates that Months were systematically allocated to Batches; the dashed oval indicates that all factors from the first phase
form a pseudotier and all are actively involved in determining the allocation to locations; M = Months and A = Athletes.

Use the following R code to obtain a layout for the new second phase design.

#’## Generate a systematic cross-phase design for Intensities and Surfaces

#’ It is based on (i) an extended Latin square (ELS) for allocating Intensities to

#’ Locations triples x Batches and (ii) the same ELS for each triple, the ELSD being used to

#’ allocate Surfaces to the three Locations within each triple by four Batches.

#’ The Batches to which the repeated columns of the ELSD for Intensities are assigned must be

#’ different from the Batches to which repeated columns of the ELSD for Surfaces are assigned.

#+ Athlete_eg2sys_v3

eg2.phx.sys <- cbind(fac.gen(list(Batches = 4, Locations = 9)),

data.frame(Intensities = factor(rep(c(designLatinSqrSys(3), c(3,2,1)),

each = 3), labels = LETTERS[1:3]),

Surfaces = factor(c(rep(1:3, times = 3),

rep(1:3, times = 3),

rep(c(2,3,1), times = 3),

rep(c(3,1,2), times = 3)))))

eg2.phx.sys$Conditions <- with(eg2.phx.sys, fac.combine(list(Intensities, Surfaces),

combine.levels = TRUE))

designGGPlot(eg2.phx.sys, labels = "Conditions",

row.factors = "Locations", column.factors = "Batches",

cellfillcolour.column = "Intensities", cellalpha = 0.75, label.size = 6,

title = "Intensities-Surfaces for systematic cross-phase design",

blockdefinition = rbind(c(9,1)),

67

ggplotFuncs = list(xlab("Batches (Months)"),

theme(legend.position = "right")))

A,1

A,2

A,3

B,1

B,2

B,3

C,1

C,2

C,3

B,1

B,2

B,3

C,1

C,2

C,3

A,1

A,2

A,3

C,2

C,3

C,1

A,2

A,3

A,1

B,2

B,3

B,1

C,3

C,1

C,2

B,3

B,1

B,2

A,3

A,1

A,2

1 2 3 4

9

8

7

6

5

4

3

2

1

Batches (Months)

Lo
ca

tio
ns

Intensities
A

B

C

Intensities−Surfaces for systematic cross−phase design

68

69

#’## Second phase design

#’## Generate a systematic two-phase design by bringing in first-phase recipient factors

eg2.phx.sys$Months <- eg2.phx.sys$Batches

eg2.sys <- merge(split.lay, eg2.phx.sys) #merge on common factors Months, Intensities & Surfaces

designGGPlot(eg2.sys, labels = "Conditions",

row.factors = "Locations", column.factors = "Batches",

cellfillcolour.column = "Athletes", cellalpha = 0.75, label.size = 6,

title = "Intensities-Surfaces for systematic two-phase design",

blockdefinition = rbind(c(9,1)),

ggplotFuncs = list(xlab("Batches (Months)"),

theme(legend.position = "right")))

70

A,1

A,2

A,3

B,1

B,2

B,3

C,1

C,2

C,3

A,1

A,2

A,3

B,1

B,2

B,3

C,1

C,2

C,3 A,1

A,2

A,3

B,1

B,2

B,3

C,1

C,2

C,3

A,1

A,2

A,3

B,1

B,2

B,3

C,1

C,2

C,3

1 2 3 4

9

8

7

6

5

4

3

2

1

Batches (Months)
Lo

ca
tio

ns

Athletes
1

2

3

Intensities−Surfaces for systematic two−phase design

#’## Allocate the second phase

eg2.lay <- designRandomize(allocated = eg2.sys[c("Months", "Athletes", "Tests",

71

"Intensities", "Surfaces")],

recipient = eg2.sys[c("Batches", "Locations")],

except = "Batches",

seed = 243526)

head(eg2.lay)

Batches Locations Months Athletes Tests Intensities Surfaces

1 1 1 1 3 2 A 2

2 1 2 1 2 1 C 2

3 1 3 1 3 3 A 3

4 1 4 1 2 2 C 1

5 1 5 1 3 1 A 1

6 1 6 1 1 2 B 2

#’## Plot the layout

#+ Athlete_eg2lay_v3

eg2.lay$Conditions <- with(eg2.lay, fac.combine(list(Intensities, Surfaces),

combine=TRUE, sep=","))

designGGPlot(eg2.lay, labels = "Conditions",

row.factors = "Locations", column.factors = "Batches",

cellfillcolour.column = "Athletes", cellalpha = 0.75, label.size = 6,

title = "Randomized Intensities-Surfaces combinations",

blockdefinition = rbind(c(9,1)),

ggplotFuncs = list(xlab("Batches (Months)"),

theme(legend.position = "right")))

72

A,2

C,2

A,3

C,1

A,1

B,2

C,3

B,1

B,3

A,3

C,1

C,3

B,2

A,2

B,3

A,1

B,1

C,2 A,3

B,2

C,2

A,1

B,1

A,2

C,1

C,3

B,3

B,3

B,2

A,2

C,3

B,1

A,3

A,1

C,2

C,1

1 2 3 4

9

8

7

6

5

4

3

2

1

Batches (Months)
Lo

ca
tio

ns

Athletes
1

2

3

Randomized Intensities−Surfaces combinations

Check the properties of the design.

73

#’## Check properties of the design

eg2.canon <- designAnatomy(formulae = list(locs = ~ Batches*Locations,

tests = ~ Months/Athletes/Tests,

cond = ~ Intensities*Surfaces),

grandMean = TRUE, data = eg2.lay)

summary(eg2.canon, which.criteria =c("aefficiency", "order"))

##

##

Summary table of the decomposition for locs, tests & cond (based on adjusted quantities)

##

Source.locs df1 Source.tests df2 Source.cond df3 aefficiency order

Mean 1 Mean 1 Mean 1 1.0000 1

Batches 3 Months 3 1.0000 1

Locations 8 Athletes[Months] 2 Intensities 2 0.0625 1

Tests[Months:Athletes] 6 Surfaces 2 0.0625 1

Intensities#Surfaces 4 0.2500 1

Batches#Locations 24 Athletes[Months] 6 Intensities 2 0.9375 1

Residual 4 1.0000 1

Tests[Months:Athletes] 18 Surfaces 2 0.9375 1

Intensities#Surfaces 4 0.7500 1

Residual 12 1.0000 1

##

The design is not orthogonal

It is clear that Athletes[Months] and Tests[Months:Athletes] are not orthogonal to Locations and Batches#Locations,
because the former sources are confounded with both of the latter sources. To examine the nature of the
nonorthogonality, the anatomy for just the tests and locations tiers is obtained.

#"### Examine the nonorthogonality between locations and tests

eg2.locstests.canon <- designAnatomy(formulae = list(locs = ~ Batches*Locations,

tests = ~ Months/Athletes/Tests),

grandMean = TRUE, data = eg2.lay)

summary(eg2.locstests.canon, which.criteria =c("aefficiency", "order"))

##

##

Summary table of the decomposition for locs & tests

##

Source.locs df1 Source.tests df2 aefficiency order

Mean 1 Mean 1 1.0000 1

Batches 3 Months 3 1.0000 1

Locations 8 Athletes[Months] 2 1.0000 1

Tests[Months:Athletes] 6 1.0000 1

Batches#Locations 24 Athletes[Months] 6 1.0000 1

Tests[Months:Athletes] 18 1.0000 1

Questions

1. What do you conclude about the confounding of Athletes[Months] and Tests[Months:Athletes] with Loca-
tions?

Since all efficiency factors are one, it is concluded that the 8 degrees of freedom for Athletes[Months] has been
split into two orthogonal parts, one with 2 degrees of freedom which is confounded with Batches and the other

74

with 6 degrees of freedom which is confounded with Batches:Locations. The source Tests[Months:Athletes]
has been similarly partitioned.

2. Are the designs proposed for this experiment first-order balanced?

The design is first-order balanced, because the order of the efficiency factors is one for all confounded
sources.

3. What has been the cost of allowing for order of processing in the lab? Is the cost acceptable? Why?

The cost has been that some information about Athletes[Months], along with Intensities, and some infor-
mation about Tests[Months:Athletes], along with Surfaces and Intensities#Surfaces, has been confounded
with Locations. The cost is acceptable, because the amount of information lost on the main effects is only
6.25% and on the interaction is 25%. The latter will be recovered in a REML-based mixed model analy-
sis. However, the Residual degrees of freedom for Athletes[Months] has been reduced from 6 to 4 and for
Tests[Months:Athletes] from 18 to 14. While the latter is unlikely to be seriously deleterious, the former is
of concern.

5.2 McIntyre’s (1955) two-phase example

McIntyre (1955) reports an investigation of the effect of four light intensities on the synthesis of tobacco mosaic
virus in leaves of tobacco Nicotiana tabacum var. Hickory Pryor. It is a two-phase experiment: the first phase
is a treatment phase, in which the four light treatments are randomized to the tobacco leaves, and the second
phase is an assay phase, in which the tobacco leaves are randomized to the half-leaves of assay plants.

In the first phase, four successive leaves at defined positions on the stem were taken from each of eight plants
of comparable age and vigour that had been inoculated with the virus. Arbitrarily grouping the plants into two
sets of four, the four treatments were applied to the leaves, which had been separated from the plants and were
sustained by flotation on distilled water, in a Latin square design for each set with tobacco plants as columns
and leaf positions as rows; see Figure 21.

In the second phase, virus content of each tobacco leaf was assayed by expressing sap and inoculating half
leaves of the assay plants, Datura stramonium, on which countable lesions would appear. Lots of eight sap
samples were formed from pairs of tobacco plants, the pairs being comprised of a plant from each set in the
treatment phase. The eight samples from a lot were assigned to four assay plants using one of four 4× 4 Graeco-
Latin square designs, with the leaves from a single tobacco plant assigned using one of the alphabets and the
second tobacco plant using the other (see Figure 22). Actually, this design is a semi-Latin square (Bailey, 1992).

The factor-allocation diagram for the experiment is in Figure 20. Unfortunately, the randomization for this
experiment was not described by McIntyre (1955). Because there are multiple squares in both phases, there are
several possible randomizations depending on the effects anticipated as possible in the experiment. As shown
by the nesting relations in the factor-allocation diagram, I have assumed that randomization to NicPlant was
within Sets and to Posn was across Sets. Similarly, I have assumed that randomization to DatPlant was within
Lot and to AssPosn across Lot. In the factor-allocation diagram, N1 is a factor for the pairs of tobacco plants
formed by taking a plant from each set in the first phase.

75

Figure 20: Factor-allocation diagram for McIntyre’s (1955) two-phase experiment: treatments are randomized
to tobacco leaves and tobacco leaves are randomized to Datura half-leaves; the arrow to the ‘⃝⊥ ’, the ‘⃝⊥ ’ and
the two lines from the ‘⃝⊥ ’ indicate that Treat is randomized to the combinations of NicPlant and Posn using an
orthogonal design; N1 is a pseudofactor indexing the pairs of tobacco plants formed by taking a plant from each
set in the first phase and N2 is a pseudofactor indexing the tobacco plants within the pairs formed by taking a
plant from each set in the first phase; N1 is randomized to Lot in the second phase; the combinations of N2 and
Posn is randomized to the combinations of HalfLeaf, DatPlant and AssPosn using a nonorthogonal design, the
latter indicated by the ‘◦’; S = Set; L = Lot; D = DatPlant; A = AssPosn.

Figure 21: Layout for the first phase of McIntyre’s (1955) experiment

Nicotiana Plants
1 2 3 4 1 2 3 4

Leaf Leaf
Position Position

1 a b c d a b c d
1 5 9 13 17 21 25 29

2 b a d c c d a b
2 6 10 14 18 22 26 30

3 c d a b d c b a
3 7 11 15 19 23 27 31

4 d c b a b a d c
4 8 12 16 20 24 28 32

†The letter in each cell refers to the light intensity to be applied to the unit and the number to the
unit.

5.2.1 Check the properties of the randomized layout

Load the data and use designAnatomy to check the properties of the design.

#’## Load data

data("McIntyreTMV.dat")

#’## Check properties of the design

TMV.canon <- designAnatomy(formulae = list(assay = ~ ((Lot/DatPlant)*AssPosn)/HalfLeaf,

test = ~ (Set/NicPlant)*Posn,

trt = ~ Treat),

grandMean = TRUE, data = McIntyreTMV.dat)

summary(TMV.canon, which.criteria=c("aeff", "ord"))

##

##

Summary table of the decomposition for assay, test & trt (based on adjusted quantities)

##

Source.assay df1 Source.test df2 Source.trt df3 aefficiency order

Mean 1 Mean 1 Mean 1 1.0000 1

Lot 3 NicPlant[Set] 3 1.0000 1

76

Figure 22: Layout for the second phase of McIntyre’s (1955) experiment

Datura Plants
1 2 3 4 5 6 7 8

Assay Leaf Assay Leaf
Position Position

1 1 2 3 4 5 6 7 8
17 20 18 19 23 22 24 21

2 2 1 4 3 8 7 6 5
18 19 17 20 22 23 21 24

3 3 4 1 2 7 8 5 6
19 18 20 17 21 24 22 23

4 4 3 2 1 6 5 8 7
20 17 19 18 24 21 23 22

Datura Plants
9 10 11 12 13 14 15 16

Assay Leaf Assay Leaf
Position Position

1 9 10 11 12 13 14 15 16
28 25 27 26 30 31 29 32

2 10 9 12 11 16 15 14 13
27 26 28 25 31 30 32 29

3 11 12 9 10 15 16 13 14
26 27 25 28 32 29 31 30

4 12 11 10 9 14 13 16 15
25 28 26 27 29 32 30 31

†The numbers in the cell refer to the units from the first phase (tobacco leaves) to be assigned to the two
half-leaves of the assay plant; they are in standard order for Set, then NicPlant followed by Position.

77

DatPlant[Lot] 12

AssPosn 3

Lot#AssPosn 9

DatPlant#AssPosn[Lot] 36 Posn 3 0.5000 1

Set#Posn 3 0.5000 1

NicPlant#Posn[Set] 18 Treat 3 0.5000 1

Residual 15 0.5000 1

Residual 12

HalfLeaf[Lot:DatPlant:AssPosn] 64 Set 1 1.0000 1

NicPlant[Set] 3 1.0000 1

Posn 3 0.5000 1

Set#Posn 3 0.5000 1

NicPlant#Posn[Set] 18 Treat 3 0.5000 1

Residual 15 0.5000 1

Residual 36

##

The design is not orthogonal

5.2.2 Questions

1. Is the variance matrix for this experiment based on two sets of terms that are orthogonal?

The variance matrix for this experiment is based on the factors in the tobacco leaves and Datura half-
leaves tiers. The terms derived from the factors in these two tiers are not orthogonal. In particu-
lar, Set#Posn and NicPlant#Posn[Set] are partially confounded with both DatPlant#AssPosn[Lot] and
HalfLeaf[Lot:DatPlant:AssPosn].

2. What are the advantages and disadvantages of a mixed-model analysis of the data from this experiment,
as opposed to an anova?

The advantage of a mixed-model analysis is that combined estimates will be provided for Set#Posn,
NicPlant#Posn[Set], and Treat. The disadvantages are (i) that not all random terms are well-estimated,
some having small degrees of freedom, and cause problems in fitting the model, and (ii) the Wald F -statistics
are only approximately distributed as F -distributions. On the other hand, an anova is not applicable because
of the nonorthogonality between the sets of terms making up the variance matrix; at least some F -ratios
will not be independently distributed.

5.3 A Plant Accelerator experiment with a split-unit design

This experiment involves the investigation of 75 wheat lines, of which 73 are Nested Association Mapping (NAM)
wheat lines and the other two are two check lines, Scout and Gladius. It was conducted in 2014 in the Plant
Accelerator, a facility in Adelaide with 4 Smarthouses. A Smarthouse is a large greenhouse with two areas within
it: (i) a Table area at the southern end and (ii) a Conveyor area at the northern end — see Figure 23. The
conveyor system has the capability of automatically moving and imaging around 500 pots per day. There are air
conditioners placed down the western side of the Smarthouse, which creates a trend from west to east. Further,
there is a north-south trend due to changes in light intensity (Brien et al., 2013).

The experiment involves two phases: the table and conveyor phases. The table phase is the establishment
phase in which plants are germinated in pots on the tables where they undergo an early growth stage. In the
conveyor phase, having placed the pots in carts on the conveyor system, the plants are automatically imaged
and watered daily, being moved to a processing station by the conveyor system for this.

This experiment has a single plant per pot and these will be arranged in a 24 × 22 grid in both phases: 24
columns × 22 locations in the table phase and 24 lanes × 22 (2–23) positions, as shown in Figure 23. However,
the 24 columns in the table phase run east-west and the 24 lanes in the conveyor phase run north-south. Because
there are systematic trends in both phases to be accounted for in the analysis, the same layout will be used

78

in both phases, but the table layout will be rotated clockwise through 90◦. That is, Locations 1–22 will be in
Positions 2–23, respectively, and the Column will be placed in the Lane with the same number.

Figure 23: Schematic of Smarthouse for the Plant Accelerator experiment

The design employed for the experiment is a split-unit design in which two consecutive pots/carts form a
main unit. The main-unit design uses a blocked design with rows and columns generated with DiGGer (Coombes,
2009). It assigns Lines to main units, the Lines being unequally replicated; Scout and Gladius each occur on 12
main units (24 carts), 21 randomly-selected NAM lines each occur on 4 main units (8 carts) and the remaining
52 NAM lines each occur on 3 main units (6 carts). The subunit design merely randomizes Salt (0 mM NaCl,
100 mM NaCl) to the two carts in each main unit.

In the main-unit design, the blocks are, in the table phase, 6 Groups of 4 Columns and, in the conveyor
phase, 6 Zones of 4 Rows (lanes). However, while the generated design is based on crossed rows and columns, it
is known from past experience that, while there are differences between Zones, there are not differences between
Rows within Zones (Brien et al., 2013) and none are anticipated between Columns within Groups on the tables.
The columns of the main-unit design are indexed by 11 Pairs in the table phase and 11 MainPosns in the
conveyor phase. The design generated with DiGGer (Coombes, 2009) will be rerandomized so that the Lines are
randomized to 4 Columns within each Groups-Pairs combination and the 11 sets of Lines assigned by DiGGer to
the 11 Pairs will be rerandomized to Pairs. The factor-allocation diagram is shown in Figure 24.

5.3.1 Produce the layout

Use the following instructions to load the main-unit design produced with DiGGer and check its properties using
designAnatomy.

#’## Load the main-unit design - it has Lines in row-column order

data("Exp249.munit.des")

Exp249.munit.des$Blocks <- factor(rep(1:6, each = 44))

#’## Check its properties

Exp249.munit.canon <- designAnatomy(formulae = list(cart = ~ (Blocks/Rows)*Cols,

treat = ~ Lines),

grandMean = TRUE, data = Exp249.munit.des)

79

Figure 24: Factor-allocation diagram for the Plant Accelerator experiment: treatments are randomized to loca-
tions and locations are allocated to cars; the arrow to the ‘◦’, the ‘◦’ and the three lines from the ‘◦’ indicate
that Lines is randomized to the combinations of Groups, Columns and Pairs using a nonorthogonal design; the
arrow from Conditions to Locations indicates that Conditions were randomized to Locations; the dashed arrows
between the two panels on the right hand side indicate that the factors indexing locations were systematically
assigned to those indexing the carts; G = Groups; P = Pairs; C = Columns; Z = Zones; M = MainPosns; R =
Rows.

summary(Exp249.munit.canon)

##

##

Summary table of the decomposition for cart & treat (based on adjusted quantities)

##

Source.cart df1 Source.treat df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Blocks 5 Lines 5 0.1498 0.1422 5

Rows[Blocks] 18 Lines 18 0.2685 0.1813 18

Cols 10 Lines 10 0.2102 0.1769 10

Blocks#Cols 50 Lines 50 0.1154 0.0142 50

Rows#Cols[Blocks] 180 Lines 74 0.5816 0.2088 74

Residual 106

##

The design is not orthogonal

Expand main-unit design to produce the split-unit design, including a three-level factor Checks that compares
Scout, Gladius and the mean of the NAM lines. Perhaps, produce a plot of the allocation of the Lines.

#’## Expand design to rerandomize lines and to assign salt treatments to locations

Exp249.alloc <- with(Exp249.munit.des,

data.frame(Lines = factor(rep(Lines, each=2), levels=1:75),

Checks = fac.recast(rep(Lines, each=2),

newlevels=c(rep(3, 73), 1 , 2),

levels.order = c(3,1,2),

newlabels = c("NAM","Scout","Gladius")),

Salt = factor(rep(1:2, times=264),

labels = c(’0 NaCl’,’100 NaCl’))))

Exp249.recip <- fac.gen(list(Groups = 6, Cols = 4, Pairs = 11, Locations = 2))

Exp249.nest <- list(Cols = c("Groups", "Pairs"),

Locations = c("Groups", "Cols", "Pairs"))

Exp249.lay <- designRandomize(allocated = Exp249.alloc,

recipient = Exp249.recip,

nested.recipients = Exp249.nest,

seed = 51412)

#’## Add second-phase factors

#’## (to which the first-phase factors have been systematically allocated)

80

Exp249.lay <- cbind(fac.gen(list(Lanes = 24, Positions = 2:23)),

fac.gen(list(Zones = 6, Rows = 4, MainPosn = 11, Subunits = 2)),

Exp249.lay)

#’## Plot the assignment of Lines in the second-phase design - or see file that includes the output

Exp249.lay$Replication <- fac.recast(Exp249.lay$Lines,

newlevels = rep(1:3, c(21,52,2)))

designGGPlot(Exp249.lay, labels = "Lines", cellfillcolour.column = "Replication",

colour.values = c("lightblue", "grey", "lightgreen"),

row.factors = "Lanes", column.factors = "Positions",

title = "Layout of Lines for optimized design",

reverse.x = TRUE, reverse.y = FALSE, blockdefinition = cbind(4,22))

3374741128283535636375751717343432327070

22223636212166667575191938385959303052521212

46465353676777555151747499565648486969

141416162020494915156262101047472525373744

1111717140407373646433424274747474446161

63632323101052523636662262627775752121

5454656517173131414127279918187575112525

494932324343686820205547471313292955555656

57577474222258583838565612126666151575757171

25256464232316161414373724244646333340401919

7474676766995454757518182727707042426565

26262929282860603939434311885544441010

131335353939111173731414191924243366667474

171772722269697757571515444242664545

323258588823234949747459596565181853533737

33335050757575753434484863636161212160605454

515146463333747411161673736060727226264444

1515757511115555884545141468685050552020

2929595953532121626222313166404074743434

12124747191970701313303048487575434364644141

88575716167272272758583636303099222222

55554141616138386868525244441212353520202626

313151511313454574744428286767242469697575

7575101074741818717139395050331717771111

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Positions

La
ne

s

Layout of Lines for optimized design

81

5.3.2 Check the properties of the design

The maximal allocation-based mixed model is (Checks + Lines) * Salt | (Zones * MainPosn) / Rows / Subunits
+ (Groups * Pairs) / Cols / Locations, with Checks nested within Lines. Use the designAnatomy to check the
properties of the design for an analysis of data from an experiment based on this design.

#’## Check design properties

Exp249.canon <- designAnatomy(formulae = list(carts = ~ (Zones*MainPosn)/Rows/Subunits,

tables = ~ (Groups*Pairs)/Cols/Locations,

treats = ~ (Checks + Lines) * Salt),

grandMean = TRUE, data = Exp249.lay)

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in MainPosn&Pairs

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in Zones#MainPosn&Groups#Pairs

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in Rows[Zones:MainPosn]&Cols[Groups:Pairs]

summary(Exp249.canon)

##

##

Summary table of the decomposition for carts, tables & treats (based on adjusted quantities)

##

Source.carts df1 Source.tables df2 Source.treats df3

Mean 1 Mean 1 Mean 1

Zones 5 Groups 5 Lines[Checks] 5

MainPosn 10 Pairs 10 Checks 2

Lines[Checks] 8

Zones#MainPosn 50 Groups#Pairs 50 Checks 2

Lines[Checks] 48

Rows[Zones:MainPosn] 198 Cols[Groups:Pairs] 198 Checks 2

Lines[Checks] 72

Residual 124

Subunits[Zones:MainPosn:Rows] 264 Locations[Groups:Pairs:Cols] 264 Salt 1

Checks#Salt 2

Lines#Salt[Checks] 72

Residual 189

aefficiency eefficiency order

1.0000 1.0000 1

0.1498 0.1422 5

0.0033 0.0031 2

0.2094 0.1809 8

0.2111 0.2049 2

0.1142 0.0145 48

0.7854 0.7792 2

0.6640 0.2632 66

1.0000 1.0000 1

1.0000 1.0000 1

1.0000 1.0000 1

1.0000 1.0000 1

82

1.0000 1.0000 1

##

Table of information (partially) aliased with previous sources derived from the same formula

##

Source df Alias In aefficiency eefficiency order

Lines[Checks] 2 Checks MainPosn&Pairs 1.0000 1.0000 1

Lines[Checks] 2 Checks Zones#MainPosn&Groups#Pairs 1.0000 1.0000 1

Lines[Checks] 2 Checks Rows[Zones:MainPosn]&Cols[Groups:Pairs] 0.0944 0.0785 2

##

The design is not orthogonal

Because, there is a one-to-one correspondence between the tables and carts sources, omit the tables formula
and rerun — it will make the anova table more readable.

#’## Check design properties, with tables omitted

Exp249.canon <- designAnatomy(formulae = list(carts = ~ (Zones*MainPosn)/Rows/Subunits,

treats = ~ (Checks + Lines) * Salt),

grandMean = TRUE, data = Exp249.lay)

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in MainPosn

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in Zones#MainPosn

Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in Rows[Zones:MainPosn]

summary(Exp249.canon)

##

##

Summary table of the decomposition for carts & treats (based on adjusted quantities)

##

Source.carts df1 Source.treats df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Zones 5 Lines[Checks] 5 0.1498 0.1422 5

MainPosn 10 Checks 2 0.0033 0.0031 2

Lines[Checks] 8 0.2094 0.1809 8

Zones#MainPosn 50 Checks 2 0.2111 0.2049 2

Lines[Checks] 48 0.1142 0.0145 48

Rows[Zones:MainPosn] 198 Checks 2 0.7854 0.7792 2

Lines[Checks] 72 0.6640 0.2632 66

Residual 124

Subunits[Zones:MainPosn:Rows] 264 Salt 1 1.0000 1.0000 1

Checks#Salt 2 1.0000 1.0000 1

Lines#Salt[Checks] 72 1.0000 1.0000 1

Residual 189

##

Table of information (partially) aliased with previous sources derived from the same formula

##

Source df Alias In aefficiency eefficiency order

Lines[Checks] 2 Checks MainPosn 1.0000 1.0000 1

Lines[Checks] 2 Checks Zones#MainPosn 1.0000 1.0000 1

Lines[Checks] 2 Checks Rows[Zones:MainPosn] 0.0944 0.0785 2

##

The design is not orthogonal

83

5.3.3 Examine the properties of the design for an alternative analysis

However, rather than fit the allocation-based model, because it is known from past experience that once a linear
trend for MainPosn has been fitted there are no deviations from this trend, the term xMainPosn is used to fit
the trend; the term xMainPosn is a centred, linear covariate for MainPosn. Use the designAnatomy to check the
properties of the design for an analysis based on a modified model, in which MainPosn in the random model has
been replaced by xMainPosn in the fixed model, Zones#MainPosn has been omitted and Rows[Zones:MainPosn]
has been replaced by Mainunits[Zones].

#’## Add factors and variates for new analysis

Exp249.lay <- within(Exp249.lay,

{
xMainPosn <- as.numfac(MainPosn, center = TRUE)

Mainunits <- fac.combine(list(Rows,MainPosn))

})
head(Exp249.lay)

Lanes Positions Zones Rows MainPosn Subunits Groups Cols Pairs Locations Lines Checks Salt

1 1 2 1 1 1 1 1 1 1 1 3 NAM 100 NaCl

2 1 3 1 1 1 2 1 1 1 2 3 NAM 0 NaCl

3 1 4 1 1 2 1 1 1 2 1 74 Scout 100 NaCl

4 1 5 1 1 2 2 1 1 2 2 74 Scout 0 NaCl

5 1 6 1 1 3 1 1 1 3 1 1 NAM 100 NaCl

6 1 7 1 1 3 2 1 1 3 2 1 NAM 0 NaCl

Replication Mainunits xMainPosn

1 1 1 -5

2 1 1 -5

3 3 2 -4

4 3 2 -4

5 1 3 -3

6 1 3 -3

#’## Check properties if only linear trend fitted

set.daeTolerance(element.tol = 1e-06)

Exp249.canon <- designAnatomy(formulae = list(cart = ~ Zones/Mainunits/Subunits,

treat = ~ xMainPosn +

(Checks + Lines) * Salt),

grandMean = TRUE, data = Exp249.lay)

summary(Exp249.canon)

##

##

Summary table of the decomposition for cart & treat (based on adjusted quantities)

##

Source.cart df1 Source.treat df2 aefficiency eefficiency order

Mean 1 Mean 1 1.0000 1.0000 1

Zones 5 Lines[Checks] 5 0.1500 0.1426 5

Mainunits[Zones] 258 xMainPosn 1 1.0000 1.0000 1

Checks 2 1.0000 1.0000 1

Lines[Checks] 72 0.9879 0.8437 6

Residual 183

Subunits[Zones:Mainunits] 264 Salt 1 1.0000 1.0000 1

Checks#Salt 2 1.0000 1.0000 1

Lines#Salt[Checks] 72 1.0000 1.0000 1

Residual 189

84

##

Table of information (partially) aliased with previous sources derived from the same formula

##

Source df Alias In aefficiency eefficiency order

Checks 1 xMainPosn treat 0.0010 0.0010 1

Checks 2 ## Information remaining treat 0.9995 0.9990 2

Lines[Checks] 1 xMainPosn treat 0.2139 0.2139 1

Lines[Checks] 1 Checks treat 0.0003 0.0003 1

Lines[Checks] 72 ## Information remaining treat 0.9962 0.7859 2

##

The design is not orthogonal

The Table of (partial) aliasing shows that all treat- sources are partially aliased with \verbxMainPosn=,
although they are not far from being orthogonal.

We have been able to check what information is available about Lines and Salt after adjustment for the linear
trend. In practice, a spline term might be needed to account for nonlinearity in the trend.

5.3.4 Questions

1. What advantages accrue from randomizing Lines within GroupsˆPairs (ZonesˆMainPosn) as compared to
the original DiGGer design, in which they are randomized to Cols within Groups (Lanes within Zones) and
to Pairs (MainPosn)?

The anatomy for the DiGGer design shows us that all 74 degrees of freedom are estimable in
Rows#Cols[Blocks] with average efficiency 0.582 and minimum efficiency 0.209. Compared to this, the
anatomy for the rerandomized design shows that the NAM lines are estimable from Rows[Zones:MainPosn],
the source equivalent to Rows#Cols[Blocks], with average efficiency 0.664 and minimum efficiency 0.263.
Also, the Residual degrees of freedom for Rows#Cols[Blocks] have increased from 106 degrees of freedom in
the original design to 124 degrees of freedom for Rows[Zones:MainPosn] in the rerandomized design. That
is, one can expect the estimation of the Lines predictions and their standard errors to be more precise for
the rerandomized design.

2. What effect does the use of a linear trend, as opposed to a set of effects, have on the analysis?

The efficiency for Lines has increased further so that the minimum is now 0.844 and the Residual degrees
of freedom for Rows[Zones:MainPosn] now stands at 183. This allows one to consider ignoring information
not estimable from Rows[Zones:MainPosn], while predictions will be adjusted for the trend across MainPosn.

5.4 Two-phase, wheat experiment with 49 lines

The first, or field, phase of a wheat trial for 49 lines is laid out as an RCBD with four blocks. The produce
from the field trial is processed in the second, or laboratory, phase and the design employed is a balanced lattice
square for 49 treatments that involves 4 replicates each consisting of a 7 × 7 square. In the laboratory phase
there are four intervals each of which consists of 7 runs of a machine. In a run, samples are processed at seven
consecutive times. This experiment is Example 2.2 from Bailey and Brien (2016), where its anova with expected
mean squares is given. Its factor-allocation diagram is in Figure 25.

5.4.1 Produce randomized layout for both phases and check its properties

#’## Generate a layout for the field phase

field.sys <- cbind(fac.gen(list(Blocks = 4, Plots = 49)),

fac.gen(list(Lines = 49), times=4))

field.lay <- designRandomize(allocated = field.sys["Lines"],

recipient = field.sys[c("Blocks", "Plots")],

nested.recipients = list(Plots = "Blocks"),

85

Figure 25: Factor-allocation diagram for the two-phase wheat variety experiment: lines are randomized to plots,
then lines and plots are randomized to analyses; the arrow for Lines to Plots indicates that Lines are randomized
to Plots; similarly, Blocks are randomized to intervals; L1, L3, L5 and L7 are pseudofactors that group the Lines
for randomization to Runs and L2, L4, L6 and L8 are pseudofactors that group the Lines for randomization to
Times; the two ‘♦’ symbols indicate that the pseudofactors for Lines determine the pseudofactors P1 and P2 for
assigning Plots to Runs and Times, respectively; B = Blocks; I = Intervals.

seed = 82522)

head(field.lay)

Blocks Plots Lines

1 1 1 48

2 1 2 10

3 1 3 23

4 1 4 31

5 1 5 36

6 1 6 11

#’## Generate laboratory phase

#’### Load a systematic balanced lattice square

data("LatticeSquare_t49.des")

#’### Form systematic design

#’### Add Intervals to field layout, merge the data frames and sort into lab phase order

field.lay$Intervals <- field.lay$Blocks

lab.alloc <- merge(LatticeSquare_t49.des, field.lay)

lab.alloc <- with(lab.alloc, lab.alloc[order(Intervals, Runs,Times),])

lab.alloc <- lab.alloc[c("Blocks","Plots","Lines")] #Reduce columns in lab.alloc

#’### Randomize the design

lab.lay <- designRandomize(allocated = lab.alloc,

recipient = list(Intervals = 4, Runs = 7, Times = 7),

nested.recipients = list(Runs = "Intervals",

Times = "Intervals"),

seed = 141797)

head(lab.lay)

Intervals Runs Times Blocks Plots Lines

1 1 1 1 4 41 1

2 1 1 2 4 43 49

3 1 1 3 4 36 25

4 1 1 4 4 13 9

5 1 1 5 4 10 33

6 1 1 6 4 44 41

#’## Plot the design to show the allocation of Blocks, Plots and Lines in the lab phase

lab.lay$FieldFactors <- with(lab.lay, fac.combine(list(Blocks, Plots, Lines),

86

combine.levels = TRUE))

designGGPlot(lab.lay, labels = "FieldFactors",

row.factors = c("Intervals", "Runs"), column.factors = "Times",

facetstrips.switch = "x", facetstrips.placement = "outside.title",

title = "Allocation of Blocks, Plots and Lines in the lab phase",

cellalpha = 0.75, blockdefinition = cbind(7, 7))

4,41,1 4,43,49 4,36,25 4,13,9 4,10,33 4,44,41 4,29,17
4,5,46 4,14,38 4,35,21 4,47,5 4,45,22 4,24,30 4,19,13

4,33,31 4,17,23 4,18,6 4,3,39 4,20,14 4,37,15 4,49,47
4,40,27 4,23,19 4,26,44 4,28,35 4,46,3 4,7,11 4,9,36
4,42,16 4,34,8 4,2,40 4,1,24 4,39,48 4,30,7 4,31,32
4,12,12 4,22,4 4,21,29 4,6,20 4,32,37 4,48,45 4,4,28
4,16,42 4,38,34 4,8,10 4,15,43 4,11,18 4,27,26 4,25,2

2,23,17 2,26,40 2,34,27 2,17,14 2,30,43 2,27,4 2,11,30
2,4,42 2,22,9 2,8,45 2,28,32 2,6,19 2,16,22 2,19,6
2,7,29 2,38,3 2,35,39 2,36,26 2,9,13 2,15,16 2,10,49

2,32,48 2,40,15 2,31,2 2,33,38 2,44,25 2,1,35 2,18,12
2,3,11 2,45,34 2,2,21 2,29,1 2,13,37 2,46,47 2,42,24
2,24,5 2,21,28 2,39,8 2,5,44 2,25,31 2,20,41 2,12,18

2,14,23 2,37,46 2,47,33 2,49,20 2,48,7 2,41,10 2,43,36

3,24,17 3,20,39 3,6,7 3,30,44 3,17,12 3,27,34 3,35,22
3,1,8 3,14,30 3,34,47 3,22,42 3,21,3 3,15,25 3,19,20

3,10,6 3,13,28 3,23,38 3,36,33 3,43,43 3,4,16 3,49,11
3,28,35 3,7,1 3,31,18 3,5,13 3,2,23 3,46,45 3,3,40
3,26,46 3,18,19 3,29,29 3,32,24 3,37,41 3,11,14 3,38,2
3,8,26 3,40,48 3,39,9 3,12,4 3,33,21 3,48,36 3,16,31

3,42,37 3,25,10 3,47,27 3,9,15 3,44,32 3,41,5 3,45,49

1,40,1 1,10,43 1,38,8 1,34,15 1,13,29 1,5,36 1,27,22
1,24,6 1,1,48 1,32,13 1,14,20 1,19,34 1,23,41 1,45,27
1,35,5 1,49,47 1,9,12 1,29,19 1,31,33 1,8,40 1,43,26
1,20,4 1,15,46 1,6,11 1,7,18 1,22,32 1,42,39 1,48,25
1,12,7 1,39,49 1,44,14 1,18,21 1,37,35 1,28,42 1,16,28
1,30,2 1,47,44 1,33,9 1,36,16 1,11,30 1,17,37 1,3,23
1,41,3 1,26,45 1,2,10 1,46,17 1,4,31 1,25,38 1,21,24

Intervals: 1
Intervals: 2

Intervals: 3
Intervals: 4

1 2 3 4 5 6 7

7
6
5
4
3
2
1

7
6
5
4
3
2
1

7
6
5
4
3
2
1

7
6
5
4
3
2
1

Times

R
un

s

Allocation of Blocks, Plots and Lines in the lab phase

#’## Check properties of the design

wheat.canon <- designAnatomy(formulae = list(lab = ~ Intervals/(Runs*Times),

field = ~ Blocks/Plots,

treats = ~ Lines),

grandMean = TRUE, data = lab.lay)

87

summary(wheat.canon, which.criteria =c("aefficiency", "order"))

##

##

Summary table of the decomposition for lab, field & treats (based on adjusted quantities)

##

Source.lab df1 Source.field df2 Source.treats df3 aefficiency order

Mean 1 Mean 1 Mean 1 1.0000 1

Intervals 3 Blocks 3 1.0000 1

Runs[Intervals] 24 Plots[Blocks] 24 Lines 24 0.2500 1

Times[Intervals] 24 Plots[Blocks] 24 Lines 24 0.2500 1

Runs#Times[Intervals] 144 Plots[Blocks] 144 Lines 48 0.7500 1

Residual 96 1.0000 1

##

The design is not orthogonal

Given, the nonorthogonality of Blocks:Plots evident in the anatomy, redo the table with just the lab and field
tiers to investigate.

#’## Check confounding of field sources with lab sources

wheat.labfield.canon <- designAnatomy(formulae = list(lab = ~ Intervals/(Runs*Times),

field = ~ Blocks/Plots),

grandMean = TRUE, data = lab.lay)

summary(wheat.labfield.canon, which.criteria =c("aefficiency", "order"))

##

##

Summary table of the decomposition for lab & field

##

Source.lab df1 Source.field df2 aefficiency order

Mean 1 Mean 1 1.0000 1

Intervals 3 Blocks 3 1.0000 1

Runs[Intervals] 24 Plots[Blocks] 24 1.0000 1

Times[Intervals] 24 Plots[Blocks] 24 1.0000 1

Runs#Times[Intervals] 144 Plots[Blocks] 144 1.0000 1

5.4.2 Question

1. Is the variance matrix for this experiment based on two sets of terms that are orthogonal?

Because all plots sources are confounded orthogonally with analyses sources, the variance matrix is indeed
based on two sets of terms that are orthogonal.

5.5 Elaborate, two-phase, sensory experiment

Brien and Payne (1999) describe a two-phase sensory experiment, of which the first, or field, phase is a viticultural
experiment and the second, or evaluation, phase involves the assessment of wine made from the produce of the
first phase plots. In the field phase, two adjacent Youden squares are used to assign trellis treatments to the
plots, a plot being a row-column combination within a square. Each plot is divided into two halfplots and two
methods of pruning assigned at random to them. In the second phase, the halfplots from the field phase are
randomized, using two Latin squares and an extended Youden design, to glasses in positions on a table for
evaluation by judges. This experiment is Example 1.2 from Bailey and Brien (2016), where its anova, along with
expected mean squares, is given. Its factor-allocation diagram is in Figure 26.

88

Figure 26: Factor-allocation diagram for the two-phase sensory experiment: treatments are randomized to half-
plots, which are, in turn, randomized to evaluations; the arrow to the ‘◦’, the ‘◦’ and the two lines from the
‘◦’ indicate that Trellis is randomized to the combinations of Rows and Columns using a nonorthogonal design;
the single arrow between Methods and Halfplots indicates that Methods is randomized to Halfplots; the single
arrows between the two right hand panels indicate that Squares are randomized to Occasions and Halfpplots
are randomized to Positions; J1 and J2 are two pseudofactors on Judges that split them into two sets of three;
the Rows are randomized to the combinations of Intervals and J2 using an orthogonal design, as indicated by
the ‘⃝⊥ ’, and Columns are randomized to the combinations of J1 and Sittings using an nonorthogonal design, as
indicated by the ‘◦’; Q= Squares; R = Rows;, C = Columns; O = Occasions; I = Intervals; S = Sittings; J =
Judges.

5.5.1 Check the properties of the randomized layout

Load the layout and use designAnatomy to check the properties of the design.

#’## Load the layout

data("Sensory3PhaseShort.dat")

#’## Examine the properties of the design

sensory.canon <- designAnatomy(formulae = list(eval = ~((Occ/Int/Sit)*Jud)/Posn,

field = ~(Row*(Sqr/Col))/Hplot,

treats = ~Trel*Meth),

grandMean = TRUE, data = Sensory3PhaseShort.dat)

summary(sensory.canon, which.criteria =c("aefficiency", "order"))

##

##

Summary table of the decomposition for eval, field & treats (based on adjusted quantities)

##

Source.eval df1 Source.field df2 Source.treats df3 aefficiency order

Mean 1 Mean 1 Mean 1 1.0000 1

Occ 1 Sqr 1 1.0000 1

Int[Occ] 4

Sit[Occ:Int] 18 Col[Sqr] 6 Trel 3 0.0370 1

Residual 3 0.3333 1

Residual 12

Jud 5

Occ#Jud 5

Int#Jud[Occ] 20 Row 2 1.0000 1

Row#Sqr 2 1.0000 1

Residual 16

Sit#Jud[Occ:Int] 90 Col[Sqr] 6 Trel 3 0.0741 1

Residual 3 0.6667 1

Row#Col[Sqr] 12 Trel 3 0.8889 1

Residual 9 1.0000 1

Residual 72

Posn[Occ:Int:Sit:Jud] 432 Hplot[Row:Sqr:Col] 24 Meth 1 1.0000 1

89

Trel#Meth 3 1.0000 1

Residual 20 1.0000 1

Residual 408

##

The design is not orthogonal

Note that 1/3 of Sqr:Col is partially confounded with Occ:Int:Sit and 2/3 with Occ:Int:Sit:Jud. Also, 1/9
of Trel is partially confounded with Sqr:Col and 8/9 with Row:Sqr:Col. The canonical efficiency factor for Trel
in the two Sqr:Col sources is obtained by multiplying the canonical efficiency of 1/9 for Trel with that for the
particular Sqr:Col source, yielding canonical efficiencies of 1/27 and 2/27.

5.5.2 Questions

1. Which is the nonorthogonal source amongst the field sources (Source.field) and what is its interblock
and intrablock efficiency factors?

The only nonorthogonal field source is Sqr.Col. Its interblock efficiency factor is 1/3 and its intrablock
efficiency factor is 2/3.

2. How would an intrablock analysis be achieved using, say, regression software?

To achieve an intrablock analysis requires careful specification of the order of fitting terms; a nonorthogonal
source should not estimated until after all nonorthogonal terms with which it is confounded, except the last,
have been estimated. For this experiment, terms should be fitted in the following order:

Occ*Jud + Row + Occ:Int/(Int + Sit) + Sqr.Col + Trel + Row:Sqr:Col + Occ:Int:Sit:Jud + Meth +
Trel:Meth + Row:Sqr:Col:Hplot.

This will leave a Residual that corresponds to Occ:Int:Sit:Jud:Posn.

References

Bailey, R. A. (1992). Efficient semi-latin squares. Statistica Sinica 2, 413–437.

Bailey, R. A. and C. J. Brien (2016). Randomization-based models for multitiered experiments. I. A chain of
randomizations. Annals of Statistics 44, 1131–1164.

Box, G. E. P., W. G. Hunter, and J. S. Hunter (2005). Statistics for Experimenters (2nd ed.). New York: Wiley.

Brien, C. J. (2017). Multiphase experiments in practice: A look back. Australian & New Zealand Journal of
Statistics 59 (4), 327–352.

Brien, C. J. (2024a). asremlPlus: Augments ’ASReml-R’ in Fitting Mixed Models and Packages Generally
in Exploring Prediction Differences. URL http://CRAN.R-project.org/package=asremlPlus/, (R package
version 4.4-28, accessed February 6, 2024).

Brien, C. J. (2024b). dae: functions useful in the design and ANOVA of experiments. URL http://CRAN.

R-project.org/package=dae/, (R package version 3.2-30, accessed December, 2024).

Brien, C. J. and R. A. Bailey (2006). Multiple randomizations (with discussion). Journal of the Royal Statistical
Society, Series B (Statistical Methodology) 68, 571–609.

Brien, C. J. and R. A. Bailey (2009). Decomposition tables for experiments. I. A chain of randomizations. The
Annals of Statistics 37, 4184–4213.

Brien, C. J., B. Berger, H. Rabie, and M. Tester (2013). Accounting for variation in designing greenhouse
experiments with special reference to greenhouses containing plants on conveyor systems. Plant Methods 9, 5.
Available from http://www.plantmethods.com/content/9/1/5.

90

http://CRAN.R-project.org/package=asremlPlus/
http://CRAN.R-project.org/package=dae/
http://CRAN.R-project.org/package=dae/
http://www.plantmethods.com/content/9/1/5

Brien, C. J. and C. G. B. Demétrio (2009). Formulating mixed models for experiments, including longitudinal
experiments. The Journal of Agricultural, Biological and Environmental Statistics 14, 253–280.

Brien, C. J., B. D. Harch, R. L. Correll, and R. A. Bailey (2011). Multiphase experiments with at least one later
laboratory phase. I. Orthogonal designs. Journal of Agricultural, Biological and Environmental Statistics 16,
422–450.

Brien, C. J. and R. W. Payne (1999). Tiers, structure formulae and the analysis of complicated experiments.
The Statistician 48, 41–52.

Brien, C. J., R. A. Semarini, and C. G. B. Demétrio (2023). Exposing the confounding in experimental designs to
understand and evaluate them, and formulating linear mixed models for analyzing the data from an experiment.
Biometrical Journal 65 (7), 2200284.

Clingeleffer, P. R., R. S. Trayford, P. May, and C. J. Brien (1977). Use of the starwheel sprayer for applying
drying emulsion to sultana grapes to be dried on the trellis. Australian Journal of Experimental Agriculture
and Animal Husbandry 17, 871–880.

Cochran, W. G. and G. M. Cox (1957). Experimental Designs (2nd ed.). New York: Wiley.

Coombes, N. E. (2009). DiGGer: design search tool in R. URL: http://nswdpibiom.org/austatgen/

software/, (accessed July 16, 2017).

Gilmour, A. R., R. Thompson, and B. R. Cullis (1995). Average information reml: An efficient algorithm for
variance parameter estimation in linear mixed models. Biometrics 51, 1440–1450.

Hinkelmann, K. and O. Kempthorne (2005). Design and Analysis of Experiments, Volume 2. of Wiley Series in
Probability and Statistics. Hoboken, N.J.: Wiley-Interscience.

Joshi, D. D. (1987). Linear Estimation and Design of Experiments. New Delhi: Wiley Eastern.

McIntyre, G. A. (1955). Design and analysis of two phase experiments. Biometrics 11, 324–334.

Mead, R., S. G. Gilmour, and A. Mead (2012). Statistical principles for the design of experiments. Cambridge:
Cambridge University Press.

R Core Team (2024). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation
for Statistical Computing. URL https://www.r-project.org/.

Williams, E. R., A. C. Matheson, and C. E. Harwood (2002). Experimental Design and Analysis for Tree
Improvement (2nd ed.). Melbourne, Australia: CSIRO.

Yates, F. (1937). The design and analysis of factorial experiments. Imperial Bureau of Soil Science Technical
Communication 35.

91

http://nswdpibiom.org/austatgen/software/
http://nswdpibiom.org/austatgen/software/
https://www.r-project.org/

	Introduction
	Functions to be used
	The paradigm
	Notation used for linear mixed models

	Single-allocation orthogonal design in R
	Two potential designs for a 5 5 grid of plots [Section 2]Brien23b
	Produce the randomized layout for an RCBD
	Produce the randomized layout for an LSqD
	Check the properties of the designs
	Questions

	Split-plot from Yates37 [See also][Section 4.1]Brien23b
	Produce the randomized experimental layout
	Analysis of variance (anova) for the Yields
	Questions

	Split-unit design for an experiment in which time is randomized [Section 4.1]Brien23b
	Produce the randomized experimental layout
	Questions

	A design for a petrol additives experiment
	Questions

	Single-allocation, nonorthogonal design in R
	Twenty treatments in an alpha design
	Produce the randomized layout for the alpha design and check its properties
	Questions

	Balanced incomplete-block design from Joshi (1987)
	Input the Yields and check properties of the design
	Anova for the Yields
	Questions

	A design with rows and columns from Williams (2002)
	Input the design and check the properties of the design
	Questions

	A resolved design for the wheat experiment that is near-A-optimal under a mixed model
	Input the design and check the properties of the design

	Miscellaneous experimental design topics in R
	An environmental experiment
	Questions

	Block-treatment interactions for an experiment in which time is randomized [Section 4.1]Brien23b
	Questions

	A longitudinal greenhouse experiment that uses a generalized randomized block design (GRBD)[Section 4.2]Brien23b
	Questions

	A detergent experiment
	Produce the randomized layout for the BIBD and check its properties
	Add nested factors and check the decomposition using them
	Leave out Types and try decomposition with Bases and Additives in both orders
	What if two observations are missing?
	Questions

	An experiment to investigate the effects of spraying Sultana grapes
	Questions

	A Control treatment for an incomplete-block design
	The Casuarina experiment (continued)
	Questions

	Multiphase experiments in R
	Athletic examples based on Brien et al. (2011)
	A standard single-phase athlete training experiment
	A simple two-phase athlete training experiment
	Allowing for lab processing order in the athletic training example

	McIntyre's (1955) two-phase example
	Check the properties of the randomized layout
	Questions

	A Plant Accelerator experiment with a split-unit design
	Produce the layout
	Check the properties of the design
	Examine the properties of the design for an alternative analysis
	Questions

	Two-phase, wheat experiment with 49 lines
	Produce randomized layout for both phases and check its properties
	Question

	Elaborate, two-phase, sensory experiment
	Check the properties of the randomized layout
	Questions

