Package ‘cvar’

November 3, 2022

Type Package

Title Compute Expected Shortfall and Value at Risk for Continuous
Distributions

Version 0.5

Description Compute expected shortfall (ES) and Value at Risk (VaR) from a
quantile function, distribution function, random number generator or
probability density function. ES is also known as Conditional Value at
Risk (CVaR). Virtually any continuous distribution can be specified.
The functions are vectorized over the arguments. The computations are
done directly from the definitions, see e.g. Acerbi and Tasche (2002)
<doi:10.1111/1468-0300.00091>. Some support for GARCH models is provided,
as well.
URL https://geobosh.github.io/cvar/ (doc),

https://github.com/GeoBosh/cvar (devel)

BugReports https://github.com/GeoBosh/cvar/issues
Imports gbutils, Rdpack (>=0.8)

RdMacros Rdpack

License GPL (>=2)

Collate VaR.R cvar-package.R garch.R

RoxygenNote 7.2.0

Suggests testthat, f{Garch, PerformanceAnalytics
NeedsCompilation no

Author Georgi N. Boshnakov [aut, cre]

Maintainer Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>
Repository CRAN

Date/Publication 2022-11-03 10:00:06 UTC


https://doi.org/10.1111/1468-0300.00091
https://geobosh.github.io/cvar/
https://github.com/GeoBosh/cvar
https://github.com/GeoBosh/cvar/issues

2 cvar-package

R topics documented:

cvar-package . . . ... e e 2
ES e e e 3
GarchModel . . . . . . . . . e e 6
predict.garchlcl . . . . . . . . . 7
sim_garchlcl . . . . . . .. 10
VaR . e 11

Index 15

cvar-package Compute Conditional Value-at-Risk and Value-at-Risk
Description

Compute expected shortfall (ES) and Value at Risk (VaR) from a quantile function, distribution
function, random number generator or probability density function. ES is also known as Conditional
Value at Risk (CVaR). Virtually any continuous distribution can be specified. The functions are
vectorised over the arguments. Some support for GARCH models is provided, as well.

Details

There is a huge number of functions for computations with distributions in core R and in contributed
packages. Pdf’s, cdf’s, quantile functions and random number generators are covered comprehen-
sively. The coverage of expected shortfall is more patchy but a large collection of distributions,
including functions for expected shortfall, is provided by Nadarajah et al. (2013). Peterson and
Carl (2018) and Dutang et al. (2008) provide packages covering comprehensively various aspects
of risk measurement, including some functions for expected shortfall.

Package cvar is a small package with, essentially, two main functions — ES for computing the
expected shortfall and VaR for Value at Risk. The user specifies the distribution by supplying one of
the functions that define a continuous distribution—currently this can be a quantile function (qf), cu-
mulative distribution function (cdf) or probability density function (pdf). Virtually any continuous
distribution can be specified.

The functions are vectorised over the parameters of the distributions, making bulk computations
more convenient, for example for forecasting or model evaluation.

The name of this package, "cvar", comes from Conditional Value at Risk (CVaR), which is an
alternative term for expected shortfall.

We chose to use the standard names ES and VaR, despite the possibility for name clashes with same
named functions in other packages, rather than invent possibly difficult to remember alternatives.
Just call the functions as cvar: :ES and cvar: : VaR if necessary.

Locations-scale transformations can be specified separately from the other distribution parameters.
This is useful when such parameters are not provided directly by the distribution at hand. The use
of these parameters often leads to more efficient computations and better numerical accuracy even
if the distribution has its own parameters for this purpose. Some of the examples for VaR and ES
illustrate this for the Gaussian distribution.
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Since VaR is a quantile, functions computing it for a given distribution are convenience functions.
VaR exported by cvar could be attractive in certain workflows because of its vectorised distribution
parameters, the location-scale transformation, and the possibility to compute it from cdf’s when
quantile functions are not available.

Some support for GARCH models is provided, as well. It is currently under development, see
predict.garchicl for current functionality.

In practice, we may need to compute VaR associated with data. The distribution comes from fitting
a model. In the simplest case, we fit a distribution to the data, assuming that the sample is i.i.d. For
example, a normal distribution N (p1, o) can be fitted using the sample mean and sample variance
as estimates of the unknown parameters 4 and o2, see section ‘Examples’. For other common
distributions there are specialised functions to fit their parameters and if not, general optimisation
routines can be used. More soffisticated models may be used, even time series models such as
GARCH and mixture autoregressive models.

Author(s)

Georgi N. Boshnakov

References

Christophe Dutang, Vincent Goulet, Mathieu Pigeon (2008). “actuar: An R Package for Actuarial
Science.” Journal of Statistical Software, 25(7), 38. doi: 10.18637/jss.v025.107.

Saralees Nadarajah, Stephen Chan, Emmanuel Afuecheta (2013). VaRES: Computes value at
risk and expected shortfall for over 100 parametric distributions. R package version 1.0, https:
//CRAN.R-project.org/package=VaRES.

Brian G. Peterson, Peter Carl (2018). PerformanceAnalytics: Econometric Tools for Performance
and Risk Analysis. R package version 1.5.2, https://CRAN.R-project.org/package=PerformanceAnalytics.

See Also

ES, VaR

Examples

## see the examples for ES(), VaR(), predict.garchlcl()

ES Compute expected shortfall (ES) of distributions

Description

Compute the expected shortfall for a distribution.


https://doi.org/10.18637/jss.v025.i07
https://CRAN.R-project.org/package=VaRES
https://CRAN.R-project.org/package=VaRES
https://CRAN.R-project.org/package=PerformanceAnalytics

Usage

ES(dist, p_loss

ES

=0.05, ...)

## Default S3 method:

ES(
dist,
p_loss

0.05,

dist.type = "qf",

af,

<

intercept = 0,

slope =

control = list(),

X

)

## S3 method for class 'numeric'

ES(
dist,
p_loss

0.05,

dist.type = "qf",

af,

L

intercept = 0,

slope =

control = list(),

X

Arguments

dist

p_loss

dist.type
gf

specifies the distribution whose ES is computed, usually a function or a name
of a function computing quantiles, cdf, pdf, or a random number generator, see
Details.

level, default is 0.05.
passed on to dist.
a character string specifying what is computed by dist, such as "qf" or "cdf".

quantile function, only used if dist.type = "pdf".

intercept, slope

control

compute ES for the linear transformation intercept + slope*X, where X has
distribution specified by dist, see Details.

additional control parameters for the numerical integration routine.

deprecated and will soon be removed. x was renamed to p_loss, please use the
latter.
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Details

ES computes the expected shortfall for distributions specified by the arguments. dist is typically
a function (or the name of one). What dist computes is determined by dist. type, whose default
setting is "qf" (the quantile function). Other possible settings of dist.type include "cdf"” and
"pdf". Additional arguments for dist can be given with the ". . ." arguments.

Argument dist can also be a numeric vector. In that case the ES is computed, effectively, for the
empirical cumulative distribution function (ecdf) of the vector. The ecdf is not created explicitly
and the quantile function is used instead for the computation of VaR. Arguments in "..." are
passed eventually to quantile() and can be used, for example, to select a non-defult method for

the computation of quantiles.

Except for the exceptions discussed below, a function computing VaR for the specified distribution
is constructed and the expected shortfall is computed by numerically integrating it. The numerical
integration can be fine-tuned with argument control, which should be a named list, see integrate
for the available options.

If dist.type is "pdf”, VaR is not computed, Instead, the partial expectation of the lower tail
is computed by numerical integration of x * pdf(x). Currently the quantile function is required
anyway, via argument qf, to compute the upper limit of the integral. So, this case is mainly for
testing and comparison purposes.

n n

A bunch of expected shortfalls is computed if argument x or any of the arguments in "..." are
of length greater than one. They are recycled to equal length, if necessary, using the normal R
recycling rules.

intercept and slope can be used to compute the expected shortfall for the location-scale transfor-
mation Y = intercept + slope * X, where the distribution of X is as specified by the other parame-
ters and Y is the variable of interest. The expected shortfall of X is calculated and then transformed
to that of Y. Note that the distribution of X doesn’t need to be standardised, although it typically will.

The intercept and the slope can be vectors. Using them may be particularly useful for cheap
calculations in, for example, forecasting, where the predictive distributions are often from the same
family, but with different location and scale parameters. Conceptually, the described treatment of
intercept and slope is equivalent to recycling them along with the other arguments, but more
efficiently.

The names, intercept and slope, for the location and scale parameters were chosen for their
expressiveness and to minimise the possibility for a clash with parameters of dist (e.g., the Gamma
distribution has parameter scale).

Value

a numeric vector

See Also

VaR for VaR,

predict for examples with fitted models

Examples

ES(gnorm)
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## Gaussian
ES(gnorm, dist.type = "qf")
ES(pnorm, dist.type = "cdf")

## t-dist
ES(qt, dist.type = "qf", df = 4)
ES(pt, dist.type = "cdf”, df = 4)

ES(pnorm, ©.95, dist.type = "cdf")

ES(gnorm, ©.95, dist.type = "qf")

## - VaRES::esnormal(@.95, 0, 1)

## - PerformanceAnalytics::ETL(p=0.05, method = "gaussian”, mu = 0,

#it sigma = 1, weights = 1) # same

cvar: :ES(pnorm, dist.type = "cdf")
cvar::ES(gnorm, dist.type = "qgf")
cvar::ES(pnorm, 0.05, dist.type = "cdf")
cvar::ES(gnorm, 0.05, dist.type = "qgf")

## this uses "pdf”
cvar::ES(dnorm, 0.05, dist.type = "pdf"”, gf = gnorm)

## this gives warning (it does more than simply computing ES):
## PerformanceAnalytics::ETL(p=0.95, method = "gaussian”, mu = @, sigma = 1, weights = 1)

## run this if VaRRES is present

## Not run:

x <- seq(0.01, 0.99, length = 100)

y <- sapply(x, function(p) cvar::ES(gnorm, p, dist.type = "qf"))
yS <- sapply(x, function(p) - VaRES::esnormal(p))

plot(x, y)

lines(x, yS, col = "blue")

## End(Not run)

GarchModel Specify a GARCH model

Description

Specify a GARCH model.

Usage

GarchModel (model = list(), ..., model.class = NULL)



predict.garchicl 7

Arguments
model a GARCH model or a list.
named arguments specifying the GARCH model.
model.class a class for the result. By default GarchModel () decides the class of the result.
Details
Argument model can be the result of a previous call to GarchModel. Argumentsin "..." overwrite

current components of model.

GarchModel guarantees that code using it will continue to work transparently for the user even if
the internal represedtation of GARCH models in this package is changed or additional functionality
is added.

Value

an object from suitable GARCH-type class

Examples

## GARCH(1,1) with Gaussian innovations
mola <- GarchModel(omega = 1, alpha = 0.3, beta = 0.5)
molb <- GarchModel(omega = 1, alpha = 0.3, beta = 0.5, cond.dist = "norm")

## equivalently, the parameters can be given as a list

pl <- list(omega = 1, alpha = 0.3, beta = 0.5)

mola_alt <- GarchModel(p1)

molb_alt <- GarchModel(p1, cond.dist = "norm")
stopifnot(identical(mola, mola_alt), identical(molb, molb_alt))

## additional arguments modify values already in 'model’
mo_alt <- GarchModel(pl1, beta = 0.4)

## set also initial values

mo2 <- GarchModel(omega = 1, alpha = 0.3, beta = 0.5, esp®@ = - 1.5, ho = 4.96)

## GARCH(1,1) with standardised-t_5
mot <- GarchModel(omega = 1, alpha = 0.3, beta = 0.5, cond.dist = list("std”, nu = 5))

predict.garchicl Prediction for GARCH(1,1) time series

Description

Predict GARCH(1,1) time series.
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Usage

## S3 method for class 'garchilcl'

predict(object, n.ahead = 1, Nsim = 1000, eps, sigmasq, seed = NULL, ...)
Arguments

object an object from class "garchic1”.

n.ahead maximum horizon (lead time) for prediction.

Nsim number of Monte Carlo simulations for simulation based quantities.

eps the time series to predict, only the last value is used.

sigmasq the (squared) volatilities, only the last value is used.

seed an integer, seed for the random number generator.

currently not used.

Details

Plug-in prediction intervals and predictive distributions are obtained by inserting the predicted
volatility in the conditional densities. For predictions more than one lag ahead these are not the
real predictive distributions but the prediction intervals are usually adequate.

For simulation prediction intervals we generate a (large) number of continuations of the given
time series. Prediction intervals can be based on sample quantiles. The generated samples are
stored in the returned object and can be used for further exploration of the predictive distributions.
dist_sim$eps contains the simulated future values of the time series and dist_sim$h the corre-
sponding (squared) volatilities. Both are matrices whose i-th rows contain the predicted quantities
for horizon 1i.

The random seed at the start of the simulations is saved in the returned object. A speficific seed can
be requested with argument seed. In that case the simulations are done with the specified seed and
the old state of the random number generator is restored before the function returns. This setup is
similar to sim_garchic1.

Value

an object from S3 class "predict_garchlc1” containing the following components:

eps point predictions (conditional expectations) of the time series (equal to zero for
pure GARCH).

h point predictions (conditional expectations)of the squared volatilities.

model the model.

call the call.

pi_plugin Prediction intervals for the time series, based on plug-in distributions, see De-
tails.

pi_sim Simulation based prediction intervals for the time series, see Details.

dist_sim simulation samples from the predictive distributions of the time series and the

volatilties.
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Note

This function is under development and may be changed.

Examples
op <- options(digits = 4)

## set up a model and simulate a time series
mo <- GarchModel(omega = 0.4, alpha = 0.3, beta = 0.5)
al <- sim_garchlcli(mo, n = 1000, n.start = 100, seed = 20220305)

## predictions for T+1,...,T+5 (T = time of last value)

## Nsim is small to reduce the load on CRAN, usually Nsim is larger.

a.pred <- predict(mo, n.ahead = 5, Nsim = 1000, eps = al$eps,
sigmasq = al$h, seed = 1234)

## preditions for the time series
a.preds$eps

## PI's for eps - plug-in and simulated
a.pred$pi_plugin
a.pred$pi_sim

## a DIY calculation of PI's using the simulated sample paths
t(apply(a.pred$dist_sim$eps, 1, function(x) quantile(x, c(0.025, @.975))))

## further investigate the predictive distributions
t(apply(a.pred$dist_sim$eps, 1, function(x) summary(x)))

## compare predictive densities for horizons 2 and 5:

h2 <- a.pred$dist_sim$eps[2, ]

h5 <- a.pred$dist_sim$eps[5, ]

main <- "Predictive densities: horizons 2 (blue) and 5 (black)"”
plot(density(h5), main = main)

lines(density(h2), col = "blue")

## predictions of sigma_t*2
a.predsh

## plug-in predictions of sigma_t
sqgrt(a.predsh)

## simulation predictive densities (PD's) of sigma_t for horizons 2 and 5:
h2 <- sqrt(a.pred$dist_sim$h[2, 1)

h5 <- sqgrt(a.pred$dist_sim$h[5, 1)

main <- "PD's of sigma_t for horizons 2 (blue) and 5 (black)”
plot(density(h2), col = "blue”, main = main)

lines(density(h5))

## VaR and ES for different horizons
cbind(h = 1:5,
VaR = apply(a.pred$dist_sim$eps, 1, function(x) VaR(x, c(0.05))),
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ES = apply(a.pred$dist_sim$eps, 1, function(x) ES(x, c(0.05))) )

## fit a GARCH(1,1) model to exchange rate data and predict

gmol <- fGarch::garchFit(formula = ~garch(1, 1), data = fGarch::dem2gbp,
include.mean = FALSE, cond.dist = "norm”, trace = FALSE)

mocoef <- gmol@fit$par

mofitted <- GarchModel(omega = mocoef["omega"], alpha = mocoef["alphal”],
beta = mocoef["betal”])

gmol.pred <- predict(mofitted, n.ahead = 5, Nsim = 1000, eps = gmol@data,
sigmasq = gmol@h.t, seed = 1234)

gmol.pred$pi_plugin

gmol.pred$pi_sim

op <- options(op) # restore options(digits)

sim_garchici Simulate GARCH(1,1) time series

Description

Simulate GARCH(1,1) time series.

Usage

sim_garchlcl(model, n, n.start = @, seed = NULL)

Arguments
model a GARCH(1,1) model, an object obtained from GarchModel.
n the length of the generated time series.
n.start number of warm-up values, which are then dropped.
seed an integer to use for setting the random number generator.
Details

The simulated time series is in component eps of the returned value. For exploration of algorithms
and eestimation procedures, the volatilities and the standardised innovations are also returned.

The random seed at the start of the simulations is saved in the returned object. A speficific seed can
be requested with argument seed. In that case the simulations are done with the specified seed and
the old state of the random number generator is restored before the function returns.
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Value

a list with components:

eps the time series,
h the (squared) volatilities,
eta the standardised innovations,
model the GARCH(1,1) model,
.sim a list containing the parameters of the simulation,
call the call.
Note

This function is under development and may be changed.

VaR Compute Value-at-Risk (VaR)

Description

VaR computes the Value-at-Risk of the distribution specified by the arguments. The meaning of the
parameters is the same as in ES, including the recycling rules.

Usage
VaR(dist, p_loss = 0.05, ...)

VaR_qgf (
dist,
p_loss = 0.05,

intercept = 0,

slope = 1,
tol = .Machine$double.eps”0.5,
X
)
VaR_cdf (
dist,

p_loss = 0.05,

intercept = 0,

slope = 1,
tol = .Machine$double.eps”0.5,
X
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## Default S3 method:
VaR(
dist,
p_loss = 0.05,
dist.type = "qf",

L

intercept = 0,

slope = 1,
tol = .Machine$double.eps”0.5,
X
)
## S3 method for class 'numeric'
VaR(dist, p_loss = ©.05, ..., intercept = 0, slope = 1, x)
Arguments
dist specifies the distribution whose ES is computed, usually a function or a name
of a function computing quantiles, cdf, pdf, or a random number generator, see
Details.
p_loss level, default is 0.05.

.. passed on to dist.
intercept, slope
compute VaR for the linear transformation intercept + slope*X, where X has
distribution specified by dist, see Details.

tol tollerance
X deprecated and will soon be removed. x was renamed to p_loss, please use the
latter.
dist.type a character string specifying what is computed by dist, such as "qf" or "cdf".
Details

VaR is S3 generic. The meaning of the parameters for its default method is the same as in ES,
including the recycling rules.

n

VaR_qgf and VaR_cdf are streamlined, non-generic, variants for the common case when the ". . .
parameters are scalar. The parameters x, intercept, and slope can be vectors, as for VaR.

Argument dist can also be a numeric vector. In that case the ES is computed, effectively, for the
empirical cumulative distribution function (ecdf) of the vector. The ecdf is not created explicitly
and the quantile function is used instead for the computation of VaR. Arguments in "..." are
passed eventually to quantile() and can be used, for example, to select a non-defult method for

the computation of quantiles.

In practice, we may need to compute VaR associated with data. The distribution comes from fitting
a model. In the simplest case, we fit a distribution to the data, assuming that the sample is i.i.d. For
example, a normal distribution N (p1, 02) can be fitted using the sample mean and sample variance
as estimates of the unknown parameters i and o2, see section ‘Examples’. For other common
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distributions there are specialised functions to fit their parameters and if not, general optimisation
routines can be used. More soffisticated models may be used, even time series models such as
GARCH and mixture autoregressive models.

Note

We use the traditional definition of VaR as the negated lower quantile. For example, if X are returns
on an asset, VAR, = —q,, where q,, is the lower « quantile of X . Equivalently, VAR, is equal to
the lower 1 — o quantile of —X.

See Also
ES for ES,

predict for examples with fitted models

Examples

cvar::VaR(gnorm, c(0.01, 0.05), dist.type = "qgf")

## the following examples use these values, obtained by fitting a normal distribution to
## some data:

mUA <- 0.006408553

sigma2A <- 0.0004018977

## with quantile function, giving the parameters directly in the call:
resl <- cvar::VaR(gnorm, 0.05, mean = muA, sd = sqrt(sigma2A))
res2 <- cvar::VaR(gnorm, 0.05, intercept = muA, slope = sqrt(sigma2A))
abs((res2 - resl1)) # 0, intercept/slope equivalent to mean/sd

## with quantile function, which already knows the parameters:
my_gnorm <- function(p) gnorm(p, mean = muA, sd = sqrt(sigma2A))
res1_alt <- cvar::VaR(my_gnorm, 0.05)

abs((res1_alt - res1))

## with cdf the precision depends on solving an equation

resla <- cvar::VaR(pnorm, 0.05, dist.type = "cdf"”, mean = muA, sd = sqrt(sigma2A))

res2a <- cvar::VaR(pnorm, 0.05, dist.type = "cdf”, intercept = muA, slope = sqrt(sigma2A))
abs((resla - res2)) # 3.287939e-09

abs((res2a - res2)) # 5.331195e-11, intercept/slope better numerically

## as above, but increase the precision, this is probably excessive
reslb <- cvar::VaR(pnorm, 0.05, dist.type = "cdf",
mean = muA, sd = sqrt(sigma2A), tol = .Machine$double.eps”0.75)
res2b <- cvar::VaR(pnorm, 0.05, dist.type = "cdf",
intercept = muA, slope = sqrt(sigma2A), tol = .Machine$double.eps”@.75)
abs((reslb - res2)) # 6.938894e-18 # both within machine precision
abs((res2b - res2)) # 1.040834e-16

## relative precision is also good
abs((reslb - res2)/res2) # 2.6119e-16 # both within machine precision
abs((res2b - res2)/res2) # 3.91785e-15
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## an extended example with vector args, if "PerformanceAnalytics” is present
if (requireNamespace("PerformanceAnalytics”, quietly = TRUE)) withAutoprint({

b

data(edhec, package = "PerformanceAnalytics”)
mu <- apply(edhec, 2, mean)

sigma2 <- apply(edhec, 2, var)

musigma2 <- cbind(mu, sigma2)

## compute in 2 ways with cvar::VaR
vAz1 <- cvar::VaR(gnorm, ©.05, mean = mu, sd = sqrt(sigma2))
vAz2 <- cvar::VaR(gnorm, 0.05, intercept = mu, slope = sqrt(sigma2))

vAzla <- cvar

VAz2a <- cvar:

vAz1b <- cvar:

vAz2b <- cvar:

VaR(pnorm, ©.05, dist.type = "cdf",
mean = mu, sd = sqrt(sigma2))

:VaR(pnorm, 0.05, dist.type = "cdf”,

intercept = mu, slope = sqrt(sigma2))

:VaR(pnorm, .05, dist.type = "cdf",

mean = mu, sd = sqrt(sigma2),
tol = .Machine$double.eps”*@.75)

:VaR(pnorm, .05, dist.type = "cdf",

intercept = mu, slope = sqrt(sigma2),
tol = .Machine$double.eps”*@.75)

## analogous calc. with PerformanceAnalytics::VaR
VPA <- apply(musigma2, 1, function(x)

PerformanceAnalytics::VaR(p = .95, method = "gaussian”, invert

## the result
max (abs ((vPA
max (abs ((vPA

max (abs ((vPA
max (abs ((vPA

max (abs ((vPA
max (abs ((vPA

S

mu = x[1], sigma = x[2], weights = 1))
are numerically the same
vAz1))) # 5.551115e-17
vAz2))) # """

vAz1a))) # 3.287941e-09
vAz2a))) # 1.465251e-10, intercept/slope better

vAz1b))) # 4.374869e-13
vAz2b))) # 3.330669e-16

VaR



Index

cvar (cvar-package), 2
cvar-package, 2

ES, 3,3,11-13
GarchModel, 6
integrate, 5

predict, 5, 13
predict.garchicl, 3,7

quantile, 5, 12
sim_garchicl, 8, 10

VaR, 3, 5, 11
VaR_cdf (VaR), 11
VaR_gf (VaR), 11

15



	cvar-package
	ES
	GarchModel
	predict.garch1c1
	sim_garch1c1
	VaR
	Index

